CN106650041A - 一种多炉一注树枝状注汽管网分解计算方法 - Google Patents

一种多炉一注树枝状注汽管网分解计算方法 Download PDF

Info

Publication number
CN106650041A
CN106650041A CN201611093794.6A CN201611093794A CN106650041A CN 106650041 A CN106650041 A CN 106650041A CN 201611093794 A CN201611093794 A CN 201611093794A CN 106650041 A CN106650041 A CN 106650041A
Authority
CN
China
Prior art keywords
segment pipe
pipeline
line
pipe
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611093794.6A
Other languages
English (en)
Other versions
CN106650041B (zh
Inventor
何金宝
张福兴
朱静
杨清玲
张宇
邹杨
冯紫微
周轶青
霍艳皎
邵恒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201611093794.6A priority Critical patent/CN106650041B/zh
Publication of CN106650041A publication Critical patent/CN106650041A/zh
Application granted granted Critical
Publication of CN106650041B publication Critical patent/CN106650041B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/14Pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pipeline Systems (AREA)

Abstract

本发明提供了一种多炉一注树枝状注汽管网分解计算方法,该方法包括以下步骤:S1,将树枝状注汽管网分解为若干单元;S2,分别计算各子单元的干度和热损失;S3:根据步骤S2的结果获得整个管网的干度、热损失分布以及管网终点处的参数。利用上述方法可以将复杂的管网结构简化成若干简单计算单元,然后分别对各计算单元进行计算,最终得到整个管网的干度、热损失分布情况,根据计算结果可以直观的了解整个注汽管线的热损失状况,进而采取相应的保温措施、调整注汽参数、调整注汽方案,有效降低注汽运行成本。

