CN106650160B - 高压加热器轻量化设计方法 - Google Patents

高压加热器轻量化设计方法 Download PDF

Info

Publication number
CN106650160B
CN106650160B CN201611269674.7A CN201611269674A CN106650160B CN 106650160 B CN106650160 B CN 106650160B CN 201611269674 A CN201611269674 A CN 201611269674A CN 106650160 B CN106650160 B CN 106650160B
Authority
CN
China
Prior art keywords
pressure heater
design
load
plastic
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611269674.7A
Other languages
English (en)
Other versions
CN106650160A (zh
Inventor
任一峰
杨志刚
王佳欢
杨洁
汤晓英
杜彦楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Special Equipment Supervision and Inspection Technology Institute
Shanghai Electric Power Generation Equipment Co Ltd
Original Assignee
Shanghai Special Equipment Supervision and Inspection Technology Institute
Shanghai Electric Power Generation Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Special Equipment Supervision and Inspection Technology Institute, Shanghai Electric Power Generation Equipment Co Ltd filed Critical Shanghai Special Equipment Supervision and Inspection Technology Institute
Priority to CN201611269674.7A priority Critical patent/CN106650160B/zh
Publication of CN106650160A publication Critical patent/CN106650160A/zh
Application granted granted Critical
Publication of CN106650160B publication Critical patent/CN106650160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种高压加热器轻量化设计方法,其特征在于,采用弹塑性材料本构模型,以实际高压加热器建立整体分析模型,采用数值分析技术,采用弹塑性应力分析确定高压加热器整体塑性垮塌载荷,采用设计系数确定其许用载荷,用于高压加热器轻量化设计,有效减薄常规设计部件的壁厚。本发明将弹塑性分析方法引入高压加热器的设计,将总体塑性变形作为失效判定条件的直接法,其在力学分析上更接近结构的实际承载情况,可以更真实地反映受压元件在载荷作用下的失效过程,有效减薄常规设计部件的壁厚,使得高压加热器的设计更安全、更经济。

