CN106649026B - 适用于运维自动化系统的监测数据压缩方法 - Google Patents

适用于运维自动化系统的监测数据压缩方法 Download PDF

Info

Publication number
CN106649026B
CN106649026B CN201610852544.XA CN201610852544A CN106649026B CN 106649026 B CN106649026 B CN 106649026B CN 201610852544 A CN201610852544 A CN 201610852544A CN 106649026 B CN106649026 B CN 106649026B
Authority
CN
China
Prior art keywords
data
compression
point
sdt
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610852544.XA
Other languages
English (en)
Other versions
CN106649026A (zh
Inventor
张宗华
辛利平
赵京湘
贺飞
牛新征
段庆元
屈英
吴松泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Electric Power Hospital Of State Grid Corp
University of Electronic Science and Technology of China
Original Assignee
Beijing Electric Power Hospital Of State Grid Corp
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electric Power Hospital Of State Grid Corp, University of Electronic Science and Technology of China filed Critical Beijing Electric Power Hospital Of State Grid Corp
Priority to CN201610852544.XA priority Critical patent/CN106649026B/zh
Publication of CN106649026A publication Critical patent/CN106649026A/zh
Application granted granted Critical
Publication of CN106649026B publication Critical patent/CN106649026B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3065Monitoring arrangements determined by the means or processing involved in reporting the monitored data
    • G06F11/3072Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting
    • G06F11/3082Monitoring arrangements determined by the means or processing involved in reporting the monitored data where the reporting involves data filtering, e.g. pattern matching, time or event triggered, adaptive or policy-based reporting the data filtering being achieved by aggregating or compressing the monitored data

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明公开了一种适用于运维自动化系统的监测数据压缩方法,方法如下:S1、数据预处理;对原始数据进行平滑处理,减小噪声数据对SDT算法的干扰;S2、初步数据压缩;采用控制算法对数据初步压缩;S3、进一步数据压缩;采用SDT算法进一步压缩;S4、SDT压缩精度参数匹配;在每次数据压缩完成后,根据数据波动的变化,使压缩精度参数与数据波动变化的特性进行匹配,得到匹配后的压缩精度参数;S5、SDT压缩精度参数自适应调整;根据匹配后的压缩精度参数重复步骤S2、S3和S4后,再进一步自适应调整压缩精度参数;S6、重复步骤S2、S3和S5,直到压缩精度参数与数据波动变化的特性完全匹配,得到最优的压缩精度参数再重复步骤S2和S3后,完成数据的压缩。

Description

适用于运维自动化系统的监测数据压缩方法
技术领域
本发明涉及数据压缩技术领域,尤其涉及适用于运维自动化系统的监测数据压缩方法。
背景技术
随着企业信息化建设的不断推进和完善,计算机软硬件系统的运行已经成为了各个行业普遍关注的问题。而IT运维工作中很重要的一项内容是对主机设备的运行状态以及网络负载等信息进行实时监控和记录,以实现异常情况的及时告警、故障诊断以及数据挖掘等功能。由于数据采集点众多,采集间隔短,导致实时监测数据量非常庞大,而这些数据中的一些噪声数据不仅对其他监测数据没用,还会影响其他整体数据的压缩,增大数据压缩和解压的误差。因此,为确保海量数据能够实时存储,并尽可能降低数据存储的容量,提高存储效率,需要对数据进行快速有效的压缩处理。
现有的数据压缩技术包括基于小波变换的压缩、基于字典的压缩、基于统计的压缩等。而实时数据库领域,由于原始数据量大,数据的变化平稳,且能容忍部分无用数据的丢失,所以,通常采用有损压缩算法以获得更高的压缩比。旋转门趋势(SDT)算法是美国OSI软件公司研发的用于实时数据库中的有损压缩算法,是一种快速线性拟合压缩,具有高效率、高压缩比、适合增量压缩等特点的算法,被广泛应用于实时数据压缩技术领域。然而,传统的SDT算法的压缩率和信息损失率收到压缩精度参数ΔE的影响较大,并且该算法在数据有噪声的情况下,压缩的性能是比较低的。
虽然现有的技术对SDT算法做了一定的改进,或是增大了压缩率,或是降低了压缩误差和压缩时间,但是都没有考虑噪声数据的影响,同时也没能很好地解决压缩精度参数ΔE的选取问题。
发明内容
本发明的目的在于克服现有技术的不足,提供一种适用于运维自动化系统的监测数据压缩方法,减小了噪声数据对压缩性能产生的影响,能够通过比较相邻区间的数据波动,动态调整压缩精度参数。
本发明的目的是通过以下技术方案来实现的:适用于运维自动化系统的监测数据压缩方法,所述的方法的步骤如下:
S1、数据预处理;对原始数据进行平滑处理,减小噪声数据对SDT算法的干扰;
S2、初步数据压缩;对平滑处理后的数据采用控制算法对数据初步压缩;
S3、进一步数据压缩;采用SDT算法进一步压缩,提高总体压缩比,并减少SDT算法处理的数据量;
S4、SDT压缩精度参数匹配;在每次数据压缩完成后,根据数据波动的变化,使压缩精度参数与数据波动变化的特性进行匹配,得到匹配后的压缩精度参数;
S5、SDT压缩精度参数自适应调整;根据匹配后的压缩精度参数重复步骤S2、S3和S4后,再进一步自适应调整压缩精度参数;
S6、重复步骤S2、S3和S5,直到压缩精度参数与数据波动变化的特性完全匹配,得到最优的压缩精度参数再重复步骤S2和S3后,完成数据的压缩,以取得最优的压缩性能。
所述的S1中的平滑处理的方法包括最小二乘法,所述的最小二乘平滑处理的步骤如下:
S11、初始化输入的原始数据序列Y=(ti,yi)的上下斜率;
S12、对相邻的五个原始数据点(ti-2,yi-2),(ti-1,yi-1),…,(ti+2,yi+2),用曲线y=α01t+α2t23t3进行拟合;
S13、采用最小二乘法求出系数α0123,得到五点三次平滑公式为:YS=AY,其中Y是原始数据向量,YS是平滑后的数据向量,数据向量的坐标分别表示5个连续的数据值,A是5阶系数矩阵。
所述的步骤S2的数据压缩的控制算法包括死区限值算法,所述的死区限值算法的具体步骤如下:
S21、在一组i个数据的初始数据点a设置死区压缩精度参数ΔE′的限制区间,然后依次对后续数据进行压缩;
S22、若数据点在此死区内,则舍弃该数据点,若数据点在此死区外,则对该数据点进行存储归档,并以该点设置死区继续对后续数据进行压缩,直到所有数据压缩完毕。
所述的SDT算法进一步数据压缩的步骤如下:
S31、从压缩后的数据中取出一个数据点(tk,yk)测试时间间隔,其中0<k≤j,j<i;若该点与上个存储点时间间隔等于或者超过了被存储的两点间允许的最大时间间隔,则不需要进行SDT分析,直接存储前一点(tk-1,yk-1),否则,继续进行后续数据的压缩;
S32、计算旋转门转动到(tk,yk)时两扇门的斜率,并与前一状态比较取开门角度大的状态,如果上扇门的斜率大于等于下扇门的斜率,则表示两扇门之间的角度以及大于或等于180°,此时就存储前一点(tk-1,yk-1)并将其作为新压缩段的起始点,否则,不存储任何点,继续进行下一步骤;
S33、检测一组j个数据是否压缩完毕,如果未压缩完毕,则跳转到步骤S21。
所述的S3中的SDT压缩精度参数自适应调整的步骤如下:
S31、利用前一区间的数据波动情况预测下一区间的情况,得到数据的离散程度,用标准差表示为:
Figure BDA0001120647600000031
其中,yi是数据值,μ为y的平均值,n为数据总数;
S32、计算相邻压缩区间的波动变化w:w=σii-1,其中σi和σi-1分别表示第i和i-1次压缩的数据标准差;
S33、动态调整ΔE的值:
Figure BDA0001120647600000032
其中F(w)=(w-1)3+1,τ为数据波动变化的容差系数,F(w)为动态调幅系数函数;
当|w-1|≤τ时,说明数据的波动变化不明显,无需对ΔE进行调整;
当|w-1|>τ时,说明数据的波动变化较大,应对ΔE进行相应的调整;
由于调幅函数F(w)关于(1,1)中心对称,且单调递增,
当w<1时,F(w)<1,数据波动变得平缓,为了取得更高的压缩比,则减小ΔE;
当w>1时,F(w)>1,数据波动起伏变大,则应该增大ΔE以取得更低的压缩误差。
所述的死区压缩精度参数ΔE′与SDT压缩精度参数ΔE设置为相等。
在首次执行数据预处理中算法时,初始化ΔE=(ΔEmax+ΔEmin)/2,其中ΔEmax为压缩精度参数上限,ΔEmin为压缩精度参数下限。
本发明的有益效果是:适用于运维自动化系统的监测数据压缩方法,能够基于最小二乘原理,对原始数据进行平滑处理,减小噪声数据对压缩性能的影响,使算法能够更准确的判断数据的关键趋势,提高压缩比;结合死区限值算法实现初步压缩,进一步增大压缩比,最后能够通过数据波动变化对压缩精度参数动态调整。该方法能够在保持低压缩误差的前提下,有效提高压缩比,并且具有低复杂度和良好的可扩展性。
附图说明
图1为方法流程图;
图2为死区限值压缩原理图;
图3为仿真数据ASDT/SDT压缩比对比图;
图4为仿真数据ASDT/SDT均方根误差对比图;
图5为解压重构后数据对比图;
图6为真实数据ASDT/SDT压缩比对比图;
图7为真实数据ASDT/SDT均方根误差对比图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
如图1所示,适用于运维自动化系统的监测数据压缩方法,所述的方法的步骤如下:
S1、数据预处理;对原始数据进行平滑处理,减小噪声数据对SDT算法的干扰;
S2、初步数据压缩;对平滑处理后的数据采用控制算法对数据初步压缩;
S3、进一步数据压缩;采用SDT算法进一步压缩,提高总体压缩比,并减少SDT算法处理的数据量;
S4、SDT压缩精度参数匹配;在每次数据压缩完成后,根据数据波动的变化,使压缩精度参数与数据波动变化的特性进行匹配,得到匹配后的压缩精度参数;
S5、SDT压缩精度参数自适应调整;根据匹配后的压缩精度参数重复步骤S2、S3和S4后,再进一步自适应调整压缩精度参数;
S6、重复步骤S2、S3和S5,直到压缩精度参数与数据波动变化的特性完全匹配,得到最优的压缩精度参数再重复步骤S2和S3后,完成数据的压缩,以取得最优的压缩性能。
所述的S1中的平滑处理的方法包括最小二乘法,所述的最小二乘平滑处理的步骤如下:
S11、初始化输入的原始数据序列Y=(ti,yi)的上下斜率;
S12、对相邻的五个原始数据点(ti-2,yi-2),(ti-1,yi-1),…,(ti+2,yi+2),用曲线y=α01t+α2t23t3进行拟合;
S13、采用最小二乘法求出系数α0123,得到五点三次平滑公式为:YS=AY,其中Y是原始数据向量,YS是平滑后的数据向量,数据向量的坐标分别表示5个连续的数据值,A是5阶系数矩阵。
所述的步骤S2的数据压缩的控制算法包括死区限值算法,所述的死区限值算法的具体步骤如下:
S21、在一组i个数据的初始数据点a设置死区压缩精度参数ΔE′的限制区间,然后依次对后续数据进行压缩;
S22、若数据点在此死区内,则舍弃该数据点,若数据点在此死区外,则对该数据点进行存储归档,并以该点设置死区继续对后续数据进行压缩,直到所有数据压缩完毕。如图2所 示,t4时刻的b点在此区间之外,故存储b点,并以该点设置死区继续对后续数据进行压缩。
所述的SDT算法进一步数据压缩的步骤如下:
S31、从压缩后的数据中取出一个数据点(tk,yk)测试时间间隔,其中0<k≤j,j<i;若该点与上个存储点时间间隔等于或者超过了被存储的两点间允许的最大时间间隔,则不需要进行SDT分析,直接存储前一点(tk-1,yk-1),否则,继续进行后续数据的压缩;
S32、计算旋转门转动到(tk,yk)时两扇门的斜率,并与前一状态比较取开门角度大的状态,如果上扇门的斜率大于等于下扇门的斜率,则表示两扇门之间的角度以及大于或等于180°,此时就存储前一点(tk-1,yk-1)并将其作为新压缩段的起始点,否则,不存储任何点,继续进行下一步骤;
S33、检测一组j个数据是否压缩完毕,如果未压缩完毕,则跳转到步骤S21。
所述的S3中的SDT压缩精度参数自适应调整的步骤如下:
S31、利用前一区间的数据波动情况预测下一区间的情况,得到数据的离散程度,用标准差表示为:
Figure BDA0001120647600000051
其中,yi是数据值,μ为y的平均值,n为数据总数;
S32、计算相邻压缩区间的波动变化w:w=σii-1,其中σi和σi-1分别表示第i和i-1次压缩的数据标准差;
S33、动态调整ΔE的值:
Figure BDA0001120647600000052
其中F(w)=(w-1)3+1,τ为数据波动变化的容差系数,F(w)为动态调幅系数函数;
当|w-1|≤τ时,说明数据的波动变化不明显,无需对ΔE进行调整;
当|w-1|>τ时,说明数据的波动变化较大,应对ΔE进行相应的调整;
由于调幅函数F(w)关于(1,1)中心对称,且单调递增,
当w<1时,F(w)<1,数据波动变得平缓,为了取得更高的压缩比,则减小ΔE;
当w>1时,F(w)>1,数据波动起伏变大,则应该增大ΔE以取得更低的压缩误差。
所述的调幅系数函数F(w)采用三次函数的原因在于:当数据波动变化较快时,若ΔE调整不及时,会导致该数据段压缩效果不佳。另一方面,数据波动变化放缓,则需要细微调节ΔE才能逼近理想值。调幅系数函数F(w)在w=1两侧一阶导数不断增大,使F(w)的变化更为快 速,从而能更及时的调整ΔE,使之适应数据波动变化。
所述的死区压缩精度参数ΔE′与SDT压缩精度参数ΔE设置为相等。
在首次执行数据预处理中算法时,初始化ΔE=(ΔEmax+ΔEmin)/2,其中ΔEmax为压缩精度参数上限,ΔEmin为压缩精度参数下限。
本发明实施例一的仿真数据通过采用正弦波信号叠加噪声的形式来模拟真是监测数据,函数表达式为y=sin(ωt)+N(p,t),其中N(p,t)为噪声信号,p为噪声强度参数,p值越大,噪声数据对压缩性能的影响就越大。为了测试自适应旋转门趋势算法(ASDT)对含噪声的压缩系能,令p从1增长到10,分别测试ASDT和SDT的算法性能。其中角频率ω=0.001,采用周期为2,采样区间为[0,2000π],设置SDT算法ΔE=0.02,ASDT算法的ΔEmax=0.04,ΔEmin=0.1,数据波动变化的容差系数τ=0.1。得到ASDT和SDT的结果对比如下表1所示:
ASDT/SDT 压缩比 均方根误差
p=1 5.51/2.11 0.362/0.370
p=2 5.45/2.08 0.414/0.410
p=3 5.18/2.09 0.449/0.437
p=4 4.63/2.06 0.511/0.515
p=5 4.32/2.07 0.564/0.579
p=6 4.23/2.04 0.634/0.590
p=7 4.02/2.05 0.687/0.728
p=8 3.80/2.05 0.804/0.811
p=9 3.57/2.02 0.875/0.864
p=10 3.25/2.03 1.029/1.039
表1
如图3和表1所示,随着噪声强度的增大,ASDT和SDT的压缩比均有不同程度的减小。尽管如此,ASDT的压缩比一直高于SDT,最低时仍为3.25,相比于SDT提高了60%以上。这是由于噪声数据的频繁抖动使SDT算法不能正确预测数据的走势,从而过多的记录了无用信息。而ASDT算法由于对原始数据进行了平滑处理,减轻了噪声的影响,使压缩算法能更准确的把握数据的关键趋势,大大减少归档点数。同时,采用死区限值过滤进一步增大了压缩比。虽然ASDT在压缩比方面比SDT取得更好的性能,但是这并不意味着是以损失数据精度为代价的。
如图4和表1所示,ASDT和SDT的均方根误差基本相同,这是由于ASDT能根据相邻区间数据波动的变化趋势动态调整精度参数ΔE,从而使压缩误差维持在合理的水平。
如图5所示,自上而下分别为原始数据、SDT以及ASDT,从图中可以看出SDT算法收噪声影响较大,而ASDT能更好的抵抗噪声数据的干扰,忽略频繁抖动的无关信息存储,识别数据变化的关键趋势。
本发明实施例二的真实数据通过对某IT运维系统中磁盘使用率的进行监测,得到包括10个不同时间段采集的数据,采用周期为2秒,每个时间段采样点均为2000以上。设置SDT算法ΔE=0.5,ASDT算法的ΔEmax=1.0,ΔEmin=0,数据波动变化的容差系数τ=0.1。
如图6、图7所示,ASDT在真实数据集上依然获得了比较高的压缩比,最低时为9.49,对比SDT至少提高了24%。ASDT的均方根误差基本与SDT持平,取得良好的数据保真度,从真实数据集上可以看出ASDT算法的性能更优。
对不同规模的数据进行压缩时间的测试,设置数据规模为10m,m∈[2,8]。对于每个m,分别测试10次取平均值,得到结果如下表2所示:
数据规模(10<sup>m</sup>) 压缩时间(秒) 重构时间(秒)
m=2 6.35*10<sup>-4</sup> 8.51*10<sup>-4</sup>
m=3 2.12*10<sup>-3</sup> 7.66*10<sup>-3</sup>
m=4 1.24*10<sup>-2</sup> 5.29*10<sup>-2</sup>
m=5 1.02*10<sup>-1</sup> 4.31*10<sup>-1</sup>
m=6 1.05 4.37
m=7 10.43 43.25
m=8 138.04 507.34
表2
从表2可以看出,ASDT算法压缩时间和重构时间随着数据规模的增长而呈线性增长的趋势,证明ASDT在对IT运维系统进行数据压缩的时候具有良好的可扩展性。而且,当数据规模为108时,ASDT的压缩时间和解压重构分别为138.04秒和507.34秒,对较大规模的数据有良好的处理能力。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (5)

1.适用于运维自动化系统的监测数据压缩方法,其特征在于:所述的方法的步骤如下:
S1、数据预处理;对原始数据进行平滑处理,减小噪声数据对SDT算法的干扰;
S2、初步数据压缩;对平滑处理后的数据采用控制算法对数据初步压缩;
S3、进一步数据压缩;采用SDT算法进一步压缩,提高总体压缩比;
S4、SDT压缩精度参数匹配;在每次数据压缩完成后,根据数据波动的变化,使压缩精度参数与数据波动变化的特性进行匹配,得到匹配后的压缩精度参数;
S5、SDT压缩精度参数自适应调整;根据匹配后的压缩精度参数重复步骤S2、S3和S4后,再进一步自适应调整压缩精度参数;
S6、重复步骤S2、S3和S5,直到压缩精度参数与数据波动变化的特性完全匹配,得到最优的压缩精度参数后再重复步骤S2和S3,最后完成数据的压缩,以取得最优的压缩性能;
SDT压缩精度参数自适应调整的步骤如下:
S31、利用前一区间的数据波动情况预测下一区间的情况,得到数据的离散程度,用标准差表示为:
Figure FDA0002486540940000011
其中,yi是数据值,μ为y的平均值,n为数据总数;
S32、计算相邻压缩区间的波动变化w:w=σii-1,其中σi和σi-1分别表示第i和i-1次压缩的数据标准差;
S33、动态调整ΔE的值:
Figure FDA0002486540940000012
其中F(w)=(w-1)3+1,τ为数据波动变化的容差系数,F(w)为动态调幅系数函数;
当|w-1|≤τ时,说明数据的波动变化不明显,无需对ΔE进行调整;
当|w-1|>τ时,说明数据的波动变化较大,应对ΔE进行相应的调整;
由于调幅函数F(w)关于(1,1)中心对称,且单调递增,
当w<1时,F(w)<1,数据波动变得平缓,为了取得更高的压缩比,则减小ΔE;
当w>1时,F(w)>1,数据波动起伏变大,则应该增大ΔE以取得更低的压缩误差;
死区压缩精度参数ΔE′与SDT压缩精度参数ΔE设置为相等。
2.根据权利要求1所述的适用于运维自动化系统的监测数据压缩方法,其特征在于:所述的S1中的平滑处理的方法包括最小二乘法,所述的最小二乘平滑处理的步骤如下:
S11、初始化输入的原始数据序列Y=(ri,yi)的上下斜率;
S12、对相邻的五个原始数据点(ti-2,yi-2),(ti-1,yi-1),…,(ti+2,yi+2),用曲线y=α01t+α2t23t3进行拟合;
S13、采用最小二乘法求出系数α0,α1,α2,α3,得到五点三次平滑公式为:Ys=AY,其中Y是原始数据向量,Ys是平滑后的数据向量,数据向量的坐标分别表示5个连续的数据值,A是5阶系数矩阵。
3.根据权利要求1所述的适用于运维自动化系统的监测数据压缩方法,其特征在于:所述的步骤S2的数据压缩的控制算法包括死区限值算法,所述的死区限值算法的具体步骤如下:
S21、在一组i个数据的初始数据点a设置死区压缩精度参数ΔE′的限制区间,然后依次对后续数据进行压缩;
S22、若数据点在此死区内,则舍弃该数据点,若数据点在此死区外,则对该数据点进行存储归档,并以该点设置死区继续对后续数据进行压缩,直到所有数据压缩完毕。
4.根据权利要求3所述的适用于运维自动化系统的监测数据压缩方法,其特征在于:所述的SDT算法进一步数据压缩的步骤如下:
S31、从压缩后的数据中取出一个数据点(tk,yk)测试时间间隔,其中0<k≤j,j<i;若该点与上个存储点时间间隔等于或者超过厂被存储的两点间允许的最大时间间隔,则不需要进行SDT分析,直接存储前一点(tk-1,yk-1),否则,继续进行后续数据的压缩;
S32、计算旋转门转动到(tk,yk)时两扇门的斜率,并与前一状态比较取开门角度大的状态,如果上扇门的斜率大于等于下扇门的斜率,
此时就存储前一点(tk-1,yk-1)并将其作为新压缩段的起始点,否则,不存储任何点,继续进行下一步骤;
S33、检测一组j个数据是否压缩完毕,如果未压缩完毕,则跳转到步骤S21。
5.根据权利要求1所述的适用于运维自动化系统的监测数据压缩方法,其特征在于:在首次执行数据预处理中算法时,初始化ΔE=(ΔEmax+ΔEmin)/2,其中ΔEmax为压缩精度参数上限,ΔEmin为压缩精度参数下限。
CN201610852544.XA 2016-09-26 2016-09-26 适用于运维自动化系统的监测数据压缩方法 Expired - Fee Related CN106649026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610852544.XA CN106649026B (zh) 2016-09-26 2016-09-26 适用于运维自动化系统的监测数据压缩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610852544.XA CN106649026B (zh) 2016-09-26 2016-09-26 适用于运维自动化系统的监测数据压缩方法

Publications (2)

Publication Number Publication Date
CN106649026A CN106649026A (zh) 2017-05-10
CN106649026B true CN106649026B (zh) 2020-07-07

Family

ID=58853432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610852544.XA Expired - Fee Related CN106649026B (zh) 2016-09-26 2016-09-26 适用于运维自动化系统的监测数据压缩方法

Country Status (1)

Country Link
CN (1) CN106649026B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540136B (zh) * 2018-03-13 2021-06-29 华侨大学 一种适用于农业传感数据的压缩方法
CN108667463B (zh) * 2018-03-27 2021-11-02 江苏中科羿链通信技术有限公司 监测数据压缩方法
CN109309501B (zh) * 2018-09-12 2022-04-29 成都宝通天宇电子科技有限公司 高精度多环数据压缩方法
CN109245310A (zh) * 2018-11-13 2019-01-18 北京工业大学 一种基于实时数据库的电力监控系统
CN110769453B (zh) * 2019-10-31 2020-11-06 重庆大学 非稳定网络环境下的多模态监测数据动态压缩控制方法
CN113258933B (zh) * 2021-05-28 2022-09-16 山西阳光三极科技股份有限公司 多区间自适应旋转门算法
CN113630124B (zh) * 2021-08-10 2023-08-08 优刻得科技股份有限公司 时序性整数数据的处理方法、系统、设备和介质
CN114640355B (zh) * 2022-03-30 2023-04-18 北京诺司时空科技有限公司 时序数据库的有损压缩及解压缩方法、系统、存储介质、设备
CN116155298B (zh) * 2023-04-20 2023-07-04 山东水运发展集团有限公司济宁分公司 一种基于互联网数据的船闸远程管理系统
CN117176176B (zh) * 2023-11-01 2024-01-23 苏州爱雄斯通信技术有限公司 基于大数据的数据分析处理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223951C (zh) * 2002-05-24 2005-10-19 中国科学院软件研究所 自适应的历史数据压缩方法
KR20120132878A (ko) * 2011-05-30 2012-12-10 한상혁 공정 제어 데이터베이스 시스템 구조

Also Published As

Publication number Publication date
CN106649026A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106649026B (zh) 适用于运维自动化系统的监测数据压缩方法
CN111189639A (zh) 一种基于瞬时频率优化vmd的轴承故障诊断方法
CA2634328A1 (en) Method and system for trend detection and analysis
CN109212966B (zh) 一种多工况动态基准化的机械设备剩余寿命预测方法
CN114640355B (zh) 时序数据库的有损压缩及解压缩方法、系统、存储介质、设备
CN110705041B (zh) 一种基于easi的线性结构工作模态参数识别方法
CN116405109B (zh) 基于线性直驱的光模块通信自适应调制方法
CN112668105B (zh) 一种基于sae与马氏距离的直升机传动轴异常判定方法
CN108540136B (zh) 一种适用于农业传感数据的压缩方法
CN114969060B (zh) 一种工业设备时序数据压缩存储方法、装置
CN115062668A (zh) 基于RAdam优化宽度学习的谐波参数检测方法和系统
CN108667463B (zh) 监测数据压缩方法
CN108415880B (zh) 一种基于样本熵与小波变换的线损特性分析方法
CN117540325B (zh) 基于数据变化量捕获的业务数据库异常检测方法及系统
CN116975503A (zh) 一种土壤侵蚀信息管理方法及系统
CN117434153A (zh) 基于超声波技术的道路无损检测方法及系统
CN110139111B (zh) 一种视频编码算法的评价方法
CN109976974B (zh) 一种针对运行状态判断的云计算环境下系统监测方法
CN109286817B (zh) 一种视频编码中dct系数的量化失真信息处理方法
CN115963420A (zh) 一种电池soh影响因素分析方法
CN116243108A (zh) 配网故障点定位方法及系统、设备及介质
CN116046968A (zh) 一种液相色谱工作站数据处理方法、系统及可存储介质
CN101692251B (zh) 基于函数参数估计的通用过程数据在线压缩、解压方法
CN112598259A (zh) 产能测算方法、装置及计算机可读存储介质
CN117312255B (zh) 一种电子文档拆分优化管理方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200707

Termination date: 20210926

CF01 Termination of patent right due to non-payment of annual fee