Description

一种多炉一注树枝状注汽管网分解计算方法
技术领域
本发明属于石油测井技术领域,具体涉及一种多炉一注树枝状注汽管网分解计算方法。
背景技术
稠油热采区块普遍采用蒸汽吞吐、蒸汽驱、SAGD等开发方式,根据原油的黏度随温度的升高而降低的特性,利用注入蒸汽所携带的热量加热稠油和地层,进而降低原油黏度增加其流动性,达到稠油开采的目的,目前注汽方式主要有一炉一注、多炉一注和一炉多注等,对应的注汽管网有单一注汽管线、星状管网、树枝状管网等,在计算地面管线热损失的过程中,目前只有一炉一注单一管线的计算方法,即从注汽锅炉到井口只有一条管线,管线不存在分支及汇入情况,但大多数注汽是采用星状或树枝状的管网结构,即多个注汽锅炉向主管线注汽,然后在分支注向单井,因此单一注汽管线热损失计算方法已不再适用。
发明内容
为解决上述问题,本发明的目的是提供一种多炉一注树枝状注汽管网分解计算方法。
为达到上述目的,本发明提供了一种多炉一注树枝状注汽管网分解计算方法,该方法包括以下步骤:
S1:将树枝状注汽管网分解为若干单元
沿着树枝状注汽管网的注气方向,以分支管线与主管线的汇合点作为分解点,将树枝状注汽管网分解成若干子单元;所述若干单元依次为第一子单元、第二子单元、……以及末端子单元;
在所述若干单元中,末端子单元为一段主管线,其余的子单元均包括一段主管线以及与该段主管线末端相连的分支管线;
S2:分别计算各子单元的干度和热损失
分别对所述若干子单元的干度和热损失进行计算,其中,前一个子单元汇合点处的温度、压力、干度和流量为后一个子单元主管线段的起始参数;
S3:根据步骤S2的结果获得整个管网的干度、热损失分布以及管网终点处的参数。
本发明提供一种多炉一注树枝状注汽管网分解计算方法能将复杂的树枝状注汽管网结构分解成简单的分段计算模型,然后逐段计算,最终计算出整个管网的热损失及干度分布数据,以满足生产过程中井口干度的初判、管线保温效果评价的需求,及时采取措施,保证注汽效果。
在上述一种多炉一注树枝状注汽管网分解计算方法中,末端子单元为一段主管线,属于一炉一注的简单计算模型,目前有已知的计算方法;包括一段主管线以及与该段主管线末端相连的分支管线的子单元属于爪状模型,目前尚未有针对该模型的计算方法。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,在所述步骤S2中,对所述包括一段主管线以及与该段主管线末端相连的分支管线的子单元的干度和热损失进行计算的步骤包括:
分别计算该段主管线和分支管线的干度和热损失;
计算该段主管线和分支管线汇合点处的混合干度和压力值;
输出汇合点处的温度、压力、干度和注汽量。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,在所述计算该段主管线和分支管线汇合点处的混合干度和压力值的步骤中,计算的基本假设条件为:
根据质量守恒原理,汇合点处的总注汽量等于汇合点处相连接各管线注汽量的总和,各个锅炉注入的蒸汽经过各段管线的压降后,在汇合点处的蒸汽的气相质量之和应等于主管线在此位置的气相质量。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,在所述计算该段主管线和分支管线汇合点处的混合干度和压力值的步骤中,还包括计算汇合点处的局部阻力损失的步骤;
在综合汇合点处的局部阻力损失后,再输出汇合点处的温度、压力、干度和注汽量。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,对于由多段管道连接形成的主管线段或分支管线,采用逐步计算法计算主管线段或分支管线的干度和热损失,所述逐步计算法包括以下步骤:
以实际注汽管网中的管道连接处为作为节点对管线进行分段;
获取管线的入口参数和管线的基础参数;
以管线的入口处为起点,采用迭代计算法逐段计算各段管道出口处的温度、压力、蒸汽干度以及热损失,直到最后一根管道,最终获得管线出口处的温度、压力、干度以及热损失。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,当管线的入口处为锅炉时,管线的入口参数为锅炉出口参数;所述锅炉出口参数包括:每个锅炉的出口温度Tb、每个锅炉的出口压力Pb、每个锅炉的出口蒸汽干度Fb和每个锅炉的注汽量G;
当管线的入口处为上一个子单元的汇合点处时,管线的入口参数为上一个子单元输出的温度、压力、干度和注汽量;
所述管线的基础参数包括:每根管道类型、每根管道是否有保温层、每根管道处的空气温度Ta(i)、每根管道处的风速νa(i)、每根管道/阀门的导热系数λp(i)、每根管道/阀门内径ri(i)、每根管道/阀门外径ro(i)、每根管道/阀门长度z(i)、每根管壁/阀门外黑度ε(i)、每根管道内壁表面粗糙度Ra(i)、每根管道倾角θ(i)、每根管道修正系数、每根管道热阻修正系数、每根管道/阀门保温层导热系数λil(i)和每根管道保温层厚度Pipe(i,20)。
在上述一种多炉一注树枝状注汽管网分解计算方法中,优选地,所述以管线的入口处为起点,采用迭代计算法逐段计算各段管道出口处的温度、压力、蒸汽干度以及热损失,直到最后一根管道,最终获得管线出口处的温度、压力、干度以及热损失的步骤包括:
步骤一:以管线的入口为计算起点,计算第i段管道的相关参数;其中,入口处的管道编号为1,依次类推,管道编号i=1-n,管线的入口参数即为第1段管道的入口参数,按照管道的连接顺序依次计算,i=1时开始计算;
步骤二:迭代计算第i段管道压力损失,同时计算第i段管道局部阻力损失;迭代计算第i段管道外表面温度和热损失;迭代计算第i段管道末端的蒸汽干度;输出第i段末端的相关参数,所述相关参数包括温度、压力、蒸汽干度、热损失;
步骤三:按照计算第i段管道的蒸汽干度的方法计算后续管道的相关参数,直到最后一根管道,最后一根管道末端的温度、压力、蒸汽干度、热损失即为管线出口处的相关参数。
本发明提供了多炉一注树枝状管网的分解方法及爪状计算模型的计算方法,利用该方法可以将复杂的管网结构简化成若干简单计算模型,然后采用节点计算的方法分别对各计算模型进行计算,最终得到整个管网的干度、热损失分布情况,根据计算结果可以直观的了解整个注汽管线的热损失状况,进而采取相应的保温措施、调整注汽参数、调整注汽方案,有效降低注汽运行成本。
附图说明
图1为实施例1中多炉一注树枝状管网结构示意图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种多炉一注树枝状注汽管网分解计算方法,该方法的具体方案是:
S1:将树枝状注汽管网分解为四个单元
多炉一注树枝状管网如图1所示,沿着树枝状注汽管网的注气方向,整个管线分成主管线和分支管线两部分组成,本着模型统一、简单、可计算的原则,可以将整个管网划分成第一子单元、第二子单元、第三子单元和末端子单元,其中,第一子单元、第二子单元、第三子单元为爪状模型,末端子单元为一炉一注的简单计算模型。
S2:分别计算各子单元的干度和热损失
分别对四个子单元的干度和热损失进行计算,其中,前一个子单元汇合点处的温度、压力、干度和流量为后一个子单元主管线段的起始参数;具体地,将第一子单元作为计算起点,输入两个起点的温度、压力、干度和注汽量,首先计算出第一子单元的干度及热损失分布,并输出交汇点1处的温度、压力、干度和流量;输入起点2的温度、压力、干度和流量,计算得到第二字单元的热损失和干度分布,并输出交汇点2处的温度、压力、干度和流量,然后输入起点3的温度、压力、干度和流量,计算得到第三子单元的热损失、干度分布,并输出交汇点3处的温度、压力、干度和流量;最后采用一炉一注单一管线的计算方法计算模型四的热损失和干度分布,最后输出终点的温度、压力、干度和注汽量。
S3:根据步骤S2的结果获得整个管网的干度、热损失分布以及管网终点处的参数。
在上述步骤S2中,在对属于爪状模型的第一子单元、第二子单元、第三子单元的干度、热损失进行计算时,汇合点处满足如下假设:
根据质量守恒原理,汇合点的总注汽量等于各支路注汽量的总和,各个锅炉注入的蒸汽经过各段管线的压降后,在交汇点处的蒸汽的气相质量之和应等于主管线在此位置的气相质量,即:
在此基础上,计算爪状模型的干度、热损失的步骤可概括为:
(1)输入爪状模型中各管线的入口参数和管线的基础参数,当管线的入口处为锅炉时,管线的入口参数为锅炉出口参数;各参数见表3:
(2)当Num_L=1时,计算对应管线第i段管道的相关参数;
(3)迭代计算Num_L=1对应管线第i段管道压力损失;
(4)计算Num_L=1对应管线第i段管道局部阻力损失;
(5)迭代计算Num_L=1对应管线第i段管道外表面温度和热损失;
(6)迭代计算Num_L=1对应管线第i段管道末端的干度;
(7)计算Num_L=1对应管线第i+1段管道的干度;
(8)判断Num_L=1对应管线是否计算到节点处,如果计算完毕,保存计算得到的温度、压力、干度、注汽量;如果没有则继续计算下一管道的参数;
(9)计算下一管线Num_L=1+Num_L对应管线的参数,直至所有管线计算完毕,每计算完一根管线保存终点处的温度、压力、干度和注汽量;
(10)计算管线汇合点处的混合干度和压力值;
表3输入参数列表
序号 名称 符号 单位 备注
1 每个锅炉的出口温度 Tb 输入
2 每个锅炉的出口压力 Pb MPa 输入
3 每个锅炉的出口干度 Fb 输入
4 每个锅炉的注汽量 G t/h 输入
5 每根管道连接上一段管道编号 输入
6 每根管道的编号 输入
7 每根管道的类型 输入
8 每根管道是否有保温层 输入
9 每段管道处的空气温度 Ta(i) 输入
10 每段管道处的风速 νa(i) m/s 输入
11 每段管道/阀门的导热系数 λp(i) W/(m.K) 输入
12 每段管道/阀门内径 ri(i) m 输入
13 每段管道/阀门外径 ro(i) m 输入
14 每段管道/阀门长度 z(i) m 输入
13 每段管壁/阀门外黑度 ε(i) 输入
14 每段管道内壁表面粗糙度 Ra(i) 输入
15 每段管道倾角 θ(i) ° 输入
17 每段管道修正系数 输入
18 每段管道热阻修正系数 输入
20 每段管道/阀门保温层导热系数 λil(i) W/(m.K) 输入
22 每段管道保温层厚度 m 输入
23 锅炉个数 Num_B 输入
24 管道数 Num_P 输入
25 井数 Num_W 输入
26 管线数 Num_L 输入
(11)计算汇合点处的局部阻力损失;
(12)输出汇合点处的温度、压力、干度和注汽量。
在一种具体的实施方式中,上述计算爪状模型的干度、热损失的步骤具体为:
步骤1、分别对子单元中的主管线和分支管线所涉及的单井注汽量G、管道的导热系数λp和绝热层导热系数λins进行单位换算;并分别计算第一子单元中的主管线和分支管线各段管道的空气导热系数λa和空气运动黏度υa
G t/h=注汽量×1000/3600kg/s
λp=0.859845×管线导热系数kcal/(h·m·℃)
λins=0.859845×绝热层导热系数kcal/(h·m·℃)
λa=(9×10-18×Ta 6-3×10-14×Ta 5+4×10-11×Ta 4-2×10-8×Ta 3+2×10-6×Ta 2+0.0077×Ta+2.4313)×10-2
υa=(3×10-16×Ta 6-9×10-13×Ta 5+9×10-10×Ta 4-4×10-7×Ta 3+0.0002×Ta 2+0.0862×Ta+13.232)×10-6
λa=0.859845×空气导热系数kcal/(h·m·℃)
步骤2、分别计算子单元中的主管线和分支管线各段管道的R3
在上述公式中,R3为管线的管壁热阻;λp为管线的导热系数,kcal/(h·m·℃);ro为管线外半径,m;ri为管线内半径,m。
步骤3、分别计算子单元中的主管线和分支管线各段管道对空气的对流换热系数hfc';
Re=νaDsa
上述公式中,λa为空气的导热系数,kcal/(h·m·℃);Re为雷诺数;νa为风速,m/s;υa为空气的运动粘度,m2/s;Ds为保温层外径,m;C和n根据Re按照表2的标准进行选值;
表2 C和n的选取标准
Re 5-80 80-5×103 5×103-5×104 >5×104
C 0.81 0.625 0.197 0.023
n 0.40 0.46 0.6 0.8
步骤4、分别计算子单元中的主管线和分支管线各段管道的管子内截面积A
A=πri 2
在上述公式中,A为管线的内截面积,m2
步骤5、根据有无保温层情况分别计算子单元中的主管线和分支管线各段管道的外半径或者保温层外半径rins
有保温层时:采用以下公式计算保温层外半径:
rins=ro+Pipe(i,20)
Ds=2rins
在上述公式中,rins为管线的外半径,m;ro为管线外半径;Ds为保温层外径,m;
无保温层时,采用以下公式计算管线外半径:
rins=ro
步骤6、子单元中的主管线和分支管线各段管道分别取一段长度△z,干度降△xi
步骤7、子单元中的主管线和分支管线各段管道分别取压力降△pi
步骤8、计算子单元中的主管线和分支管线各段管道出口处压力pi、出口处温度Ti以及出口处蒸汽干度xi
pi=pi-1-△pi
Ti=195.94pi 0.225-17.8
xi=xi-1-△xi
步骤9、计算子单元中的主管线和分支管线各段管道的平均压力pavi、平均温度Tavi以及平均蒸汽干度xavi
pavi=(pi-1+pi)/2
Tavi=(Ti-1+Ti)/2
xavi=(xi-1+xi)/2。
步骤10、计算子单元中的主管线和分支管线各段管道的蒸汽汽相密度ρg和蒸汽液相密度ρl
采用以下经验关系式计算:
ρl=(0.9967-4.615×10-5Tavi-3.063×10-6Tavi 2)×103
Zg=1.012-4.461×10-4Tavi+2.98×10-6Tavi 2-1.663×10-8Tavi 3
上述公式中,ρl为第i段管道的蒸汽液相密度,kg/m3;ρg为第i段管道的蒸汽汽相密度,kg/m3
步骤11、计算子单元中的主管线和分支管线各段管道的蒸汽液相密度μl和蒸汽汽相密度μg
μg=(0.36Tavi+88.37)×10-4
上述公式中,μl为第i段管道的蒸汽液相密度,mPa.s;μg为第i段管道的蒸汽汽相密度,mPa.s。
步骤12、计算子单元中的主管线和分支管线各段管道的体积含气率Hg
步骤13、计算子单元中的主管线和分支管线各段管道的平均密度ρm
ρm=Hgρg+(1-Hgl
步骤14、计算子单元中的主管线和分支管线各段管道的平均密度ρm
μm=Hgμg+(1-Hgl
步骤15、计算子单元中的主管线和分支管线各段管道的平均流速νm
上述公式中,νm为第i段管道的平均流速,m/s。
步骤16、计算子单元中的主管线和分支管线各段管道的雷诺数Re
步骤17、计算子单元中的主管线和分支管线各段管道的摩擦系数fm
fm的具体取值根据表1的标准选取;
表1第i段管道的摩擦系数选取标准
表1中,Ra为管壁粗糙度。
步骤18、计算子单元中的主管线和分支管线各段管道pi-1和Ti-1下的蒸汽汽相密度ρgi-1和蒸汽液相密度ρli-1,以及体积含气率Hgi-1、平均密度ρmi-1和流速νi-1
ρli-1=(0.9967-4.615×10-5Ti-1-3.063×10-6Ti-1 2)×103
Zgi-1=1.012-4.461×10-4Ti-1+2.98×10-6Ti-1 2-1.663×10-8Ti-1 3
ρmi-1=Hgi-1ρgi-1+(1-Hgi-1li-1
步骤19、计算子单元中的主管线和分支管线各段管道pi和Ti下的蒸汽汽相密度ρgi和蒸汽液相密度ρli,以及体积含气率Hgi、平均密度ρmi以及流速νi
pi=pi-1-△pi
Ti=195.94pi 0.225-17.8
ρli=(0.9967-4.615×10-5Ti-3.063×10-6Ti 2)×103
Zgi=1.012-4.461×10-4Ti+2.98×10-6Ti 2-1.663×10-8Ti 3
ρmi=Hgiρgi+(1-Hgili
步骤20、计算子单元中的主管线和分支管线各段管道的局部阻力△pj
上述公式中,△pj为第i段管道局部压力降,MPa;△pw为液体单向流的局部压强损失,Pa;X为马蒂内利参数;ζ为局部阻力系数;
当管径扩大时,B1和ζ的计算公式为:
B1=1.0,
当管径缩小时,B1和ζ的计算公式为:
B1=1.0,
当存在90°弯头时,B1和ζ的计算公式为:
ζ=0.12;
当存在阀门时,B1和ζ的计算公式为:
闸阀:B1=1.5,ζ=0.2,
球阀:B1=2.3,ζ=10.0,
控制阀:B1=1.0,ζ=5.0s,
在上述涉及B1和ζ的计算公式中,l为管子弯头部分的长度;A2为下游小管道的截面积;A1为上游大管道的截面积。
步骤21、计算子单元中的主管线和分支管线各段管道的压降△pi';
△pi'=pi-1-pi
步骤22、判断计算得到的△pi'与△pi,如果在误差范围内则进行下步计算,否则取△pi=△pi'返回步骤6;△pi'与△pi的误差范围可具体根据使用者对精度要求设定,在本实施例中设置为万分之一。
步骤23、假定子单元中的主管线和分支管线各段管道的外表面温度Tw
步骤24、计算子单元中的主管线和分支管线各段管道对空气的强迫对流换热的热阻R5
绝热层外表面由于通过强迫对流方式与大气进行热交换,形成低速气膜层,其热阻可表示为:
式中hfc为绝热层外表面上强迫对流热系数,kcal/(m2·h·℃)。其中hfc=hfc'+hfc",即hfc由对流换热系数hfc'和辐射换热系数hfc"组成;
管外壁至大气的辐射换热系数hfc"由下式计算:
在上述公式中,ε为管壁外黑度;Ta为空气平均温度,℃;Tw为绝热层外壁温度,℃。
步骤25、根据有无保温层情况计算子单元中的主管线和分支管线各段管道的保温层热阻R4;并计算子单元中的主管线和分支管线各段管道△z上的单位长度、单位时间的热损失q;
(1)有保温层时
计算绝热层热阻
在上述公式中,λins为绝热层的导热系数,kcal/(h·m·℃);rins为绝热层外半径,m。
(2)无保温层时
步骤26、计算子单元中的主管线和分支管线各段管道的绝热层外表面温度Tw'
(1)有保温层时
(2)无保温层
步骤27、判断Tw和Tw',如果误差较大则Tw=Tw'返回步骤21,如果满足则进行下一步计算;Tw和Tw'的误差可具体根据使用者对精度要求设定,在本实施例中,设置为万分之五。
步骤28、计算子单元中的主管线和分支管线各段管道热损失qi
qi=q×z×4.186/3600/G单位kJ/kg。
步骤29、计算子单元中的主管线和分支管线各段管道热流密度Q和累计长度Z
管线有保温层时,
管线无保温层时,
累计长度Z为从锅炉出口出至第i段管道的管线长度。
步骤30、计算子单元中的主管线和分支管线各段管道的饱和蒸汽的焓hg以及饱和水的焓hl;并计算子单元中的主管线和分支管线各段管道的蒸汽干度xi
hg=(12500+1.88Tavi-3.7×10-6Tavi 3.2)/4.186
在上述公式中,hl为饱和水的热焓,kcal/kg;hg为饱和蒸汽的热焓,kcal/kg。
C1=G(hg-hl)
步骤31、判断子单元中的主管线和分支管线各段管道的(xi-xi-1)/△xi是否小于误差允许范围,如果不满足则△xi=xi-xi-1返回步骤5重新计算,满足则进行下一△z管道的计算,直到每个管道长度;误差可具体根据使用者对精度要求设定,在本实施例中,设置为万分之一。
步骤32、计算每个节点的累计热损失量qi
qi=qi-1+q×△z×4.186/3600;
步骤33、计算汇合点处主管线和分支管线计算得到压力的平均值:
(1)算术平均值
(2)几何平均值
步骤34、计算汇合点处的干度值:
根据质量守恒原理,各个锅炉注入的蒸汽经过各段管线的压降后,在交汇点处的蒸汽的气相质量之和应等于主管线在此位置的气相质量,即:
步骤35、计算汇合点处各锅炉管线主管线和分支管线计算结果压力的最大值pmax和最小值pmin
步骤36、判断主管线和分支管线计算结果压力的最大值pmax和最小值pmin与平均压力pavi,如果满足要求则进行下一步计算,如果不满足,若pi大于pavi,加大对应管线的管线修正系数值,若pi小于pavi,减小对应管线的管线修正系数值,然后返回步骤1重新计算,直到pmax-pavi和pmin-pavi绝对值的最大值满足误差允许范围;
步骤37、计算汇合点处的局部阻力△pj
步骤38、输出汇合点处的压力、温度、干度、总注汽量。
在设置完成上述步骤1至步骤38的基础上,对某多炉一注树枝状注汽管网进行实际计算,其中,输入的锅炉出口参数见表4;本次计算取三个锅炉管线的参数相同,锅炉管线的基础参数见表5;锅炉1对应管线的计算参数见表6,锅炉2对应管线的计算参数见表7,锅炉3对应管线的计算参数见表8;井口计算结果见表9。
表4输入的注汽参数
名称 锅炉1 锅炉2 锅炉3 单位
锅炉出口温度 324 331 315
锅炉出口压力 11.4 12.9 10.5 MPa
锅炉出口干度 0.745 0.751 0.755
注汽量 4 4.5 6 t/d
表6锅炉1对应管线的计算参数
长度 压力 温度 干度 热损失 管线外壁温度 热流密度
m MPa kJ/kg W/m^2
0 11.4 324 0.745 0 0 0
1.4 11.236 319.884 0.745 4.748 321.132 11107.19
2.5 11.104 318.99 0.744 8.426 318.638 10953.82
4.7 10.835 317.135 0.744 9.199 59.514 501.226
9.7 10.189 312.535 0.743 10.937 59.117 495.737
14.7 9.489 307.286 0.743 12.664 55.839 492.546
16.1 9.282 305.679 0.742 13.16 45.642 505.668
17.5 9.07 304 0.742 13.653 45.481 502.795
18.9 8.852 302.243 0.741 14.144 45.312 499.792
20.3 8.628 300.4 0.741 14.631 45.136 496.644
21.7 8.396 298.461 0.74 15.116 44.95 493.337
表7锅炉2对应管线的计算参数
长度 压力 温度 干度 热损失 管线外壁温度 热流密度
m MPa kJ/kg W/m^2
0 12.9 331 0.751 0 0 0
1.4 12.669 329.127 0.751 4.413 329.216 11614.58
2.5 12.483 327.976 0.75 7.851 327.711 11518.93
4.7 12.1 325.562 0.75 8.559 60.579 516.039
9.7 11.164 319.398 0.749 10.144 60.055 508.741
14.7 10.117 312.007 0.748 11.709 56.56 502.377
16.1 9.801 309.66 0.748 12.157 46.068 513.277
17.5 9.472 307.157 0.747 12.601 45.83 509.036
18.9 9.13 304.476 0.746 13.041 45.577 504.504
20.3 8.772 301.589 0.745 13.477 45.304 499.636
21.7 8.396 298.46 0.744 13.909 45.008 494.377
表8锅炉3对应管线的计算参数
长度 压力 温度 干度 热损失 管线外壁温度 热流密度
m MPa kJ/kg W/m^2
0 10.5 315 0.755 0 0 0
1.4 10.379 313.912 0.755 3.036 313.679 10653.19
2.5 10.283 313.22 0.754 5.409 312.793 10600.07
4.7 10.088 311.795 0.754 5.915 58.831 491.78
9.7 9.626 308.337 0.753 7.054 58.53 487.629
14.7 9.136 304.525 0.753 8.191 55.405 486.643
16.1 8.994 303.387 0.752 8.519 45.394 501.25
17.5 8.848 302.213 0.751 8.846 45.281 499.229
18.9 8.701 301.002 0.75 9.171 45.164 497.145
20.3 8.55 299.752 0.749 9.495 45.043 494.994
21.7 8.396 298.46 0.748 9.818 44.919 492.771
表9井口计算结果
压力 温度 干度 注汽量
MPa t/h
8.396 298.46 0.745 14.5
表9列出了该爪状模型最终汇合处井口的计算结果。

Claims (10)

1.本发明提供了一种多炉一注树枝状注汽管网分解计算方法,该方法包括以下步骤:
S1:将树枝状注汽管网分解为若干单元
沿着树枝状注汽管网的注气方向,以分支管线与主管线的汇合点处作为分解点,将树枝状注汽管网分解成若干子单元;所述若干单元依次为第一子单元、第二子单元、直至末端子单元;
在所述若干单元中,末端子单元为一段主管线,其余的子单元均包括一段主管线以及与该段主管线末端相连的分支管线;
S2:分别计算各子单元的干度和热损失
分别对所述若干子单元的干度和热损失进行计算,其中,前一个子单元汇合点处的温度、压力、干度和流量为后一个子单元主管线段的起始参数;
S3:根据步骤S2的结果获得整个管网的干度、热损失分布以及管网终点处的参数。
2.根据权利要求1所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,在所述步骤S2中,对所述包括一段主管线以及与该段主管线末端相连的分支管线的子单元的干度和热损失进行计算的步骤包括:
分别计算该段主管线和分支管线的干度和热损失;
计算该段主管线和分支管线汇合点处的混合干度和压力值;
输出汇合点处的温度、压力、干度和注汽量。
3.根据权利要求2所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,在所述计算该段主管线和分支管线汇合点处的混合干度和压力值的步骤中,计算的基本假设条件为:
根据质量守恒原理,汇合点处的总注汽量等于汇合点处相连接各管线注汽量的总和,各个锅炉注入的蒸汽经过各段管线的压降后,在汇合点处的蒸汽的气相质量之和应等于主管线在此位置的气相质量。
4.根据权利要求2或3所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,在所述计算该段主管线和分支管线汇合点处的混合干度和压力值的步骤中,还包括计算汇合点处的局部阻力损失的步骤;
在综合汇合点处的局部阻力损失后,再输出汇合点处的温度、压力、干度和注汽量。
5.根据权利要求2或3所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,对于由多段管道连接形成的主管线段或分支管线,采用逐步计算法计算主管线段或分支管线的干度和热损失,所述逐步计算法包括以下步骤:
以实际注汽管线中的管道连接处为作为节点对管线进行分段;
获取管线的入口参数和管线的基础参数;
以管线的入口处为起点,采用迭代计算法逐段计算各段管道出口处的温度、压力、蒸汽干度以及热损失,直到最后一根管道,最终获得管线出口处的温度、压力、干度以及热损失。
6.根据权利要求5所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,
当管线的入口处为锅炉时,管线的入口参数为锅炉出口参数;所述锅炉出口参数包括:每个锅炉的出口温度Tb、每个锅炉的出口压力Pb、每个锅炉的出口蒸汽干度Fb和每个锅炉的注汽量G;
当管线的入口处为上一个子单元的汇合点处时,管线的入口参数为上一个子单元输出的温度、压力、干度和注汽量;
所述管线的基础参数包括:每根管道类型、每根管道是否有保温层、每根管道处的空气温度Ta(i)、每根管道处的风速νa(i)、每根管道/阀门的导热系数λp(i)、每根管道/阀门内径ri(i)、每根管道/阀门外径ro(i)、每根管道/阀门长度z(i)、每根管壁/阀门外黑度ε(i)、每根管道内壁表面粗糙度Ra(i)、每根管道倾角θ(i)、每根管道修正系数、每根管道热阻修正系数、每根管道/阀门保温层导热系数λil(i)和每根管道保温层厚度Pipe(i,20)。
7.根据权利要求5所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,所述以管线的入口处为起点,采用迭代计算法逐段计算各段管道出口处的温度、压力、蒸汽干度以及热损失,直到最后一根管道,最终获得管线出口处的温度、压力、干度以及热损失的步骤包括:
步骤一:以管线的入口为计算起点,计算第i段管道的相关参数;其中,入口处的管道编号为1,依次类推,管道编号i=1-n,管线的入口参数即为第1段管道的入口参数,按照管道的连接顺序依次计算,i=1时开始计算;
步骤二:迭代计算第i段管道压力损失,同时计算第i段管道局部阻力损失;迭代计算第i段管道外表面温度和热损失;迭代计算第i段管道末端的蒸汽干度;输出第i段末端的相关参数,所述相关参数包括温度、压力、蒸汽干度、热损失;
步骤三:按照计算第i段管道的蒸汽干度的方法计算后续管道的相关参数,直到最后一根管道,最后一根管道末端的温度、压力、蒸汽干度、热损失即为管线出口处的相关参数。
8.根据权利要求7所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,
所述步骤二的具体计算过程包括:
(1)假定干度降△xi,压力降△pi
(2)计算第i段管道的出口处压力pi、出口处温度Ti和出口处蒸汽干度xi
pi=pi-1-△pi
Ti=195.94pi 0.225-17.8,
xi=xi-1-△xi
上述公式中,pi为第i段管道的出口处压力;Ti为第i段管道的出口处温度;xi为第i段管道的出口处蒸汽干度;pi-1为第i-1段管道的出口处压力;Ti-1为第i-1段管道的出口处温度;xi-1为第i-1段管道的出口处蒸汽干度;
(3)计算第i段管道的平均压力pavi、平均温度Tavi和平均蒸汽干度xavi
pavi=(pi-1+pi)/2,
Tavi=(Ti-1+Ti)/2,
xavi=(xi-1+xi)/2;
(4)计算第i段管道的蒸汽液相密度ρl、蒸汽汽相密度ρg以及蒸汽液相粘度μl和蒸汽汽相粘度μg
ρl=(0.9967-4.615×10-5Tavi-3.063×10-6Tavi 2)×103
ρ g = 2.196 p a v i Z g ( T a v i + 273.15 ) × 10 3 ,
Zg=1.012-4.461×10-4Tavi+2.98×10-6Tavi 2-1.663×10-8Tavi 3
μ l = 1743 - 1.8 T a v i 47.7 T a v i + 759 ,
μg=(0.36Tavi+88.37)×10-4
上述公式中,ρl为第i段管道的蒸汽液相密度,kg/m3;ρg为第i段管道的蒸汽汽相密度,kg/m3;μl为第i段管道的蒸汽液相密度,mPa.s;μg为第i段管道的蒸汽汽相密度,mPa.s;
(5)计算第i段管道的体积含气率Hg
H g = x a v i x a v i + ( 1 - x a v i ) ρ g ρ l ;
(6)计算第i段管道的平均密度ρm和平均粘度μm
ρm=Hgρg+(1-Hgl
μm=Hgμg+(1-Hgl
(7)计算第i段管道的平均流速νm
v m = G ρ m A ,
上述公式中,νm为第i段管道的平均流速,m/s;
其中,第i段管道的内截面积A的计算公式为:
A=πri 2
上述公式中,A为管道的内截面积,m2
(8)计算第i段管道的雷诺数Re
R e = 2 r i v m ρ m μ m × 10 3 ,
上述公式中,Re为第i段管道的雷诺数;
(9)计算第i段管道的摩擦系数fm
fm的具体取值根据表1的标准选取;
表1 第i段管道的摩擦系数选取标准
表1中,Ra为管壁粗糙度;
(10)计算第i段管道pi和Ti下的蒸汽汽相密度ρgi、蒸汽液相密度ρli、体积含气率Hgi、平均密度ρmi以及流速νi
①ρgi和ρli的计算公式为:
ρli=(0.9967-4.615×10-5Ti-3.063×10-6Ti 2)×103
ρ g i = 2.196 p i Z g i ( T i + 273.15 ) × 10 3 ,
Zgi=1.012-4.461×10-4Ti+2.98×10-6Ti 2-1.663×10-8Ti 3
上述公式中,ρli为第i段管道的蒸汽液相密度,kg/m3;ρgi为第i段管道的蒸汽汽相密度,kg/m3
②Hgi、ρmi以及νi的计算公式为:
H g i = x i x i + ( 1 - x i ) ρ g i ρ l i ,
ρmi=Hgiρgi+(1-Hgili
v i = G ρ m i A ,
上述公式中,Hgi为第i段管道的体积含气率;ρmi为第i段管道的平均密度;νi为第i段管道的流速;
(11)计算第i段管道的局部阻力△pj
Δp j = Δp w ( 1 + B X + 1 X 2 ) ,
X = ( 1 - x x ) 0.9 ( ρ l ρ g ) 0.5 ( μ l μ g ) 0.1 ,
B = B 1 ( ρ l ρ g + ρ g ρ l ) ,
Δp w = ζ v m 2 2 g ,
上述公式中,△pj为第i段管道局部压力降,MPa;△pw为液体单向流的局部压强损失,Pa;X为马蒂内利参数;ζ为局部阻力系数;
当管径扩大时,B1和ζ的计算公式为:
B1=1.0,
ζ = ( A 2 A 1 - 1 ) 2 ;
当管径缩小时,B1和ζ的计算公式为:
B1=1.0,
ζ = 0.5 ( 1 - A 2 A 1 ) ;
当存在90°弯头时,B1和ζ的计算公式为:
B 1 = 1 + 35 D i l ,
ζ=0.12;
当存在阀门时,B1和ζ的计算公式为:
闸阀:B1=1.5,ζ=0.2,
球阀:B1=2.3,ζ=10.0,
控制阀:B1=1.0,ζ=5.0s,
在上述涉及B1和ζ的计算公式中,l为管子弯头部分的长度;A2为下游小管道的截面积;A1为上游大管道的截面积;
(12)计算第i段管道的压降△pi':
p i = p i - 1 - [ f m ρ m Δ z ( v i + v i - 1 ) 2 8 r i + ρ m g s i n θ z + Δp j + G A ( v i - v i - 1 ) ] × 10 - 6 ,
△pi'=pi-1-pi
其中,νi-1通过以下计算过程获得:
①计算第i-1段管道pi-1和Ti-1下的蒸汽汽相密度ρgi-1和蒸汽液相密度ρli-1
ρli-1=(0.9967-4.615×10-5Ti-1-3.063×10-6Ti-1 2)×103
ρ g i - 1 = 2.196 p i - 1 Z g i - 1 ( T i - 1 + 273.15 ) × 10 3 ,
Zgi-1=1.012-4.461×10-4Ti-1+2.98×10-6Ti-1 2-1.663×10-8Ti-1 3
上述公式中,ρli-1为第i-1段管道的蒸汽液相密度,kg/m3;ρgi-1为第i-1段管道的蒸汽汽相密度,kg/m3
②计算第i-1段管道pi-1和Ti-1下的体积含气率Hgi-1、平均密度ρmi-1以及流速νi-1
H g i - 1 = x i - 1 x i - 1 + ( 1 - x i - 1 ) ρ g i - 1 ρ l i - 1 ,
ρmi-1=Hgi-1ρgi-1+(1-Hgi-1li-1
v i - 1 = G ρ m i - 1 A ,
上述公式中,Hgi-1为第i-1段管道的体积含气率;ρmi-1为第i-1段管道的平均密度;νi-1为第i-1段管道的流速;
(13)判断计算得到的△pi'与假定值△pi,如果在误差范围内则进行下步计算,否则取△pi=△pi'返回步骤(2)重新计算;
(14)设定第i段管道的外表面温度为假定值Tw
(15)计算第i段管道△z上的单位长度、单位时间的热损失q:
①管道有保温层时,采用以下公式计算第i段管道△z上的单位长度、单位时间的热损失:
q = T s - T a R 3 + R 4 + R 5 ,
在上述公式中,q为第i段管道管道△z上的单位长度、单位时间的热损失,kcal/(h·m);
其中,R3+R4+R5=R,R为第i段管道上的热阻;
第i段管道管壁热阻R3的计算公式为:
R 3 = 1 2 πλ p ln r o r i ,
上述公式中,R3为管道的管壁热阻;λp为管道的导热系数,kcal/(h·m·℃);ro为管道外半径,m;ri为管道内半径,m;
第i段管道绝热层热阻R4的计算公式为:
R 4 = 1 2 πλ i n s l n r i n s r o ,
在上述公式中,R4为第i段管道绝热层热阻;λins为绝热层的导热系数,kcal/(h·m·℃);rins为绝热层外半径,m;
有保温层时,第i段管道保温层外半径的计算公式为:
rins=ro+Pipe(i,20)
Ds=2rins
上述公式中,rins为管道的外半径,m;ro为管道外半径;Ds为保温层外径,m;
无保温层时,第i段管道外半径的计算公式为:
rins=ro
第i段管道对空气的强迫对流换热的热阻R5的计算公式为:
R 5 = 1 2 πh f c r i n s ,
hfc=hfc'+hfc",
在上述公式中,hfc为第i段管道的绝热层外表面上强迫对流热系数,kcal/(m2·h·℃);hfc'为第i段管道对空气的对流换热系数,kcal/(m2·h·℃);hfc"为第i段管道管外壁至大气的辐射换热系数,kcal/(m2·h·℃);
第i段管道对空气的对流换热系数hfc'的计算公式为:
h f c ′ = C λ a D s Re n ,
Re=νaDsa
上述公式中,λa为空气的导热系数,kcal/(h·m·℃);Re为雷诺数;νa为风速,m/s;υa为空气的运动粘度,m2/s;Ds为保温层外径,m;C和n根据Re按照表2的标准进行选值;
表2 C和n的选取标准
Re 5-80 80-5×103 5×103-5×104 >5×104 C 0.81 0.625 0.197 0.023 n 0.40 0.46 0.6 0.8
管道的空气导热系数λa的计算公式为:
λa=(9×10-18×Ta 6-3×10-14×Ta 5+4×10-11×Ta 4-2×10-8×Ta 3+2×10-6×Ta 2+0.0077×Ta+2.4313)×10-2×0.859845,
第i段管道的空气运动粘度的计算公式为:
υa=(3×10-16×Ta 6-9×10-13×Ta 5+9×10-10×Ta 4-4×10-7×Ta 3+0.0002×Ta 2+0.0862×Ta+13.232)×10-6
第i段管道管外壁至大气的辐射换热系数hfc"的计算公式为:
h f c ′ ′ = 5.67 ϵ [ ( T w + 273 100 ) 4 - ( T a + 273 100 ) 4 ] / ( T w - T a ) ,
在上述公式中,ε为管壁外黑度;Ta为空气平均温度,℃;Tw为绝热层外壁温度,℃;
②管道无保温层时,采用以下公式计算第i段管道管道△z上的单位长度、单位时间的热损失:
q = T s - T a R 3 + R 5 ;
(16)计算第i段管道绝热层外表面温度Tw'
管道有保温层时,第i段管道绝热层外表面温度Tw'的计算公式为:
q = T s - T w ′ R 3 + R 4 ;
管道无保温层时,第i段管道绝热层外表面温度Tw'的计算公式为:
q = T s - T w ′ R 3 ;
(17)判断计算得到的Tw'和假定值Tw,如果误差较大则Tw=Tw'返回步骤(10),如果满足则进行下一步计算;
(18)采用以下公式计算第i段管道累计热损失qi以及热流密度Q和累计长度Z:
①第i段管道累计热损失qi的计算公式为:
qi=q×z×4.186/3600/G,
在上述公式中,q为第i段管道△z上的单位长度单位时间的热损失,kJ/kg;
②管道有保温层时,第i段管道热流密度Q的公式计算为:
Q = q × 1.163 2 × 3.14 × r i n s ;
管道无保温层时,第i段管道热流密度Q的公式计算为:
Q = q × 1.163 2 × 3.14 × r o ;
③累计长度Z为从锅炉出口出至第i段管道的管道长度;
(19)采用以下公式计算第i段管道的蒸汽干度xi
C1=G(hg-hl),
C 2 = G [ ( dh g d p - dh l d p ) d p d z ] = G [ ( dh g d p - dh l d p ) p i - p i - 1 z ] ,
C 3 = q / 3600 + G [ dh l d p d p d z + G 2 A 2 1 ρ m d d z ( 1 ρ m ) + g s i n θ ] = q / 3600 + G [ dh l d p p i - p i - 1 z + G 2 A 2 1 ρ 3 m ρ m i - ρ m i - 1 z + g s i n θ ] ,
x i = e - C 2 C 1 z [ - C 3 C 2 e C 2 C 1 z + x i - 1 + C 3 C 2 ] ;
其中,第i段管道饱和蒸汽的焓hg以及饱和水的焓hl的计算公式为:
hg=(12500+1.88Tavi-3.7×10-6Tavi 3.2)/4.186,
dh g d p = ( 82.88262 p a v i - 0.775 - 521.98416 × 10 - 6 T a v i 2.2 × p a v i - 0.775 ) / 4.186 ,
在上述公式中,hl为饱和水的热焓,kcal/kg;hg为饱和蒸汽的热焓,kcal/kg;
(20)判断步骤(19)计算出的蒸汽干度xi值与步骤(2)计算出的蒸汽干度假设值xi,如果误差较大,则将步骤(19)计算得到的xi代入步骤(2)重新计算,如果在误差范围内则进行下一步计算;
(21)输出第i段管道的计算得出的最终相关参数,所述相关参数包括第i段管道出口处的温度Ti、压力pi、蒸汽干度xi以及热损失qi
9.根据权利要求8所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,所述步骤二中还包括对参数进行单位换算的步骤;
优选地,在步骤(1)前对单井注汽量G、管道的导热系数λp和绝热层导热系数λins的单位进行以下换算:
G t/h=注汽量×1000/3600kg/s,
λp=0.859845×管道导热系数kcal/(h·m·℃),
λins=0.859845×绝热层导热系数kcal/(h·m·℃)。
10.根据权利要求4-9任一项所述的一种多炉一注树枝状注汽管网分解计算方法,其特征在于,在所述步骤S2中,对所述包括一段主管线以及与该段主管线末端相连的分支管线的子单元的干度和热损失进行计算的步骤包括:
步骤1、分别对子单元中的主管线和分支管线所涉及的单井注汽量G、管道的导热系数λp和绝热层导热系数λins进行单位换算;并分别计算子单元中的主管线和分支管线各段管道的空气导热系数λa和空气运动黏度υa
步骤2、分别计算子单元中的主管线和分支管线各段管道的管壁热阻R3
步骤3、分别计算子单元中的主管线和分支管线各段管道对空气的对流换热系数hfc';
步骤4、分别计算子单元中的主管线和分支管线各段管道的管子内截面积A;
步骤5、根据有无保温层情况分别计算子单元中的主管线和分支管线各段管道的外半径或者保温层外半径rins
步骤6、子单元中的主管线和分支管线各段管道分别取一段长度△z,干度降△xi
步骤7、子单元中的主管线和分支管线各段管道分别取压力降△pi
步骤8、计算子单元中的主管线和分支管线各段管道出口处压力pi、出口处温度Ti以及出口处蒸汽干度xi
步骤9、计算子单元中的主管线和分支管线各段管道的平均压力pavi、平均温度Tavi以及平均蒸汽干度xavi
步骤10、计算子单元中的主管线和分支管线各段管道的蒸汽汽相密度ρg和蒸汽液相密度ρl
步骤11、计算子单元中的主管线和分支管线各段管道的蒸汽液相密度μl和蒸汽汽相密度μg
步骤12、计算子单元中的主管线和分支管线各段管道的体积含气率Hg
步骤13、计算子单元中的主管线和分支管线各段管道的平均密度ρm
步骤14、计算子单元中的主管线和分支管线各段管道的平均密度ρm;;
步骤15、计算子单元中的主管线和分支管线各段管道的平均流速νm
步骤16、计算子单元中的主管线和分支管线各段管道的雷诺数Re
步骤17、计算子单元中的主管线和分支管线各段管道的摩擦系数fm
步骤18、计算子单元中的主管线和分支管线各段管道pi-1和Ti-1下的蒸汽汽相密度ρgi-1和蒸汽液相密度ρli-1,以及体积含气率Hgi-1、平均密度ρmi-1和流速νi-1
步骤19、计算子单元中的主管线和分支管线各段管道pi和Ti下的蒸汽汽相密度ρgi和蒸汽液相密度ρli,以及体积含气率Hgi、平均密度ρmi以及流速νi
步骤20、计算子单元中的主管线和分支管线各段管道的局部阻力△pj
步骤21、计算子单元中的主管线和分支管线各段管道的压降△pi';
步骤22、判断计算得到的△pi'与△pi,如果在误差范围内则进行下步计算,否则取△pi=△pi'返回步骤6;
步骤23、假定子单元中的主管线和分支管线各段管道的外表面温度Tw
步骤24、计算子单元中的主管线和分支管线各段管道对空气的强迫对流换热的热阻R5
步骤25、根据有无保温层情况计算子单元中的主管线和分支管线各段管道的保温层热阻R4;并计算子单元中的主管线和分支管线各段管道△z上的单位长度、单位时间的热损失q;
步骤26、计算子单元中的主管线和分支管线各段管道的绝热层外表面温度Tw';
步骤27、判断Tw和Tw',如果误差较大则Tw=Tw'返回步骤21,如果满足则进行下一步计算;
步骤28、计算子单元中的主管线和分支管线各段管道热损失qi
步骤29、计算子单元中的主管线和分支管线各段管道热流密度Q和累计长度Z;
步骤30、计算子单元中的主管线和分支管线各段管道的饱和蒸汽的焓hg以及饱和水的焓hl;并计算子单元中的主管线和分支管线各段管道的蒸汽干度xi
步骤31、判断子单元中的主管线和分支管线各段管道的(xi-xi-1)/△xi是否小于误差允许范围,如果不满足则△xi=xi-xi-1返回步骤5重新计算,满足则进行下一△z管道的计算,直到每个管道长度;
步骤32、计算每个节点的累计热损失量qi
qi=qi-1+q×△z×4.186/3600;
步骤33、计算汇合点处主管线和分支管线计算得到压力的平均值:
(1)算术平均值
p a v i = Σ i = 1 n u m _ b p i / n u m _ b ;
(2)几何平均值
p a v i = Σ i = 1 n u m _ b p i G i / Σ i = 1 n u m _ b G i ;
步骤34、计算汇合点处的干度值:
根据质量守恒原理,各个锅炉注入的蒸汽经过各段管线的压降后,在交汇点处的蒸汽的气相质量之和应等于主管线在此位置的气相质量,即:
Σ k = 1 n G k F k = Σ k = 1 n G k · F i ;
步骤35、计算汇合点处各锅炉管线主管线和分支管线计算结果压力的最大值pmax和最小值pmin
步骤36、判断主管线和分支管线计算结果压力的最大值pmax和最小值pmin与平均压力pavi,如果满足要求则进行下一步计算,如果不满足,若pi大于pavi,加大对应管线的管线修正系数值,若pi小于pavi,减小对应管线的管线修正系数值,然后返回步骤1重新计算,直到pmax-pavi和pmin-pavi绝对值的最大值满足误差允许范围;
步骤37、计算汇合点处的局部阻力△pj
步骤38、输出汇合点处的压力、温度、干度、总注汽量。
CN201611093794.6A 2016-12-02 2016-12-02 一种多炉一注树枝状注汽管网分解计算方法 Active CN106650041B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611093794.6A CN106650041B (zh) 2016-12-02 2016-12-02 一种多炉一注树枝状注汽管网分解计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611093794.6A CN106650041B (zh) 2016-12-02 2016-12-02 一种多炉一注树枝状注汽管网分解计算方法