Description

高压加热器轻量化设计方法
技术领域
本发明涉及一种高压加热器轻量化设计方法,尤其涉及一种采用以弹塑性分析为基础的直接法的电厂用高压加热器轻量化设计方法,电厂用高压加热器技术领域。
背景技术
鉴于国内电厂装机容量大,运行参数高的状况,电厂配套的高压加热器其管程设计压力高于35MPa,超出了常规设计标准GB150的规定。
现阶段电厂用高压加热器管程结构设计主要参照压力容器分析设计标准JB4732采用应力分类法分析设计。但随着国内高超临界机组的压力温度参数的进一步提高,导致设备规格不断增大,部件如管板、封头等直径壁厚的增加,给现阶段的材料生产、设备设计及制造均带来一定程度的困难。
相比于各国压力容器设计领域所广泛采用的应力分类法,以弹塑性分析为基础,将总体塑性变形和渐进塑性变形作为失效判定条件的直接法,其在力学分析上更接近结构的实际承载情况,因此,可以更真实地反映受压元件在载荷作用下的失效过程,使得压力容器的设计更安全、更经济。
目前,直接法已为各国压力容器设计行业的专家所接受。美国压力容器标准ASMEVIII-2自2007年起引入了直接法;在欧盟压力容器标准EN13445中,以弹塑性分析为基础的直接法作为分析设计的基本方法之一与应力分类法并列。因此研究以弹塑性分析为基础的直接法在高压加热器轻量化设计中的运用是非常有必要的,其为高压加热器轻量化设计提供了强大的分析手段和先进可靠的安全评定准则,是将安全性和经济性相结合的有效途径。
发明内容
本发明所要解决的问题是提供一种以弹塑性分析为基础的直接法用于电厂用高压加热器轻量化设计。
为了解决上述问题,本发明提供了一种高压加热器轻量化设计方法,其特征在于,采用弹塑性材料本构模型,以实际高压加热器建立整体分析模型,采用数值分析技术,采用弹塑性应力分析确定高压加热器整体塑性垮塌载荷,采用设计系数确定其许用载荷,用于高压加热器轻量化设计,有效减薄常规设计部件的壁厚。
优选地,具体步骤如下:
步骤1):制定高压加热器所有相关几何特性在内数值模型,精确表示的几何特性、边界条件和所作用的载荷,此外,对环绕应力和应力集中的区域应作局部细化处理;
步骤2):规定所有的相关载荷以及适用的载荷情况;
步骤3):采用弹塑性材料模型、von Mises屈服函数和以之相关的流动规则,可以采用包括硬化或软化的材料模型,或理想弹塑性的材料模型。当采用弹塑性模型时,直至真实极限应力和全塑性行为超过此极限时,应一直包括硬化行为。在分析中应计及几何非线性的影响;
步骤4):对所有载荷情况组合完成弹塑性分析,求得塑性垮塌载荷。这可以由小的载荷增量再也不能获得平衡解的这一点来表示(即,该解不再收敛);
步骤5):对计算得到的高压加热器整体塑性垮塌载荷,采用设计系数确定其许用载荷;
步骤6):将许用载荷,与设计载荷比较,确定该设计载荷条件下的高加加热器管程结构是否满足安全要求。
优选地,所述数值分析技术采用有限元方法。
本发明将弹塑性分析方法引入高压加热器的设计,将总体塑性变形作为失效判定条件的直接法,其在力学分析上更接近结构的实际承载情况,可以更真实地反映受压元件在载荷作用下的失效过程,有效减薄常规设计部件的壁厚,使得高压加热器的设计更安全、更经济。
与现有技术相比,本发明的有益效果如下:
(1)有效解决电厂用高压加热器管程压力超出常规设计标准GB150的规定时设计问题;
(2)以弹塑性分析为基础的直接法对由非弹性变形以及高压加热器的变形特征导致发生的应力再分布都在分析中直接计及,无需进行应力分类;
(3)采用弹塑性材料本构模型,将总体塑性变形作为失效判定条件的直接法,其在力学分析上更接近结构的实际承载情况,可以更真实地反映高压加热器在载荷作用下的失效过程,较弹性失效准则的设计方法,能使高压加热器有效减小部件壁厚,实现高压加热器轻量化设计。
附图说明
图1为本发明提供的一种高压加热器轻量化设计方法的流程图;
图2为高压加热器管程的外形结构图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例
如图2所示,为高压加热器管程的外形结构图,其主要承压部件包括管板1,管板1外侧为水室封头3,水室封头3上设有出水口管2、人孔4及进口水管5。
上述高压加热器的设计方法如下:
某电厂用高压加热器设计压力为40MPa,设计温度为330℃。以弹塑性分析为基础的直接法的电厂用高压加热器设计的具体步骤如下:
(1)按照图2所示典型电厂用高压加热器结构确定几何模型,建立有限元模型;
(2)给出电厂用高压加热器管程各承压部件(管板、水室封头、进出口水管、人孔、换热管等)在设计温度下的弹塑性材料本构模型;
(3)确定所有的相关载荷,最大的载荷需涵盖2.4(设计系数)倍设计压力;
(4)选取von Mises屈服函数及流变准则;
(5)对该高压加热器进行整体塑性垮塌分析,以小的载荷增量也不能获得平衡解,确定塑性垮塌载荷;
(6)以塑性垮塌载荷除以2.4(设计系数),得到该高压加热器的许用载荷;
(7)将许用载荷与设计载荷比较,若许用载荷大于设计载荷,则能确定该设计载荷条件下的高压加热器管程结构满足安全要求。

Claims (2)

1.一种高压加热器轻量化设计方法,其特征在于,采用弹塑性材料本构模型,以实际高压加热器建立整体分析模型,采用数值分析技术,采用弹塑性应力分析确定高压加热器整体塑性垮塌载荷,采用设计系数确定其许用载荷,用于高压加热器轻量化设计;具体步骤如下:
步骤1):制定高压加热器所有相关几何特性在内数值模型,精确表示的几何特性、边界条件和所作用的载荷,此外,对环绕应力和应力集中的区域应作局部细化处理;
步骤2):规定所有的相关载荷以及适用的载荷情况;
步骤3):采用弹塑性材料模型、von Mises屈服函数和以之相关的流动规则,可以采用包括硬化或软化的材料模型,或理想弹塑性的材料模型;
步骤4):对所有载荷情况组合完成弹塑性分析,求得塑性垮塌载荷;
步骤5):对计算得到的高压加热器整体塑性垮塌载荷,采用设计系数确定其许用载荷;
步骤6):将许用载荷,与设计载荷比较,确定该设计载荷条件下的高加加热器管程结构是否满足安全要求。
2.如权利要求1所述的高压加热器轻量化设计方法,其特征在于,所述数值分析技术采用有限元方法。
CN201611269674.7A 2016-12-30 2016-12-30 高压加热器轻量化设计方法 Active CN106650160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611269674.7A CN106650160B (zh) 2016-12-30 2016-12-30 高压加热器轻量化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611269674.7A CN106650160B (zh) 2016-12-30 2016-12-30 高压加热器轻量化设计方法

Publications (2)

Publication Number Publication Date
CN106650160A CN106650160A (zh) 2017-05-10
CN106650160B true CN106650160B (zh) 2020-08-18

Family

ID=58838498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611269674.7A Active CN106650160B (zh) 2016-12-30 2016-12-30 高压加热器轻量化设计方法

Country Status (1)

Country Link
CN (1) CN106650160B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355264B (zh) * 2017-08-14 2019-05-28 上海电气电站设备有限公司 一种高压加热器防止塑性垮塌的简化评定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8688418B2 (en) * 2011-09-01 2014-04-01 Mcmoran Oil & Gas, Llc Engineered methodology for design verification and validation of ultra-deep high pressure high temperature oil and gas well control equipment
CN103995957B (zh) * 2014-04-18 2017-05-10 华东理工大学 针对蠕变损伤及体积型缺陷的承压结构的安全评定方法
CN105090273B (zh) * 2014-05-06 2018-09-25 襄阳汽车轴承股份有限公司 自调心拉式离合器分离轴承单元
CN104268383B (zh) * 2014-09-17 2017-02-22 合肥通用机械研究院 一种含裂纹类缺陷高温压力管道的安全评定方法

Also Published As

Publication number Publication date
CN106650160A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN103105477B (zh) 一种预测锻态钢锻造裂纹萌生的方法
CN106650160B (zh) 高压加热器轻量化设计方法
CN102374928A (zh) 一种工业管道试压方法
CN107103121A (zh) 考虑焊接残余应力的钢桥构造细节s‑n曲线的确定方法
CN110083123A (zh) 一种基于形状记忆合金的装配连接载荷智能控制方法
CN103940663A (zh) 不同应力比下材料疲劳门槛值的预测方法
CN201583455U (zh) 金属管内压蠕变试验装置
CN104359695A (zh) 一种核级止回阀动态逆流试验装置
CN104999021B (zh) 一种控制轴类锻件晶粒不均匀的锻造方法
Zhao et al. Quantitative prediction of reduction in large pipe setting round process
CN107355264B (zh) 一种高压加热器防止塑性垮塌的简化评定方法
Lin et al. FRP-confined concrete in square columns: An advanced stress-strain model based on a new approach
Facheris Cyclic plastic material behavior leading to crack initiation in stainless steel under complex fatigue loading conditions
CN204174534U (zh) 一种悬索桥的索夹与吊杆的连接结构
Todkar et al. Investigation of forming limit curves of various sheet materials using hydraulic bulge testing with analytical, experimental and FEA techniques
CN204935871U (zh) 一种管桩蒸养池及蒸压釜自动控制装置
Li et al. Effect of the die hole structure and distribution on the strength of ring die in pelletizing equipment
CN203990531U (zh) 超硬材料合成设备顶锤冷却系统
Antunes et al. Numerical validation of crack closure concept using non-linear crack tip parameters
CN109113649A (zh) 一种加热装置
CN207379652U (zh) 一种多功能预应力损失长期监测装置
CN203479152U (zh) Eg换热器置换装置
Cao et al. The Design of Ultra-Large Hydraulic-Balance Oil Tank With Double-Shell
Chojnacki et al. Simulation tests of pelleting process in aspect of obtained stresses, contact pressure and fatigue strength for granulator flat die
CN203784917U (zh) 一种冷凝水预加热装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant