CN106650098A - 一种混凝土徐变应变计算方法 - Google Patents

一种混凝土徐变应变计算方法 Download PDF

Info

Publication number
CN106650098A
CN106650098A CN201611201086.XA CN201611201086A CN106650098A CN 106650098 A CN106650098 A CN 106650098A CN 201611201086 A CN201611201086 A CN 201611201086A CN 106650098 A CN106650098 A CN 106650098A
Authority
CN
China
Prior art keywords
concrete
creep
formula
coefficient
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611201086.XA
Other languages
English (en)
Inventor
陈天地
陈思孝
陈克坚
李锐
张亮亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Eryuan Engineering Group Co Ltd CREEC
Original Assignee
China Railway Eryuan Engineering Group Co Ltd CREEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Eryuan Engineering Group Co Ltd CREEC filed Critical China Railway Eryuan Engineering Group Co Ltd CREEC
Priority to CN201611201086.XA priority Critical patent/CN106650098A/zh
Publication of CN106650098A publication Critical patent/CN106650098A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及桥梁工程技术领域,特别涉及一种混凝土徐变应变计算方法,包括以下步骤:①计算得出混凝土τ0时刻加载至t时刻的徐变系数和弹性模量E(t,τ0);②计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0);③根据①和②得到混凝土徐变应变的计算方程式,并应用该方程式对混凝土徐变应变进行计算,该计算方程式为:弹性模量E(t,τ0)根据时效系数得出,且弹性模量E(t,τ0)为按龄期调整的有效模量,其表达式为:该方法通过模量的折减实现混凝土徐变引起的变形模量,将随时间变化的应力看成一步施加在混凝土上,从而解决了有效模量法高估第一次加载后应力增量所引起的徐变变形这一问题。

Description

一种混凝土徐变应变计算方法
技术领域
本发明涉及桥梁工程技术领域,特别涉及一种混凝土徐变应变计算方法。
背景技术
近年来,我国铁路建设得到迅猛发展,在铁路建设过程中,新建了许多铁路连续钢构桥。根据调查发现,高墩大跨连续钢构桥,在其成桥后若干年,跨中下挠仍不断增大,超过了设计时的预期值,影响了行车的舒适性,并对结构产生不利影响,降低了结构的耐久性,甚至导致桥梁破坏。研究表明,收缩徐变是导致大跨连续钢构桥持续下挠的重要原因之一,然而,由于对其作用效应认识不足,且收缩徐变受到多种随机因素的影响,该问题的研究一致受到国内外学者的关注,但至今仍不能得到很好的解决。
传统的混凝土徐变收缩理论和计算方法一直处于持续研究和发展阶段,针对混凝土徐变应变计算方法,国内外的研究人员提出过多种徐变计算理论,如老化理论、继效流动理论、弹性徐变理论、有效模量法等,但早期的这些计算方法主要采用传统的手算和数理统计方法,虽然在徐变收缩计算过程中被广泛应用,但是存在一定的局限性,这些混凝土收缩徐变中计算方法往往采用应力应变的积分方程,计算过程非常复杂,难以保证精度,同时不便于和有限元方法相结合,同时,还存在有效模量法高估第一次加载后应力增量所引起的徐变变形问题。
发明内容
本发明的目的在于:针对现有技术中采用有效模量法所存在的过高估计了第一次加载后应力增量所引起的徐变变形问题,提供一种混凝土徐变应变计算方法,该方法通过模量的折减实现混凝土徐变引起的变形模量,将随时间变化的应力看成一步施加在混凝土上,从而解决了有效模量法高估第一次加载后应力增量所引起的徐变变形这一问题。
为了实现上述发明目的,本发明提供了以下技术方案:
一种混凝土徐变应变计算方法,包括以下步骤:
步骤a,计算得出混凝土τ0时刻加载至t时刻的徐变系数
步骤b,计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0);
步骤c,根据步骤a和步骤b得到混凝土徐变应变的计算方程式,并应用该方程式对混凝土徐变应变进行计算,混凝土徐变应变的计算方程式为:
式中,εb(t)为混凝土加载至t时刻的徐变应变,σ0为混凝土τ0时刻施加的应力,σ(t)为混凝土t时刻的应力,E为混凝土的弹性模量常数;
所述弹性模量E(t,τ0)根据时效系数得出,且弹性模量E(t,τ0)为按龄期调整的有效模量,其表达式为:
式中,E为混凝土的弹性模量常数,χ(t,τ0)为混凝土τ0时刻加载至t时刻的时效系数,为混凝土τ0时刻加载至t时刻的徐变系数。
混凝土由于徐变引起的变形增量通过模量的折减实现,将随时间变化的应力看成一步施加在混凝土上,同时运用时效系数考虑混凝土的老化对徐变的降低作用,从而解决了有效模量法高估第一次加载后应力增量所引起的徐变这一问题,该方法通过将将积分方程转化为代数方程,从而极大的简化了计算,并保证一定的精度。
优选的,在所述步骤1中,徐变系数根据先天理论和老化理论得
出,其表达式为:
取τ=τ0,得到
式中,A和B为取决于混凝土材料性质和环境条件的常数。
由于先天理论和后天理论都有一定的缺陷,通过采用混合理论来加以克服缺陷,使混凝土的徐变系数更加准确、完善。
优选的,所述时效系数χ(t,τ0)根据混凝土应力的变化规律得出,混凝土应力的变化规律为σ(t,τ0)=σ0R(t,τ0),使得
式中,σ(t,τ0)为混凝土τ0时刻加载至t时刻的应力;
σ0为混凝土τ0时刻施加的应力;
为混凝土τ0时刻加载至t时刻的徐变系数;
R(t,τ0)为基于时间分段累积徐变应变的应力松弛系数。
由于时效系数χ(t,τ0)的计算在实际应用时较难实现的,为此,需要根据混凝土应力的变化规律,从而求出χ(t,τ0)。
优选的,将混凝土τ0时刻施加的应力σ0设置为1,得到应力松弛系数R(t,τ),所述应力松弛系数的表达式为:
使τ=τ0时,得到R(t,τ0);
式中,σ(t)为混凝土t时刻的应力;
σ0为混凝土τ0时刻施加的应力;
为徐变应变增量;
E(τn)为随加载龄期τ而变化的混凝土弹性模量。
优选的,所述徐变应变增量
其中,
式中,ω为混凝土的变异系数;
f为混凝土抗压强度;
Δσn为混凝土应力增量;
为混凝土的徐变系数值。
优选的,所述混凝土弹性模量E(τn)包括普通混凝土弹性模量和轻骨料混凝土弹性模量,所述普通混凝土弹性模量表达式:
所述轻骨料混凝土弹性模量表达式:
式中,E28为混凝土28天时的弹性模量,τ为加载龄期。
优选的,混凝土徐变应变计算方法还包括根据弹性模量E(t,t0)和应力松弛系数R(t,τ)的计算公式完成对混凝土徐变效应分析。
优选的,在对混凝土徐变效应分析时,具体包括以下步骤:
步骤f1:利用ANSYS的约束方程法建立空间模型;
步骤f2:将徐变系数的表达式进行编译计算;
步骤f3:对弹性模量E(t,t0)进行编译与实现。
通过上述方式,结合ANSYS强大的二次开发功能,基于高强混凝土徐变应变增量与应力增量的递推关系,对混凝土材料的本构关系进行重新编译,得到更符合实际结构效应的计算值,并且这种计算方法不必记录应力应变的历史,有助于提升计算效率,可编译性强。
优选的,在所述步骤f3中,对弹性模量E(t,t0)进行实现时,按以下步骤进
行:
步骤f3.1:将混凝土材料参数和步骤f2中计算得到的徐变系数输入程序中;
步骤f3.2:递推计算ωn并存储ωn
步骤f3.3:计算龄期tn的弹性模量E(tn)、弹性矩阵Dn
步骤f3.4:计算应力增量Δσn并累加得到增量步结束时的总应力σn,完成结构的徐变效应分析。
优选的,弹性矩阵Dn=E(tn)·[Q-1],其中
E(tn)为混凝土弹性模量。
与现有技术相比,本发明的有益效果:
1、通过计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0)和徐变系数且该弹性模量E(t,τ0)根据时效系数得出,从而得到混凝土徐变应变的计算方程式,使混凝土由于徐变引起的变形增量通过模量的折减得以实现,将随时间变化的应力看成一步施加在混凝土上,同时运用时效系数考虑混凝土的老化对徐变的降低作用,解决了有效模量法高估第一次加载后应力增量所引起的徐变这一问题,该方法通过将将积分方程转化为代数方程,从而极大的简化了计算,并保证一定的精度;
2、通过计算得到徐变应变增量同时将混凝土τ0时刻施加的应力σ0设置为1,得到应力松弛系数R(t,τ)的表达式,使得计算大为简化,也有利于进行编程计算分析,精度更高,对于复杂结构和过程的徐变问题,其计算精度和计算时间得到优化;
3、采用混合理论来加以克服缺陷,使混凝土的徐变系数更加准确、完善。
附图说明:
图1为按先天理论绘制的混凝土徐变系数的增长规律
图2为按后天理论绘制的混凝土徐变系数的增长规律。
图3为按混合理论绘制的混凝土徐变系数的增长规律。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例
混凝土徐变应变计算方法,包括以下步骤:
步骤a,计算得出混凝土τ0时刻加载至t时刻的徐变系数
步骤b,计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0);
步骤c,根据步骤a和步骤b得到混凝土徐变应变的计算方程式,并应用该方程式对混凝土徐变应变进行计算,混凝土徐变应变的计算方程式为:
式中,εb(t)为混凝土加载至t时刻的徐变应变,σ0为混凝土τ0时刻施加的应力,σ(t)为混凝土t时刻的应力,E为混凝土的弹性模量常数;
所述弹性模量E(t,τ0)根据时效系数得出,且弹性模量E(t,τ0)为按龄期调整的有效模量,其表达式为:
式中,E为混凝土的弹性模量常数,χ(t,τ0)为混凝土τ0时刻加载至t时刻的时效系数,为混凝土τ0时刻加载至t时刻的徐变系数。
混凝土由于徐变引起的变形增量通过模量的折减实现,将随时间变化的应力看成一步施加在混凝土上,同时运用时效系数考虑混凝土的老化对徐变的降低作用,从而解决了有效模量法高估第一次加载后应力增量所引起的徐变这一问题,该方法通过将将积分方程转化为代数方程,从而极大的简化了计算,并保证一定的精度。
混凝土从初始加载龄期τ0到计算时刻t,在应力变化条件下产生的计算龄期为t时的总应变εb(t)的传统公式为式3.1;
式3.1:
因混凝土徐变度则式3.1可表示为式3.2;
式3.2:
进一步计算即为式3.3;
式3.3:
为时效系数,是难以积分的,则式3.3可写成:
式3.4:
又令E(t,τ0)为按龄期调整的有效模量,则得出式3.5;
式3.5:
由上述可知,时效系数χ(t,τ0)的计算在实际应用时也是较难实现的,为此,先设定混凝土应力的变化规律,从而求出εb(t)或者χ(t,τ0),设定混凝土应力的变化规律为σ(t,τ0)=σ0R(t,τ0),则得出式3.6;
式3.6:
式3.1~3.6中,εb(t)为混凝土τ0时刻加载至t时刻的应变;为混凝土τ0时刻加载至t时刻的徐变系数;σ0为混凝土τ0时刻施加的应力;σ(t)为混凝土t时刻的应力;χ(t,τ0)为混凝土τ0时刻加载至t时刻的老化系数。
从上述可以看出,混凝土由于徐变引起的变形增量通过模量的折减实现,将随时间变化的应力看成一步施加在混凝土上,同时运用时效系数考虑混凝土的老化对徐变的降低作用,从而解决了有效模量法高估第一次加载后应力增量所引起的徐变这一问题。通过将积分方程转化为代数方程,从而极大的简化了计算,并保证一定的精度。
时效系数χ(t,τ0)根据混凝土应力的变化规律得出,所述混凝土应力的变化规律为σ(t,τ0)=σ0R(t,τ0),使得
式中,为混凝土τ0时刻加载至t时刻的徐变系数。
由于时效系数χ(t,τ0)的计算在实际应用时较难实现的,为此,需要根据混凝土应力的变化规律,从而求出χ(t,τ0)。
对于特定的混凝土及其养护条件,β(fck)、β(t0)、βT、βf、βj为定值,且在一般地工程计算中,混凝土的徐变度可表示为:
式3.7:
其中,β(fck)、β(t0)、βT、βf、βj分别为混凝土强度、加载龄期、养护温度、粉煤灰和添加剂的影响修正系数;
取β=β(fck)·β(t0)·βT·βf·βj相邻时刻tn-1,tn,tn+1,则时间步长为Δτn=tn-tn-1,Δτn+1=tn+1-tn,结合式3.2和3.7,得到εc(tn+1)、εc(tn)和εc(tn-1),εc(tn+1)-εc(tn)即可得到徐变应变增量εc(tn)-εc(tn-1)即可得到徐变应变增量
式3.8:
式中,
式3.9:
式3.10:
式3.11:
将式3.9与式3.11比较,得到递推式:
式3.12:
式3.8~3.12中,ω为混凝土的变异系数;f为混凝土抗压强度;Δσn为混凝土应力增量;为混凝土的徐变系数值。
将混凝土τ0时刻施加的应力σ0设置为1,得到应力松弛系数R(t,τ),使τ=τ0时,得到R(t,τ0),所述应力松弛系数的表达式,如式3.9;
式3.13:
将式3.10代入上式,即得到基于时间分段累积徐变应变的应力松弛系数:
式3.14:
式中,σ(t)为混凝土t时刻的应力;σ0为混凝土τ0时刻施加的应力;为徐变应变增量;E(τn)为随加载龄期τ而变化的混凝土弹性模量。
徐变系数根据先天理论和老化理论得出,在先天理论中给混凝土施加荷载,混凝土将会产生一定量的徐变,加载后任一时刻的徐变率与剩余的将会产生的徐变量成正比,其表达式为:
式中,τ=t-t0为荷载持续作用的时间;为徐变系数的终极值;r为常数。
对表达式进行积分,并利用初始条件:τ=0,则即可得到先天理论的徐变系数表达式,如式3.15;
式3.15:
根据先天理论的徐变系数表达式绘成的不同加载龄期混凝土徐变系数的增长曲线图,如图1所示,从图中可以看出:当t趋近于∞时,不同加载龄期的徐变系数都趋近于同一个好像由先天决定的那样。先天理论不能反映加载龄期对混凝土徐变的影响,只能够近似的反应加载后期的情况。
老化理论通过给不同龄期的混凝土施加持续应力,可以得出徐变系数—龄期曲线,在相同时间t对应的不同龄期的徐变率都相等。这意味着不同加载龄期的徐变系数曲线可由通过原点的徐变系数—龄期曲线垂直平移而得,如图2所示。
根据以上假定,可写出:
如令:
式3.16:
式3.17:
式3.18:
式(3.17)即为老化理论的徐变系数表达式,该理论以平行线假定为基础,但未考虑滞后弹性变形的徐变系数,来进行混凝土后期加载长期效应的计算,将会低估混凝土的徐变影响,若用来计算递减荷载的长期效应时,又将会高估混凝土的徐变影响。
无论是先天理论还是后天理论,都有一定的缺陷,而这些缺陷则可以通过采用混合理论来加以克服。
将式3.15和3.17包含在一个算式里面的混合理论表达式:
式3.19:
A和B为取决于混凝土材料性质和环境条件的常数。
从式3.19可以看出,当τ较小时,式3.19接近于式3.18,而当τ较大时,式3.19将迅速的向式3.16转化,该变化趋势可以从图3中可以看出。
混凝土弹性模量的测定过程如下:
试验时,取三个试件,首先在试件两侧面定出横纵向中线,然后将表面处理干净,涂抹粘结剂,将应变片沿纵向中线粘贴,并注意两侧对称,待粘接剂完全固化后开始加载。
将试件以0.5~0.8Mpa的速度连续均匀地加荷至轴心抗压强度的40%,即达到弹性模量试验的控制荷载值Fa,然后以同样的速度卸荷至零,如此反复预压3次。用同样的速度进行第4次加荷,先加荷到应力为0.5Mpa的初始荷载值F0,保持30秒钟后分别读取试件两侧初始变形值ε0,然后加荷到Fa,保持30秒钟后读取试件两侧的变形值εa。两侧读数增值的平均值即为该次试验的变形值,弹性模量的实测值如表1所示。
混凝土的抗压弹性模量按下式计算:
式3.20:式中,Δε=εa0
表1混凝土弹性模量实测值
随加载龄期τ而变化的混凝土弹性模量分别按公式(3.21)和(3.22)计算:
针对普通混凝土:
式3.21:
针对轻骨料混凝土:
式3.22:
式3.21和式3.22中,E28为28d时的弹性模量。
在对混凝土徐变效应分析时,包括以下步骤:
步骤1:利用ANSYS的约束方程法建立空间模型;
桥梁模型的跨度为45m+80m+45m,箱梁采用直腹板单箱单室结构,箱梁顶面宽12m,箱体宽度6.5m,T端部梁高2.5m,根部梁高4.5m,其余主梁高度采用2次抛物线变化。箱梁采用C60混凝土,纵向布置低松弛钢绞线,竖向预应力筋采用精轧螺纹粗钢筋,桥墩采用C40混凝土,高16m。
利用ANSYS的约束方程法建立空间模型,并分别采用20节点的Sol id95单元和2节点的Link8单元来模拟混凝土和预应力筋。C60混凝土弹性模量3.6×1010Pa,容重27kN/m3,泊松比0.1667;预应力筋弹性模量195GPa,容重78kN/m3。墩梁间连接用ceintf命令耦合节点自由度模拟刚性连接。采用自由网格划分法,划分网格后的有限元模型单元23490个,节点91610个,悬臂现浇施工,施工阶段共有23个,约为360天。
步骤2:将徐变系数的表达式进行编译计算;
根据CEB-FIP(MC2010)徐变模型将徐变系数的计算式集成到子程序USERCR.F中进行编译计算,同时划分时间段算得C1值,如表2所示。
表2混凝土徐变系数与ANSYS显式蠕变准则下的C1
综合以上分析,可以在USERCR.F中进行编译。
步骤3:对弹性模量E(t,t0)进行编译与实现;
利用ANSYS提供的USERMAT.F子程序,可以自定义材料模型的开发,该子程序不仅可以定义弹性模量随时间的变化,而且在每一步计算中,提供了前一荷载步结束时的单元应力、应变和状态变量以及当前增量弹性应变增量等信息,用户可以给出当前增量步的单元应力应变关系,并更新增量不结束时的单元应力和状态变量。
在USERMAT.F子程序定义的应力应变增量关系可以表示如下:
式3.23:
式3.24:
式3.25:
式中,μ为混凝土徐变变形泊松比,根据试验资料基本上等于其弹性变形泊松比;Δεb(tn)为混凝土应变变形增量。
徐变系数公式用于分析混凝土徐变效应,实现过程简介如下:
f3.1、将混凝土材料参数输入到子程序中,如弹性模量、泊松比等,密度可按ANSYS中的标准用法使用,同时,将USERCR.F中算得的徐变系数引入子程序;
f3.2、根据式(3.20)、(3.21)和(3.22)递推计算ωn并存储ωn,ANSYS可根据徐变应变增量形成由徐变引起的单元荷载增量;
f3.3、根据式(3.14)和(3.24)计算龄期tn的弹性模量E(tn)、弹性矩阵Dn
f3.4、计算当前增量步的应力增量Δσn并累加得到增量步结束时的总应力σn,完成结构的徐变效应分析。
最后,将重新编译的USERMAT.F、USER01.F和USERCR.F,以及ANSYS安装目录下的anscust.bat、ansyslarge.def、ansyssmall.def和makefile共7个文件复制到一个新建文件夹中,运行anscust.bat,编译成功后将生成已添加用户自定义子程序的可执行文件ANSYS.exe。运行,导入计算模型后加载自重、二期恒载和预应力,通过TB和TBDATA命令调用自定义子程序求解(视为计算模式二),在此,USER01.F文件主要是用来记录状态变量的。为方便后文的计算结果对比分析,又把不包含USERMAT.F文件的上述6个文件重新编译求解(视为计算模式一),得到没有考虑弹性模量随龄期调整的徐变效应。
ANSYS强大的二次开发功能,基于高强混凝土徐变应变增量与应力增量的递推关系,在子程序USERMAT.F中对混凝土材料的本构关系进行重新编译,经本文的实例计算验证可以得到更符合实际结构效应的计算值;并且这种计算方法不必记录应力应变的历史,有助于提升计算效率,可编译性强。
本实施例通过计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0)和徐变系数且该弹性模量E(t,τ0)根据时效系数得出,从而得到混凝土徐变应变的计算方程式,使混凝土由于徐变引起的变形增量通过模量的折减得以实现,将随时间变化的应力看成一步施加在混凝土上,同时运用时效系数考虑混凝土的老化对徐变的降低作用,解决了有效模量法高估第一次加载后应力增量所引起的徐变这一问题,该方法通过将将积分方程转化为代数方程,从而极大的简化了计算,并保证一定的精度。

Claims (10)

1.一种混凝土徐变应变计算方法,其特征在于,包括以下步骤:
步骤a,计算得出混凝土τ0时刻加载至t时刻的徐变系数
步骤b,计算得出混凝土τ0时刻加载至t时刻的弹性模量E(t,τ0);
步骤c,根据步骤a和步骤b得到混凝土徐变应变的计算方程式,并应用该方程式对混凝土徐变应变进行计算,混凝土徐变应变的计算方程式为:
式中,εb(t)为混凝土加载至t时刻的徐变应变,σ0为混凝土τ0时刻施加的应力,σ(t)为混凝土t时刻的应力,E为混凝土的弹性模量常数;
所述弹性模量E(t,τ0)根据时效系数得出,且弹性模量E(t,τ0)为按龄期调整的有效模量,其表达式为:
式中,E为混凝土的弹性模量常数,χ(t,τ0)为混凝土τ0时刻加载至t时刻的时效系数,为混凝土τ0时刻加载至t时刻的徐变系数。
2.根据权利要求1所述的混凝土徐变应变计算方法,其特征在于,在所述步骤a中,徐变系数根据先天理论和老化理论得出,其表达式为:
取τ=τ0,得到
式中,A和B为取决于混凝土材料性质和环境条件的常数。
3.根据权利要求1所述的混凝土徐变应变计算方法,其特征在于,所述时效系数χ(t,τ0)根据混凝土应力的变化规律得出,混凝土应力的变化规律为σ(t,τ0)=σ0R(t,τ0),使得
式中,σ(t,τ0)为混凝土τ0时刻加载至t时刻的应力;
σ0为混凝土τ0时刻施加的应力;
为混凝土τ0时刻加载至t时刻的徐变系数;
R(t,τ0)为基于时间分段累积徐变应变的应力松弛系数。
4.根据权利要求3所述的混凝土徐变应变计算方法,其特征在于,将混凝土τ0时刻施加的应力σ0设置为1,得到应力松弛系数R(t,τ),所述应力松弛系数的表达式为:
使τ=τ0时,得到R(t,τ0);
式中,σ(t)为混凝土t时刻的应力;
σ0为混凝土τ0时刻施加的应力;
为徐变应变增量;
E(τn)为随加载龄期τ而变化的混凝土弹性模量。
5.根据权利要求4所述的混凝土徐变应变计算方法,其特征在于,所述徐变应变增量
其中,
式中,ω为混凝土的变异系数;
f为混凝土抗压强度;
Δσn为混凝土应力增量;
为混凝土的徐变系数值。
6.根据权利要求4所述的混凝土徐变应变计算方法,其特征在于,混凝土弹性模量E(τn)包括普通混凝土弹性模量和轻骨料混凝土弹性模量,所述普通混凝土弹性模量表达式:
E ( τ ) = τ 2.50 + 0.915 τ × E ( 28 ) ;
所述轻骨料混凝土弹性模量表达式:
E ( τ ) = τ 0.5 + 0.984 τ × E ( 28 ) ;
式中,E28为混凝土28天时的弹性模量,τ为加载龄期。
7.根据权利要求5所述的混凝土徐变应变计算方法,其特征在于,混凝土徐变应变计算方法还包括根据弹性模量E(t,t0)和应力松弛系数R(t,τ)的计算公式完成对混凝土徐变效应分析。
8.根据权利要求7所述的混凝土徐变应变计算方法,其特征在于,在对混凝土徐变效应分析时,具体包括以下步骤:
步骤f1:利用ANSYS的约束方程法建立空间模型;
步骤f2:将徐变系数的表达式进行编译计算;
步骤f3:对弹性模量E(t,t0)进行编译与实现。
9.根据权利要求8所述的混凝土徐变应变计算方法,其特征在于,在所述步骤f3中,对弹性模量E(t,t0)进行实现时,按以下步骤进行:
步骤f3.1:将混凝土材料参数和步骤f2中计算得到的徐变系数输入程序中;
步骤f3.2:递推计算ωn并存储ωn
步骤f3.3:计算龄期tn的弹性模量E(tn)、弹性矩阵Dn
步骤f3.4:计算应力增量Δσn并累加得到增量步结束时的总应力σn,完成结构的徐变效应分析。
10.根据权利要求9所述的混凝土徐变应变计算方法,其特征在于,弹性矩阵Dn=E(tn)·[Q-1],其中E(tn)为混凝土弹性模量。
CN201611201086.XA 2016-12-22 2016-12-22 一种混凝土徐变应变计算方法 Pending CN106650098A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201086.XA CN106650098A (zh) 2016-12-22 2016-12-22 一种混凝土徐变应变计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201086.XA CN106650098A (zh) 2016-12-22 2016-12-22 一种混凝土徐变应变计算方法

Publications (1)

Publication Number Publication Date
CN106650098A true CN106650098A (zh) 2017-05-10

Family

ID=58826448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201086.XA Pending CN106650098A (zh) 2016-12-22 2016-12-22 一种混凝土徐变应变计算方法

Country Status (1)

Country Link
CN (1) CN106650098A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907668A (zh) * 2017-11-14 2018-04-13 中国水利水电科学研究院 一种测量早期混凝土松弛的试验方法
CN107977544A (zh) * 2017-11-16 2018-05-01 浙江工业大学 温度-应力试验中约束试件的弹性应变计算方法及其系统
CN108254537A (zh) * 2017-12-21 2018-07-06 中国水利水电科学研究院 一种不同养护条件下混凝土松弛模量评价设备与方法
CN108334676A (zh) * 2018-01-19 2018-07-27 西安理工大学 一种基于python再生混凝土三维随机球形骨料模型的构建方法
CN109918850A (zh) * 2019-04-02 2019-06-21 南通四建集团有限公司 一种有效防止混凝土开裂的方法、系统、装置、存储介质
CN110162827A (zh) * 2019-03-29 2019-08-23 河海大学 一种混凝土结构时变效应的实体有限元计算方法
CN111159801A (zh) * 2019-12-13 2020-05-15 河海大学 一种焊钉连接件的时变剪切刚度的计算方法
CN112816677A (zh) * 2021-03-04 2021-05-18 中国水利水电科学研究院 变约束作用下混凝土老化系数的测试方法和设备
CN112949105A (zh) * 2019-12-11 2021-06-11 武汉大学 各向同性双管混凝土柱挤压应力计算方法及系统
CN113008436A (zh) * 2021-03-23 2021-06-22 黄河勘测规划设计研究院有限公司 考虑徐变影响的钢筋混凝土支撑轴力计算方法
CN113702190A (zh) * 2021-10-28 2021-11-26 中冶建筑研究总院有限公司 一种确定灌浆料弹性模量及膨胀率随时间变化的方法
CN113722948A (zh) * 2021-08-01 2021-11-30 北京工业大学 一种考虑徐变效应的重型机床基础沉降变形计算方法
CN113836619A (zh) * 2021-09-09 2021-12-24 中国铁路设计集团有限公司 一种拟合任意徐变系数曲线的方法
CN117538154A (zh) * 2023-11-15 2024-02-09 东北石油大学 基于压入法的3d打印配比水泥石超早期短期徐变测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850707A (zh) * 2015-05-24 2015-08-19 华东建筑设计研究院有限公司 一种超高层混凝土结构施工过程模拟分析方法
CN106169002A (zh) * 2016-07-11 2016-11-30 中铁二院工程集团有限责任公司 一种铁路桥梁高强混凝土收缩预测方法
CN106202718A (zh) * 2016-07-11 2016-12-07 中铁二院工程集团有限责任公司 一种铁路桥梁高强混凝土徐变预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104850707A (zh) * 2015-05-24 2015-08-19 华东建筑设计研究院有限公司 一种超高层混凝土结构施工过程模拟分析方法
CN106169002A (zh) * 2016-07-11 2016-11-30 中铁二院工程集团有限责任公司 一种铁路桥梁高强混凝土收缩预测方法
CN106202718A (zh) * 2016-07-11 2016-12-07 中铁二院工程集团有限责任公司 一种铁路桥梁高强混凝土徐变预测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHANG L ET AL: "《nalysis of Creep Effects in High-performance Concrete Bridge Based on AEMM》", 《JOURNAL OF INFORMATION &COMPUTATIONAL SCIENCE》 *
张海洋: "《大跨度PC刚构桥的徐变效应分析》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
袁鹏飞: "《高强混凝土箱梁桥收缩徐变效应分析》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907668A (zh) * 2017-11-14 2018-04-13 中国水利水电科学研究院 一种测量早期混凝土松弛的试验方法
CN107977544A (zh) * 2017-11-16 2018-05-01 浙江工业大学 温度-应力试验中约束试件的弹性应变计算方法及其系统
CN107977544B (zh) * 2017-11-16 2020-08-21 浙江工业大学 温度-应力试验中约束试件的弹性应变计算方法及其系统
CN108254537A (zh) * 2017-12-21 2018-07-06 中国水利水电科学研究院 一种不同养护条件下混凝土松弛模量评价设备与方法
CN108334676A (zh) * 2018-01-19 2018-07-27 西安理工大学 一种基于python再生混凝土三维随机球形骨料模型的构建方法
CN110162827A (zh) * 2019-03-29 2019-08-23 河海大学 一种混凝土结构时变效应的实体有限元计算方法
CN110162827B (zh) * 2019-03-29 2022-11-04 河海大学 一种混凝土结构时变效应的实体有限元计算方法
CN109918850A (zh) * 2019-04-02 2019-06-21 南通四建集团有限公司 一种有效防止混凝土开裂的方法、系统、装置、存储介质
CN112949105A (zh) * 2019-12-11 2021-06-11 武汉大学 各向同性双管混凝土柱挤压应力计算方法及系统
CN112949105B (zh) * 2019-12-11 2022-03-04 武汉大学 各向同性双管混凝土柱挤压应力计算方法及系统
CN111159801A (zh) * 2019-12-13 2020-05-15 河海大学 一种焊钉连接件的时变剪切刚度的计算方法
CN111159801B (zh) * 2019-12-13 2022-09-16 河海大学 一种焊钉连接件的时变剪切刚度的计算方法
CN112816677A (zh) * 2021-03-04 2021-05-18 中国水利水电科学研究院 变约束作用下混凝土老化系数的测试方法和设备
CN112816677B (zh) * 2021-03-04 2021-11-30 中国水利水电科学研究院 变约束作用下混凝土老化系数的测试方法和设备
CN113008436A (zh) * 2021-03-23 2021-06-22 黄河勘测规划设计研究院有限公司 考虑徐变影响的钢筋混凝土支撑轴力计算方法
CN113722948A (zh) * 2021-08-01 2021-11-30 北京工业大学 一种考虑徐变效应的重型机床基础沉降变形计算方法
CN113722948B (zh) * 2021-08-01 2023-04-04 北京工业大学 一种考虑徐变效应的重型机床基础沉降变形计算方法
CN113836619A (zh) * 2021-09-09 2021-12-24 中国铁路设计集团有限公司 一种拟合任意徐变系数曲线的方法
CN113836619B (zh) * 2021-09-09 2024-01-30 中国铁路设计集团有限公司 一种拟合任意徐变系数曲线的方法
CN113702190B (zh) * 2021-10-28 2022-01-25 中冶建筑研究总院有限公司 一种确定灌浆料弹性模量及膨胀率随时间变化的方法
CN113702190A (zh) * 2021-10-28 2021-11-26 中冶建筑研究总院有限公司 一种确定灌浆料弹性模量及膨胀率随时间变化的方法
CN117538154A (zh) * 2023-11-15 2024-02-09 东北石油大学 基于压入法的3d打印配比水泥石超早期短期徐变测试方法
CN117538154B (zh) * 2023-11-15 2024-04-30 东北石油大学 基于压入法的3d打印配比水泥石超早期短期徐变测试方法

Similar Documents

Publication Publication Date Title
CN106650098A (zh) 一种混凝土徐变应变计算方法
CN106777716A (zh) 一种混凝土徐变效应分析方法
Lian et al. Fatigue life prediction of composite laminates by FEA simulation method
Maekawa et al. Long-term deformational simulation of PC bridges based on the thermo-hygro model of micro-pores in cementitious composites
Storm et al. Effects of production practices on camber of prestressed concrete bridge girders.
CN114254534B (zh) 一种基于钢筋三维加强效应的混凝土本构模型计算方法
Zanuy et al. On the cracking behaviour of the reinforced concrete tension chord under repeated loading
Fan et al. Long-term behavior of composite beams under positive and negative bending. II: Analytical study
Yu et al. Improved MPS model for concrete creep under variable humidity and temperature
Mathieu et al. Temperature and humidity-driven ageing of the VeRCoRs mock-up
Zhang et al. Thermo-mechanical behavior simulation and cracking risk evaluation on steel-concrete composite girders during hydration process
Wang et al. An innovative approach for numerical simulation of stress relaxation of structural cables
Hassan et al. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure
Mezquida-Alcaraz et al. Direct procedure to characterize the tensile constitutive behavior of strain-softening and strain-hardening UHPFRC
Ray et al. Analysis of fatigue crack growth in reinforced concrete beams
Tong et al. Experimental study on flexural performance of steel-UHTCC composite bridge decks considering different shear connection degrees
Chai et al. Monitoring and simulation of long-term performance of precast concrete segmental box girders with dry joints
Zhu et al. Long-term deformation analysis of prestressed concrete bridges under ambient thermal and vehicle loads
Kim et al. Effects of shrinkage variation within beam depth and bending creep on flexural behavior of RC members
Song et al. Self-sensing performance of engineered cementitious composites reinforced by polypropylene fiber mixed with manufactured sand and carbon black (CBMSPP-ECC) based on response surface Method (RSM)
Song et al. Low-cycle fatigue crack propagation behavior of cracked steel plates considering accumulative plastic strain
Zou et al. Time-dependent behaviour of concrete beams pretensioned by carbon fibre-reinforced polymers (CFRP) tendons
Cohen et al. Finite element analysis of intermediate crack debonding in fibre reinforced polymer strengthened reinforced concrete beams
Biswal et al. Reducing uncertainties in estimating long-time prestress losses in concrete structures using a hygro-thermo-chemo-mechanical model for concrete
Herrador et al. Mechanical behavior model for ASR-affected dam concrete under service load: formulation and verification

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510