CN106650016A - 基于粒子群算法的车身侧围结构多工况协同优化实现方法 - Google Patents

基于粒子群算法的车身侧围结构多工况协同优化实现方法 Download PDF

Info

Publication number
CN106650016A
CN106650016A CN201611046486.8A CN201611046486A CN106650016A CN 106650016 A CN106650016 A CN 106650016A CN 201611046486 A CN201611046486 A CN 201611046486A CN 106650016 A CN106650016 A CN 106650016A
Authority
CN
China
Prior art keywords
optimization
operating mode
analysis
model
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611046486.8A
Other languages
English (en)
Inventor
刘钊
朱平
李晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201611046486.8A priority Critical patent/CN106650016A/zh
Publication of CN106650016A publication Critical patent/CN106650016A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于改进粒子群优化的车身侧围结构多工况协同优化实现方法,通过对待优化的轿车的车身侧围结构,建立用于侧面碰撞工况的整车侧面有限元模型和用于刚度模态工况的白车身有限元模型,对应进行侧面碰撞分析和刚度模态分析,选取设计变量;根据不同工况仿真分析的对应设计变量的个数进行采样,建立与之相对应的近似模型,运用加强协同优化算法进行侧面碰撞工况和刚度模态工况间耦合关系构建,针对侧面碰撞工况和刚度模态工况,分别进行灵敏度分析和数据挖掘,获得各自对应的主要设计变量和优化目标区域;通过合理布置粒子群优化算法初始粒子种群,针对不同工况,运用对应的改进粒子群优化策略进行寻优求解,最终得到车身侧围优化结构。

Description

基于粒子群算法的车身侧围结构多工况协同优化实现方法
技术领域
本发明涉及的是一种轿车车身侧围结构设计领域的技术,具体是一种基于改进粒子群优化的车身侧围结构多工况协同优化实现方法。
背景技术
随着时代的进步,科学技术的发展,人们对汽车工业的要求也越来越高,如缩短生产周期、扩大车辆使用范围等,给汽车行业的发展带来了很大的压力。由于现代汽车包含更多的功能和使用特性,车辆设计过程变得越来越复杂,需要研究的工况数目大大增加:除了传统的行驶动态性能、结构稳定性、防撞性能等工况之外,一些额外的工况如车身声学分析、电子兼容性等也纳入到了车辆开发中来。
车身侧面结构简单,在碰撞过程中,其结构的变化将直接影响到乘员舱内驾乘人员的生命安全,因此侧面碰撞工况是其设计时需要重点考虑的一个工况。同时侧围结构对整车的刚度模态变化影响较大,因此也需要在设计时进行重点考核,所以在车身侧围结构设计时需要同时考虑碰撞工况和车身刚度模态工况,是一个典型的多工况优化设计问题。
在其设计过程中,设计变量多、非线性程度强、工况间耦合关系复杂,常用的多工况优化策略以及优化算法无法有效寻得可行的优化解。因此需要考虑运用多工况综合优化设计的方法,将所有车身相关性能要求纳入一个整体的系统中,进而优化求解得到令人满意的结构设计结果。
多工况系统耦合结构与优化算法运用是多工况优化设计中两个非常关键的问题。
多工况系统耦合结构搭建决定主系统与子系统、以及各子系统之间的数据传递与耦合关系,对计算复杂度、寻优时间以及优化精度有着重大的影响。因此需要面向车身结构设计开发与之相适应的多工况系统结构,以期获得较好的优化效果。
多工况优化算法的运用很大程度上决定了寻优运算的效率和优化结果精度。在多工况优化设计中,每个工况都有自己的优化特点,为了更有效地进行寻优求解,需要考虑工况的优化特点,开发与各工况相适应的算法进行寻优求解。
多工况优化设计在汽车中的应用灵活,多结合近似建模方法,变量筛选方法、灵敏度分析方法等降低问题复杂程度。一体式优化方法运用较多,因其避免了工况间共享变量的处理问题,但是子工况自主性较差,无法针对各子系统工况特点进行相应的优化处理,基于两步式的多工况优化方法如协同优化算法有待研究。此外,优化算法选择单一,虽有提及优化算法求解问题,但是并未针对单独子系统工况进行考虑工况特点的优化运算。
发明内容
本发明针对现有技术无法实现对轿车车身进行多工况协同优化等缺陷,提出一种基于改进粒子群优化的车身侧围结构多工况协同优化实现方法,能够在保证轿车结构强度的同时显著降低重量。
本发明是通过以下技术方案实现的:
本发明包括以下步骤:
1)针对待处理优化的轿车的车身侧围结构,建立用于侧面碰撞指标的整车侧面有限元模型和用于刚度模态指标的白车身有限元模型,并对应进行侧面碰撞工况分析和刚度模态工况分析,并选取设计变量;
2)根据不同工况仿真分析的对应设计变量的个数进行采样,建立与之相对应的Kriging近似模型,并验证模型精度;
所述的采样通过最优拉丁超立方采样方法完成。
所述的Kriging近似模型运用随机过程预测未知点的函数值,样本点通过高斯随机函数插值估计随机过程的趋势。Kriging模型可由方程表示为:Y(x)=G(x)+Z(x),G(x)是x的函数,Z(x)是一个均值为0,方差为σ2的随机过程。
所述的精度验证通过确定性系数R2判断。若R2>0.9,则满足精度要求。
所述的确定性系数为:其中n为检验的样本点数,为样本点Kriging近似模型预测值,yi为样本点的有限元计算值,为所有样本点仿真结果的平均值。
3)运用加强协同优化算法进行侧面碰撞工况和刚度模态工况间耦合关系的构建,即对系统级优化和子系统级优化结构进行了相应的修改,将各子系统间的约束模型进行相互共享。在一个子系统优化过程中,考虑到其余子系统对该子系统的影响,避免子系统级优化时为了寻找合适的共享变量造成的求解困难。
所述的系统级优化是指:其中:z是同时考虑侧面碰撞工况和刚度模态工况的车身侧围结构优化系统赋予共享变量的目标值,x*代表子系统优化过程中寻得的与系统级优化目标最接近的问题解。
所述的子系统级优化是指:不同侧面碰撞工况和刚度模态工况下的具体优化,即:
其中:x为子系统独立的共享变量,xL为局部变量,xs=[x,y]为共享变量(与多个子系统相关的),y为耦合变量,s为松弛系数,保证子系统问题求解的可行性,z为参数,由系统级优化提供,作为子系统目标,λC为兼容性惩罚系数,λF为可行性惩罚系数,是问题目标的二次方程组模型。
所述的子系统间的约束模型是指:g(i)是子系统i的局部约束,是子系统j的线性约束模型。
4)针对侧面碰撞工况和刚度模态工况,分别运用灵敏度分析和数据挖掘的方式,获得各自对应的主要设计变量和优化目标区域;
所述的灵敏度分析,采用Sobol灵敏度分析方法,是一种基于方差的蒙特卡罗方法。
所述的数据挖掘,运用分类与回归树(CART)数据挖掘技术针对可行的优化区域进行辨识。
5)通过合理布置粒子群优化算法初始粒子种群,针对不同的工况,运用对应的改进粒子群优化策略,进行基于粒子群优化算法的寻优求解,最终得到车身侧围优化结构。
所述的改进粒子群算法,以粒子群算法为基础,根据更新位置和速度,其中:c1和c2为学习因子或加速常数;rand()为介于(0,1)之间的随机数;分别为粒子i在第k次迭代中第d维的速度和位置;是粒子i在第d维的个体极值位置;是群体在第d维的全局极值的位置。
所述的改进粒子群算法通过非静态惩罚函数法来处理约束优化问题。
所述的惩罚函数F(x)=f(x)+h(k)H(x),x∈S,其中f(x)为约束优化问题的初始目标函数;h(k)为惩罚修正值,k为当前的代数,H(x)为惩罚因子。
本发明涉及一种实现上述方法的系统,包括:有限元模型建立单元、工况分析与近似建模单元、协同优化单元以及粒子群优化单元,其中:有限元模型建立单元与工况分析相连将建立好的有限元模型进行工况载荷施加,工况分析后提取工况的响应数据建立每个工况的近似模型;工况分析与近似建模单元与协同优化单元相连,根据协同优化方法构建每个工况所对应的优化问题;协同优化单元与粒子群优化单元相连,并将优化目标和约束信息传递到粒子群优化单元,完成算法的优化运算,最后输出优化结果。
技术效果
与现有技术相比,本发明针对车身多工况协同优化设计问题,基于灵敏度分析进行数据挖掘,辨识问题的优化区域,形成考虑优化问题特点的粒子群算法流程,结合加强协同优化理论,形成基于改进粒子群算法的轿车车身侧围结构多工况协同优化设计体系。有效地解决了轿车车身侧围结构设计过程中,因设计变量多、非线性程度强、工况间耦合关系复杂造成的常用的多工况优化策略以及优化算法无法有效寻得可行的优化解的问题。
附图说明
图1为本发明流程示意图;
图2为侧面碰撞仿真模型;
图3为车白车身骨架有限元模型;
图4为侧面碰撞工况数据挖掘示意图;
图5为车身刚度模态工况数据挖掘示意图。
具体实施方式
如图1所示,本实施例的具体步骤包括:
步骤1、采用Hypermesh为前处理软件平台,以LS-DYNA和ABAQUS为求解器,对待优化结构的轿车的整车和白车身骨架进行有限元建模,并针对整车模型进行侧面碰撞工况仿真分析,针对白车身模型进行刚度工况仿真分析,分别得到轿车的整车侧面碰撞分析仿真模型和白车身的刚度分析仿真模型(如图2、图3所示)。
所述的整车模型为用于仿真分析的模型,包含详细的白车身、底盘以及动力总成有限元模型,单元平均尺寸为10mm,壳单元总数为1,005,019个、实体单元总数为22,575个、梁单元7,718个。
所述的白车身模型为用于仿真分析的模型,共有275个零件,单元总数共为351,722个,其中具有三角形单元15,851个,占单元总数比例4.51%,模型精度可靠。
所述的仿真分析是指,根据《汽车侧面碰撞的乘员保护》(GB20071-2006)的法规要求,质量为950kg的移动壁障车以50km/h的速度呈900冲击轿车驾驶员侧,移动壁障车中心线通过驾驶员座椅R点的位置,选取碰撞工况的性能指标和设计变量,仿真时间为80ms。
所述的性能指标为:假人下肋骨最大变形量、B柱最大变形速度、车门最大变形速度、假人腹部作用力、假人盆骨作用力。
所述的设计变量为与侧面碰撞最相关的车身侧面15个板厚参数(如表1所示)。
表1工况性能指标和设计变量
步骤2、针对步骤1中的轿车整车侧面碰撞分析仿真模型和白车身的刚度分析仿真模型和各工况,通过最优拉丁超立方试验设计方法分别进行采样,通过仿真计算得到样本点数据建立Kriging近似模型(如表2所示),并进行精度验证,满足精度则进行下一步,不满足则从新进行采样以及仿真计算。
所述的精度验证通过确定性系数R2判断。若R2>0.9,则满足精度要求。
所述的确定性系数为:其中n为检验的样本点数,为样本点Kriging近似模型预测值,yi为样本点的有限元计算值,为所有样本点仿真结果的平均值。
表2近似建模情况
步骤3、根据加强协同优化方法,建立两工况的子系统级优化。本实施例中优化目标为质量最小,优化目标可以方便的分配到各个子系统工况,并且各工况间只存在共享变量,不存在状态变量(工况间耦合变量)。
所述的子系统工况指侧面碰撞工况和刚度模态工况。
所述的系统优化主要平衡工况间一致性,其形式为:
所述的子系统中,共享变量有两个,子系统目标形式需加入保证子系统一致性的多项式,子系统优化问题数学形式如下。
侧面碰撞:
车身刚度模态:其中:x为子系统独立的共享变量,xL为局部变量,xs=[x,y]为共享变量(与多个子系统相关的),y为耦合变量,s为松弛系数,保证子系统问题求解的可行性,z为参数,由系统级优化提供,作为子系统目标,λC为兼容性惩罚系数,λF为可行性惩罚系数,是问题目标的二次方程组模型,g(i)代表子系统i的局部约束,代表子系统j的线性约束模型。
步骤4、针对车身侧面碰撞工况和车身刚度模态工况,运用灵敏度分析和数据挖掘技术获得主要设计变量和优化目标区域。具体包括:
步骤4.1、基于步骤2得到的Kriging近似模型,建立灵敏度分析目标值。
所述的灵敏度分析的目标值包括:
侧面碰撞灵敏度分析目标值:其中:mi为每个变量所对应的板件的质量,λj为每个约束对应的惩罚系数,代表每个约束的重视程度一般取1,Cj为侧面工况的约束函数。
车身刚度模态灵敏度分析目标值:
其中:mi为每个变量所对应的板件的质量,λj为每个约束对应的惩罚系数,代表每个约束的重视程度一般取1,CBstiff为弯曲刚度约束,CTstiff为拉伸刚度约束,CTmode为模态约束。
步骤4.2、运用灵敏度分析技术,分析每个碰撞工况中影响优化问题的主要变量,其中约束函数因子λ取值均为1。经过分析后各工况选取灵敏度排序前5的设计变量如表3所示:
表3、各工况灵敏度分析
步骤4.3、针对灵敏度分析获得的优化问题影响主要设计变量,进行数据挖掘,寻找问题在设计域内的优化区域。
所述的优化区域为:
侧面碰撞(如图4所示):X3∈[0.86,1.32],X4∈[0.78,1.76],X14∈[0.63,1.1]。
车身刚度模态(如图5所示):X18∈[0.60,0.81],X10∈[0.95,1.64]。
步骤5、运用改进粒子群算法对结果进行优化。
步骤5.1、通过合理布置粒子群优化算法初始粒子种群,针对不同的问题运用不同的改进粒子群优化策略。
步骤5.2、进行基于粒子群优化算法的寻优求解,得到车身侧围优化结构。
为了验证本例提出多工况协同优化算法结构的优势,设计两种对比实施例,实施例2与实施例以算法结构相同,但是在优化算法选择上都是采用标准粒子群算法。实施例3为加强协同优化算法结构,但不加入考虑工况特点的粒子群优化算法。
对三种实施例进行寻优求解,通过圆整将数学求解结果转换为工程值,并将圆整后的结果输入到仿真软件中进行分析,如表4、5所示。
表4、各实施例优化结果
表5、各实施例轻量化方案的性能指标状态
结果表面,实施例1完成减重12.6kg,减重效果12.6%;实施例2完成减重8.1kg,减重效果为9.4%;实施例3完成减重6.16kg,减重效果为7.1%。通过对比验证了本发明在实际工程问题中应用的有效性,为实际车身多多工况协同优化设计过程提供了可借鉴的方法和途径。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

1.一种基于改进粒子群优化的车身侧围结构多工况协同优化实现方法,其特征在于,包括以下步骤:
1)针对待处理优化的轿车的车身侧围结构,建立用于侧面碰撞工况的整车侧面有限元模型和用于刚度模态工况的白车身有限元模型,并对应进行侧面碰撞工况分析和刚度模态工况分析,并选取设计变量;
2)根据不同工况仿真分析的对应设计变量的个数进行采样,建立与之相对应的Kriging近似模型,并验证模型精度;
3)运用加强协同优化算法进行侧面碰撞工况和刚度模态工况间耦合关系的构建;
4)针对侧面碰撞工况和刚度模态工况,分别运用灵敏度分析和数据挖掘的方式,获得各自对应的主要设计变量和优化目标区域;
5)通过合理布置粒子群优化算法初始粒子种群,针对不同的工况,运用对应的改进粒子群优化策略,进行基于粒子群优化算法的寻优求解,最终得到车身侧围优化结构。
2.根据权利要求1所述的优化实现方法,其特征是,所述的近似模型为Kriging近似模型Kriging模型可由方程表示为:Y(x)=G(x)+Z(x),G(x)是x的函数,Z(x)是一个均值为0,方差为σ2的随机过程。
3.根据权利要求1所述的优化实现方法,其特征是,所述的验证模型精度,通过确定性系数R2判断,其中n为检验的样本点数,为样本点Kriging近似模型预测值,yi为样本点的有限元计算值,为所有样本点仿真结果的平均值;当R2>0.9,则满足精度要求。
4.根据权利要求1所述的优化实现方法,其特征是,所述的步骤3,具体为:对系统级优化和子系统级优化结构进行了相应的修改,将各子系统间的约束模型进行相互共享;
所述的系统级优化是指:其中:z是同时考虑侧面碰撞工况和刚度模态工况的车身侧围结构优化系统赋予共享变量的目标值,x*代表子系统优化过程中寻得的与系统级优化目标最接近的问题解;
所述的子系统级优化是指:不同侧面碰撞工况和刚度模态工况下的具体优化,即:其中:x为子系统独立的共享变量,xL为局部变量,xs=[x,y]为共享变量(与多个子系统相关的),y为耦合变量,s为松弛系数,保证子系统问题求解的可行性,z为参数,由系统级优化提供,作为子系统目标,λC为兼容性惩罚系数,λF为可行性惩罚系数,是问题目标的二次方程组模型;
所述的子系统间的约束模型是指:g(i)是子系统i的局部约束,是子系统j的线性约束模型。
5.根据权利要求1所述的优化实现方法,其特征是,所述的灵敏度分析,通过Sobol灵敏度分析方法实现,具体步骤包括:
步骤4.1、基于步骤2得到的Kriging近似模型,建立灵敏度分析目标值;
所述的灵敏度分析的目标值包括:侧面碰撞灵敏度分析目标值、车身刚度模态灵敏度分析目标值;
步骤4.2、运用灵敏度分析技术,分析每个碰撞工况中影响优化问题的主要变量,其中约束函数因子λ取值均为1;
步骤4.3、针对灵敏度分析获得的优化问题影响主要设计变量,进行数据挖掘,寻找问题在设计域内的优化区域。
6.根据权利要求1或5所述的优化实现方法,其特征是,所述的数据挖掘,运用分类与回归树数据挖掘技术针对可行的优化区域进行辨识。
7.根据权利要求1所述的优化实现方法,其特征是,所述的基于粒子群优化算法的寻优求解以粒子群算法为基础,根据更新位置和速度,其中:c1和c2为学习因子或加速常数;rand()为介于(0,1)之间的随机数;分别为粒子i在第k次迭代中第d维的速度和位置;是粒子i在第d维的个体极值位置;是群体在第d维的全局极值的位置。
8.根据权利要求1或7所述的优化实现方法,其特征是,所述的基于粒子群优化算法的寻优求解通过非静态惩罚函数法来处理约束优化问题,惩罚函数F(x)=f(x)+h(k)H(x),x∈S,其中:f(x)为约束优化问题的初始目标函数;h(k)为惩罚修正值,k为当前的代数,H(x)为惩罚因子。
9.一种实现上述任一权利要求所述方法的系统,其特征在于,包括:有限元模型建立单元、工况分析与近似建模单元、协同优化单元以及粒子群优化单元,其中:有限元模型建立单元与工况分析相连将建立好的有限元模型进行工况载荷施加,工况分析后提取工况的响应数据建立每个工况的近似模型;工况分析与近似建模单元与协同优化单元相连,根据协同优化方法构建每个工况所对应的优化问题;协同优化单元与粒子群优化单元相连,并将优化目标和约束信息传递到粒子群优化单元,完成算法的优化运算,最后输出优化结果。
CN201611046486.8A 2016-11-23 2016-11-23 基于粒子群算法的车身侧围结构多工况协同优化实现方法 Pending CN106650016A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611046486.8A CN106650016A (zh) 2016-11-23 2016-11-23 基于粒子群算法的车身侧围结构多工况协同优化实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611046486.8A CN106650016A (zh) 2016-11-23 2016-11-23 基于粒子群算法的车身侧围结构多工况协同优化实现方法

Publications (1)

Publication Number Publication Date
CN106650016A true CN106650016A (zh) 2017-05-10

Family

ID=58811739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611046486.8A Pending CN106650016A (zh) 2016-11-23 2016-11-23 基于粒子群算法的车身侧围结构多工况协同优化实现方法

Country Status (1)

Country Link
CN (1) CN106650016A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107563094A (zh) * 2017-09-21 2018-01-09 上海交通大学 三维机织碳纤维复合材料汽车翼子板优化方法
CN107679315A (zh) * 2017-09-28 2018-02-09 上海交通大学 车身板件焊接变形的几何补偿方法及系统
CN108268728A (zh) * 2018-01-22 2018-07-10 上海交通大学 基于两步式改进粒子群优化算法的汽车尾门结构优化方法
CN108280299A (zh) * 2018-01-24 2018-07-13 西北工业大学 桁架结构灵敏度分析方法
CN109460582A (zh) * 2018-10-16 2019-03-12 河海大学 基于粒子群算法的顺水流向变高程廊道的人字门闸首结构优化设计方法
CN110852000A (zh) * 2018-07-24 2020-02-28 上汽通用五菱汽车股份有限公司 一种车身结构优化方法
CN111382536A (zh) * 2020-03-14 2020-07-07 郑州轻工业大学 一种约束阻尼结构的协同优化设计方法
CN111737889A (zh) * 2019-03-21 2020-10-02 广州汽车集团股份有限公司 一种车身框架多学科协同优化设计方法及系统
CN112464526A (zh) * 2020-11-09 2021-03-09 西北工业大学 无芯模旋压成形旋轮加载路径智能优化方法
CN114065418A (zh) * 2021-11-01 2022-02-18 武汉理工大学 一种机械装备结构优化设计方法及系统
CN115049176A (zh) * 2021-03-09 2022-09-13 广州汽车集团股份有限公司 材料性能评估方法、装置及计算机设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923673A (zh) * 2010-04-30 2010-12-22 湖南大学 基于改进二次粒子群算法的汽车零配件配载优化方法
CN103646280A (zh) * 2013-11-28 2014-03-19 江苏大学 一种基于粒子群算法的车辆悬架系统参数优化方法
CN105608286A (zh) * 2016-01-12 2016-05-25 上海交通大学 基于粒子群优化算法的车辆保险杠结构优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923673A (zh) * 2010-04-30 2010-12-22 湖南大学 基于改进二次粒子群算法的汽车零配件配载优化方法
CN103646280A (zh) * 2013-11-28 2014-03-19 江苏大学 一种基于粒子群算法的车辆悬架系统参数优化方法
CN105608286A (zh) * 2016-01-12 2016-05-25 上海交通大学 基于粒子群优化算法的车辆保险杠结构优化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRIAN ROTH 等: "Enhanced Collaborative Optimization: Application to an Analytic Test Problem and Aircraft Design", 《12TH AIAA/ISSMO MULTIDISCIPLINARY ANALYSIS AND OPTIMIZATION CONFERENCE》 *
ZHAO LIU 等: "Lightweight design of automotive composite bumper system using modified particle swarm optimizer", 《COMPOSITE STRUCTURES》 *
王深思: "轿车车身系统结构的协同优化研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *
苏瑞意 等: "大客车车身骨架多学科协同优化设计", 《机械工程学报》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107563094A (zh) * 2017-09-21 2018-01-09 上海交通大学 三维机织碳纤维复合材料汽车翼子板优化方法
CN107679315A (zh) * 2017-09-28 2018-02-09 上海交通大学 车身板件焊接变形的几何补偿方法及系统
CN107679315B (zh) * 2017-09-28 2021-08-10 上海交通大学 车身板件焊接变形的几何补偿方法及系统
CN108268728A (zh) * 2018-01-22 2018-07-10 上海交通大学 基于两步式改进粒子群优化算法的汽车尾门结构优化方法
CN108268728B (zh) * 2018-01-22 2021-03-16 上海交通大学 基于两步式改进粒子群优化算法的汽车尾门结构优化方法
CN108280299A (zh) * 2018-01-24 2018-07-13 西北工业大学 桁架结构灵敏度分析方法
CN108280299B (zh) * 2018-01-24 2023-06-02 西北工业大学 桁架结构灵敏度分析方法
CN110852000A (zh) * 2018-07-24 2020-02-28 上汽通用五菱汽车股份有限公司 一种车身结构优化方法
CN110852000B (zh) * 2018-07-24 2023-01-03 上汽通用五菱汽车股份有限公司 一种车身结构优化方法
CN109460582A (zh) * 2018-10-16 2019-03-12 河海大学 基于粒子群算法的顺水流向变高程廊道的人字门闸首结构优化设计方法
CN111737889A (zh) * 2019-03-21 2020-10-02 广州汽车集团股份有限公司 一种车身框架多学科协同优化设计方法及系统
CN111382536A (zh) * 2020-03-14 2020-07-07 郑州轻工业大学 一种约束阻尼结构的协同优化设计方法
CN111382536B (zh) * 2020-03-14 2023-06-09 郑州轻工业大学 一种约束阻尼结构的协同优化设计方法
CN112464526A (zh) * 2020-11-09 2021-03-09 西北工业大学 无芯模旋压成形旋轮加载路径智能优化方法
CN112464526B (zh) * 2020-11-09 2024-04-19 西北工业大学 无芯模旋压成形旋轮加载路径智能优化方法
CN115049176A (zh) * 2021-03-09 2022-09-13 广州汽车集团股份有限公司 材料性能评估方法、装置及计算机设备
CN114065418A (zh) * 2021-11-01 2022-02-18 武汉理工大学 一种机械装备结构优化设计方法及系统

Similar Documents

Publication Publication Date Title
CN106650016A (zh) 基于粒子群算法的车身侧围结构多工况协同优化实现方法
Kasprzak et al. Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method
US20090125282A1 (en) Numerical structural analysis system based on the load-transfer-path method
CN112287551B (zh) 一种基于整车概念模型的行驶性能系统级指标分解方法
CN111125946B (zh) 一种基于mdo技术的上车体结构优化方法
CN114239149B (zh) 一种基于碰撞性能优化的商用车驾驶室白车身轻量化方法
CN116306156B (zh) 车身优化方法、装置、存储介质及电子设备
Wang et al. An adaptive RBF neural network–based multi-objective optimization method for lightweight and crashworthiness design of cab floor rails using fuzzy subtractive clustering algorithm
CN106777850A (zh) 一种基于简化评估的汽车部件设计方法
CN116562075B (zh) 电池包结构设计方法、装置、终端和存储介质
Shen et al. BIW safety performance research based on vehicle frontal crash
CN110532701B (zh) 一种基于平台化白车身下车体灵敏度分析方法
Moroncini et al. NVH structural optimization using beams and shells FE concept models in the early car development phase at BMW
Korta et al. Multi-objective optimization of a car body structure
CN112711813B (zh) 一种铆接结构的轻量化方法
Zhang et al. Numerical investigation on the transmission loss of skin panels based on the intelligent pso-cga algorithm
Chen et al. Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II
Donders et al. Cae technologies for efficient vibro-acoustic vehicle design modification and optimization
Zheng et al. The design optimization of vehicle interior noise through structural modification and constrained layer damping treatment
CN115270584B (zh) 适用于新能源电动汽车电池托架的轻量化方法
Van der Auweraer et al. New approaches enabling NVH analysis to lead design in body development
Sharma et al. Multidisciplinary design optimization of automobile tail door
Mihaylova et al. On the improvement of concept modeling of joints within simplified finite element models with application to structural dynamics
CN114611216A (zh) 一种车身结构优化的方法、装置及电子设备
Sharma CAE driven multi disciplinary optimization of vehicle systems and sub systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510