Publications (2)

Publication Number Publication Date
CN106650041A true CN106650041A (zh) 2017-05-10
CN106650041B CN106650041B (zh) 2020-01-10

Family

ID=58814215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611093794.6A Active CN106650041B (zh) 2016-12-02 2016-12-02 一种多炉一注树枝状注汽管网分解计算方法

Country Status (1)

Country Link
CN (1) CN106650041B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108763774A (zh) * 2018-05-30 2018-11-06 新奥泛能网络科技有限公司 架空蒸汽管网的热损计算方法及装置
CN108763769A (zh) * 2018-05-30 2018-11-06 新奥泛能网络科技有限公司 架空蒸汽管网的热损计算方法及装置
CN112257014A (zh) * 2020-10-22 2021-01-22 国药集团重庆医药设计院有限公司 一种低压饱和蒸汽管道压力的计算方法及系统
CN114113464A (zh) * 2020-08-27 2022-03-01 中国石油天然气股份有限公司 输汽管道湿蒸汽干度在线测试装置及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105178930A (zh) * 2015-08-17 2015-12-23 中国石油天然气股份有限公司 地面注汽管线内蒸汽热力参数计算方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105178930A (zh) * 2015-08-17 2015-12-23 中国石油天然气股份有限公司 地面注汽管线内蒸汽热力参数计算方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张俊良等: "局部压降对注蒸汽管线热损失的影响", 《西部探矿工程》 *
李叶: "枝状注汽管网布局优化", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
杨清玲: "稠油热采地面管线蒸汽热力参数计算及影响因素分析", 《石油工业技术监督》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108763774A (zh) * 2018-05-30 2018-11-06 新奥泛能网络科技有限公司 架空蒸汽管网的热损计算方法及装置
CN108763769A (zh) * 2018-05-30 2018-11-06 新奥泛能网络科技有限公司 架空蒸汽管网的热损计算方法及装置
CN108763769B (zh) * 2018-05-30 2022-08-02 新奥泛能网络科技有限公司 架空蒸汽管网的热损计算方法及装置
CN114113464A (zh) * 2020-08-27 2022-03-01 中国石油天然气股份有限公司 输汽管道湿蒸汽干度在线测试装置及方法
CN112257014A (zh) * 2020-10-22 2021-01-22 国药集团重庆医药设计院有限公司 一种低压饱和蒸汽管道压力的计算方法及系统
CN112257014B (zh) * 2020-10-22 2024-01-05 国药集团重庆医药设计院有限公司 一种低压饱和蒸汽管道压力的计算方法及系统

Also Published As

Publication number Publication date
CN106650041B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
CN106703770B (zh) 井口温度压力未知一炉一注注汽管网井口蒸汽干度计算法
CN106650041A (zh) 一种多炉一注树枝状注汽管网分解计算方法
CN106647329B (zh) 一种供热管网等效建模方法
CN109948182B (zh) 一种针对中深层地热井井间距的计算方法
CN109800527B (zh) 针对中深层地埋套管换热器内自循环换热量的计算方法
CN111125921A (zh) 快速准确实现垂直u型地埋管换热器性能动态仿真的方法
CN102063566A (zh) 一种水力热力耦合仿真模型的多气源蒸汽管网计算系统
CN104481482B (zh) 水平井同心双管注气隔热分析方法及装置
Pu et al. A novel tree-shaped ground heat exchanger for GSHPs in severely cold regions
CN106441637B (zh) 确定注汽管热损失的方法及装置
CN107575214A (zh) 用于注采过程的井筒内温度与压力的预测方法
WO2020015237A1 (zh) 基于滚动时域估计理论的热网动态调节运行参数估计方法
CN104392092B (zh) 一种重力火驱生产井混合液的温度计算、控制方法及装置
CN109255489A (zh) 一种基于半不变量法的电-热互联综合能源系统概率能量流计算方法
CN103776502B (zh) 火电机组中低压缸入口热再热蒸汽质量流量实时计量方法
CN104989351A (zh) 油气井注气过程中干度、温度及压力耦合预测方法
CN105303037A (zh) 一种引起凝汽器真空恶化的临界漏空气量的计算方法
Xu et al. Research on varying condition characteristic of feedwater heater considering liquid level
CN105178930B (zh) 地面注汽管线内蒸汽热力参数计算方法及装置
CN109858146A (zh) 一种针对中深层地埋套管换热器性能的无网格计算方法
CN111625967A (zh) U型中深层地埋管换热器换热性能的简化计算方法
CN105160076B (zh) 一种环空注气隔热参数的计算方法及装置
CN114239199A (zh) 一种考虑凝结水的蒸汽管网动态仿真方法
CN114117819B (zh) 一种热蒸汽网络稳态仿真方法
CN106640004A (zh) 注汽锅炉出口的蒸汽热力参数的计算方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant