CN106645809A - 一种双重包覆壳层隔绝针尖的制备方法 - Google Patents

一种双重包覆壳层隔绝针尖的制备方法 Download PDF

Info

Publication number
CN106645809A
CN106645809A CN201610896305.4A CN201610896305A CN106645809A CN 106645809 A CN106645809 A CN 106645809A CN 201610896305 A CN201610896305 A CN 201610896305A CN 106645809 A CN106645809 A CN 106645809A
Authority
CN
China
Prior art keywords
shell
needle point
needle
preparation
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610896305.4A
Other languages
English (en)
Inventor
李剑锋
黄亚萍
黄声超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute of Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610896305.4A priority Critical patent/CN106645809A/zh
Publication of CN106645809A publication Critical patent/CN106645809A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种双重包覆壳层隔绝针尖的制备方法,涉及一种扫描探针。包括以下步骤:1)使用电化学刻蚀的方法制备针尖;2)在针尖表面包覆一层壳层;3)将步骤2)包覆壳层的针尖尖端以外部分用高聚物进行二次包封,得双重包覆壳层隔绝针尖。采用原子层沉积技术,使用不同的源前驱体,可在针尖表面包覆不同的惰性壳层。控制不同的源前驱体的循环圈数可精确控制壳层厚度。双重包覆可避免溶液中非分析物分子吸附在针尖上产生干扰的信号,也可隔绝法拉第电流的干扰,可应用到电化学针尖增强拉曼光谱、电化学扫描隧道显微镜和扫描电化学显微镜中。普适性好,适用于其它针尖的包覆,如银针尖、AFM针尖、铂铱针尖。制备方法简单,适于大批量生产。

Description

一种双重包覆壳层隔绝针尖的制备方法
技术领域
本发明涉及一种扫描探针,尤其是涉及一种可适用与复杂体系下的电化学扫描隧道显微镜和电化学针尖增强拉曼光谱的一种双重包覆壳层隔绝针尖的制备方法。
背景技术
随着纳米科学的发展,纳米表征技术在纳米材料、表面科学等各领域的应用起着重要作用。其中基于纳米探针发展的扫描探针技术(如扫描隧道显微镜、原子力显微镜、剪切力显微镜等)及其与光谱连用的技术(如针尖增强拉曼光谱、针尖增强红外光谱、针尖增强质谱等)分别可以获得原子分辨的形貌信息和纳米尺度的化学成分信息,它们是纳米表征技术的重要组成部分。在这些技术中,纳米结构的针尖被控制逼近至样品表面扫描,裸露的针尖容易受到基底分子及环境介质中污染物污染,特别当其应用于溶液环境(如电化学体系,生物体系等),溶液中的分子、电解质离子等容易吸附在针尖上影响针尖的性能或干扰针尖下方待测物的光谱信息。现有的应用到电化学扫描隧道显微镜技术和与之连用的拉曼光谱技术直接采用一次包封的技术在针尖的尖端以外部分包覆一层高聚物以减小法拉第电流的干扰,而针尖的最末端仍然是裸露的,无法解决针尖末端污染的问题。
文献中已报道的隔绝裸露针尖的方法有:在针尖表面组装一层巯基分子基于(Zenobi et al.Performing tip-enhanced Raman spectroscopy in liquids.J.RamanSpectrosc.2009(40),1392-1399.)巯基分子的拉曼信号对所测样品的拉曼信号没有干扰,且巯基分子的碳链长度不影响电磁场增强;此外用化学合成法在金、银针尖表面包覆一层二氧化硅的方法(Li et al."Smart"Ag Nanostructures for Plasmon-EnhancedSpectroscopies.J.Am.Chem.Soc.2015(137),13784-13787.)受实验条件的影响大,且缺乏普适性、不适于大批量的制备。原子层沉积技术(Atomic Layer Deposition)作为一种自限制性的表面沉积薄膜技术,可以将物质以单层膜的形式一层一层沉积在基底上,沉积厚度通过循环圈数精确可控,且不受基底形貌和材料的限制,制备方法简便,可适用于大批量的生产,在太阳能电池、金属防腐、微纳器件加工等方面广泛应用。
发明内容
本发明的目的旨在针对扫描探针技术中的针尖表面污染的问题,提供一种双重包覆壳层隔绝针尖的制备方法。
本发明包括以下步骤:
1)使用电化学刻蚀的方法,制备针尖;
2)在针尖表面包覆一层壳层;
3)将步骤2)包覆壳层的针尖尖端以外部分用高聚物进行二次包封,得双重包覆壳层隔绝针尖。
在步骤1)中,所述电化学刻蚀采用的刻蚀液可为无水乙醇和盐酸混合液,无水乙醇和盐酸的体积比可为1︰1;所述电化学刻蚀的方法可为:用丝线圈作为对电极,丝线圈与刻蚀液的凹液面齐平,丝线圈插入深度在液面下2~3mm,通过电化学工作站控制刻蚀电压在2.1~2.4V,切断电流为0.00001A,当电流变为0的瞬间,刻蚀完成,依次用无水乙醇和超纯水冲洗针尖表面;所述针尖的长度可为1~1.5cm,针尖的直径可为0.25mm;所述丝线圈可依次用丙酮、乙醇超声;所述针尖可选自金针尖、银针尖、钨针尖、铂铱针尖、氮化硅针尖等中的一种;
在步骤2)中,所述在针尖表面包覆一层壳层的具体方法可为:将步骤1)制备的针尖插入不锈钢底座中,再放入预先加热到160°的原子层沉积系统的反应腔内,交替地通入两个脉冲的硅源和一个脉冲的水源,硅源和水源脉冲后分别通入惰性气体冲洗,源瓶温度设置为25°~45°,硅源脉冲时间0.2~0.5s,惰性气体吹扫5~20s,水源脉冲时间0.1~0.5s,惰性气体吹扫5~20s,25个循环即可沉积2nm厚度的SiO2;所述惰性气体可采用氮气、氩气、氦气等中的一种;
所述在针尖表面包覆一层壳层可采用原子层沉积(ALD)、等离子体增强原子层沉积(PEALD)、化学气相沉积(CVD)或等离子体增强化学气相沉积(PECVD)等技术在针尖表面包覆一层不同厚度且致密、均匀的壳层;
所述壳层可选自氧化物壳层、氮化物壳层、硫化物壳层、氟化物壳层、金属壳层等中的一种;所述氧化物壳层可选自二氧化硅壳层、三氧化二铝壳层、二氧化钛壳层等中的一种;所述氮化物壳层可选自氮化硅壳层、氮化钛壳层、氮化铝壳层等中的一种;所述硫化物壳层可选自硫化锌壳层、硫化钙壳层等中的一种;所述氟化物壳层可选自氟化锌壳层、氟化锶壳层等中的一种;所述金属壳层可选自铂壳层、铱壳层、钯壳层、钨壳层等中的一种;
所述二氧化硅壳层可采用前驱体三二甲氨基硅烷(TDMAS,沉积SiO2),所述三氧化二铝壳层可采用前驱体三甲基铝(TMA,沉积Al2O3),所述二氧化钛壳层可采用前驱体四氯化钛(TiCl4,沉积TiO2)。
在步骤3)中,所述高聚物可选自聚甲基苯乙烯、指甲油、石蜡等中的一种。
在包覆了一层惰性壳层针尖的尖端以外部分用聚甲基苯乙烯热熔胶进一步绝缘包封,以隔绝在电化学体系中法拉第电流的干扰:将聚甲基苯乙烯热熔胶加热融化至呈透明状时,把针尖由下向上插入融化后的聚甲基苯乙烯中停留一段时间使针尖与聚甲基苯乙烯达到热平衡并均匀接触后,再将针尖继续向上穿过聚甲基苯乙烯层,融化的聚甲基苯乙烯由于重力作用会向下流淌,因此针尖的最末端是裸露的。
与传统的方法相比,本发明具有以下突出的优点和技术效果:
1)采用原子层沉积技术,使用不同的源前驱体,可以在针尖表面包覆不同的惰性壳层,如氧化物、氮化物、氟化物、硫化物、金属等。
2)控制不同的源前驱体的循环圈数可以精确的控制壳层的厚度。
3)采用双重包覆的方法,可以避免溶液中非分析物分子吸附在针尖上产生干扰的信号,也可以隔绝法拉第电流的干扰,可以应用到电化学针尖增强拉曼光谱、电化学扫描隧道显微镜和扫描电化学显微镜中。
4)该方法的普适性好,可以适用于其它针尖的包覆,如银针尖、AFM针尖、铂铱针尖,对于银针尖,还可以防止银针尖的氧化。
5)该方法的制备方法简单,可适用于大批量的生产。
附图说明
图1为包覆2nm厚度二氧化硅(a)、三氧化二铝(b)、二氧化钛(c)壳层金针尖的高倍透射电镜图。
图2为包覆5nm(a)、10nm(b)、20nm(c)厚度二氧化钛壳层金针尖的高倍透射电镜图。
图3为金针尖在10mM K3Fe(CN)6+0.5M KCl溶液中的循环伏安图。
图4为包覆二氧化硅壳层(2nm)及聚甲基苯乙烯热熔胶的金针尖在10mM K3Fe(CN)6+0.5M KCl溶液中的循环伏安图。
图5为分别使用包覆了聚甲基苯乙烯热熔胶的金针尖和包覆二氧化硅壳层(2nm)及聚甲基苯乙烯热熔胶的金针尖在5mM Py+10mM NaClO4溶液中测试组装了4-PBT分子的Au(111)单晶样品得到电化学针尖增强拉曼光谱图。在图5中,曲线a为使用包覆了聚甲基苯乙烯热熔胶的金针尖,曲线b为包覆二氧化硅壳层(2nm)及聚甲基苯乙烯热熔胶的金针尖。
具体实施方式
以下实施例将结合附图对本发明作进一步说明。
实施例1:包覆2nm二氧化硅、三氧化二铝、二氧化钛的具体步骤。将刻蚀好的金针尖插入特制的不锈钢底座中,再放入预先加热到160°(SiO2)、160°(Al2O3)、70°(TiO2)的原子层沉积系统的反应腔内,交替地通入两个脉冲的硅源(或铝源、钛源)和一个脉冲的水源,源和水源脉冲后分别通入一定时间的高纯氮气冲洗,源瓶温度分别为硅源(25°)、铝源(20°)、钛源(20°)、水源(25°),①沉积二氧化硅:硅源脉冲时间0.2s,高纯氮气吹扫5s,水源脉冲时间0.1s,高纯氮气吹扫5s,25个循环即可沉积2nm厚度的二氧化硅。②沉积三氧化二铝:铝源脉冲时间0.1s,高纯氮气吹扫5s,水源脉冲时间0.1s,高纯氮气吹扫10s,25个循环即可沉积2nm厚度的三氧化二铝。③沉积二氧化钛:钛瓶温度设置为20°,水源温度为25°,钛源脉冲时间0.1s,高纯氮气吹扫2s,水源脉冲时间0.1s,高纯氮气吹扫4s,沉积25个循环即可沉积2厚度的二氧化钛。将制备好的针尖粘在铜环上,进行高倍透射电镜的拍摄,得到图1中的a图(2nm SiO2)、图1中的b图(2nm Al2O3)、图1中的c图(2nm TiO2)。说明原子层沉积技术采用不同的源前驱体,可以在针尖上包覆一层不同材料的壳层。
实施例2:包覆5、10、20nm二氧化钛的具体步骤。将刻蚀好的金针尖插入特制的不锈钢底座中,再放入预先加热到70°的原子层沉积系统的反应腔内,交替地通入两个脉冲的钛源和一个脉冲的水源,钛源和水源脉冲后分别通入一定时间的高纯氮气冲洗,钛瓶温度设置为20°,水源温度为25°,钛源脉冲时间0.1s,高纯氮气吹扫2s,水源脉冲时间0.1s,高纯氮气吹扫4s,分别沉积50、134、256个循环即可沉积5、10、20nm厚度的二氧化钛。将制备好的针尖粘在铜环上,进行高倍透射电镜的拍摄,得到图2中的a图、图2中的b图和图2中的c图。说明原子层沉积技术通过控制不同的循环圈数,可以在针尖上包覆一层不同厚度的壳层。
实施例3:将金针尖和2nm二氧化硅壳层及聚甲基苯乙烯热熔胶双重包覆的金针尖进行电化学循环伏安测试。电化学测试用CHI电化学工作站在单室三电极体系的电解池中,对电极为铂丝,参比电极为饱和甘汞电极,工作电极分别为金针尖和双重包覆的金针尖,设置电位区间:-0.1~0.5V,采样间隔:0.0001V,扫速:5mV s-1,在10mM K3Fe(CN)6+0.5M KCl的电解液中进行循环伏安扫描,得到图3和图4。金针尖的循环伏安图(图3)的峰电流大小在微安级,而双重包覆的金针尖的循环伏安图(图4)呈现出微纳电极典型的“S形曲线”,稳态极限电流约为0.77nA,根据稳态电流方程(ilim=4nFDCreff,其中n为电子转移数,F是法拉第常数,D和C分别是氧化还原活性物种的扩散常数和浓度),计算得针尖暴露区域的等效半径279nm,在电化学测试条件下,漏电电流不会干扰隧道电流,可以应用到电化学扫描隧道显微镜、电化学针尖增强拉曼光谱及扫描电化学显微镜中。
实施例4:将聚甲基苯乙烯热熔胶包覆的金针尖和双重包覆(2nm厚度二氧化硅壳层和聚甲基苯乙烯热熔胶包覆)金针尖进行电化学针尖增强拉曼光谱实验。基底为组装了4-PBT分子的Au(111)单晶:将退火处理过的金单晶泡在1mM的4-PBT溶液中浸泡30min,用无水乙醇将表面物理吸附的4-PBT分子冲洗掉,再用高纯氮气吹干。在基于扫描隧道显微镜的拉曼测试系统开展针尖增强拉曼实验,测试条件为采用633nm的激光,功率0.5mW,采谱时间1s。使用仅以热熔胶包覆的金针尖时(图5中的曲线a),能同时测到吡啶(1009cm-1和1034cm-1的两个拉曼特征峰)和4-PBT(1185cm-1、1286cm-1和1603cm-1的三个拉曼特征峰)的拉曼信号,说明溶液中的吡啶分子吸附在金针尖末端,干扰针尖下方基底样品(4-BPT分子)的信号;使用二氧化硅壳层及聚甲基苯乙烯热熔胶双重包覆的金针尖时(图5中的曲线b),只能测到4-PBT的拉曼信号,说明针尖末端包覆的二氧化硅可以有效隔绝溶液物种的吸附,避免溶液物种信号干扰针尖下方基底样品信号。
本发明利用原子层沉积技术(Atomic Layer Deposition,ALD)在针尖表面包覆一层不同厚度且致密、均匀的惰性壳层,如氧化物、氮化物等,壳层厚度可以从几纳米到几十纳米精确可控,再在包覆了壳层的针尖尖端以外部分用高聚物进行进一步绝缘包封。这样双重包覆制备的壳层隔绝针尖,可以隔绝法拉第电流的干扰,也可以避免溶液中污染物分子的吸附,可以应用于复杂环境体系中的电化学针尖增强拉曼光谱或电化学扫描隧道显微镜中,尤其是液相环境和生物体系中,也可以适用于构建生物体系的纳米传感器。

Claims (10)

1.一种双重包覆壳层隔绝针尖的制备方法,其特征在于包括以下步骤:
1)使用电化学刻蚀的方法,制备针尖;
2)在针尖表面包覆一层壳层;
3)将步骤2)包覆壳层的针尖尖端以外部分用高聚物进行二次包封,得双重包覆壳层隔绝针尖。
2.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤1)中,所述电化学刻蚀采用的刻蚀液为无水乙醇和盐酸混合液,无水乙醇和盐酸的体积比可为1︰1。
3.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤1)中,所述电化学刻蚀的方法为:用丝线圈作为对电极,丝线圈与刻蚀液的凹液面齐平,丝线圈插入深度在液面下2~3mm,通过电化学工作站控制刻蚀电压在2.1~2.4V,切断电流为0.00001A,当电流变为0的瞬间,刻蚀完成,依次用无水乙醇和超纯水冲洗针尖表面。
4.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤1)中,所述针尖的长度为1~1.5cm,针尖的直径为0.25mm;所述丝线圈可依次用丙酮、乙醇超声;所述针尖可选自金针尖、银针尖、钨针尖、铂铱针尖、氮化硅针尖中的一种。
5.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤2)中,所述在针尖表面包覆一层壳层的具体方法为:将步骤1)制备的针尖插入不锈钢底座中,再放入预先加热到160°的原子层沉积系统的反应腔内,交替地通入两个脉冲的硅源和一个脉冲的水源,硅源和水源脉冲后分别通入惰性气体冲洗,源瓶温度设置为25°~45°,硅源脉冲时间0.2~0.5s,惰性气体吹扫5~20s,水源脉冲时间0.1~0.5s,惰性气体吹扫5~20s,25个循环即可沉积2nm厚度的SiO2;所述惰性气体可采用氮气、氩气、氦气等中的一种。
6.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤2)中,所述在针尖表面包覆一层壳层采用原子层沉积、等离子体增强原子层沉积、化学气相沉积或等离子体增强化学气相沉积等技术在针尖表面包覆一层不同厚度且致密、均匀的壳层。
7.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤2)中,所述壳层选自氧化物壳层、氮化物壳层、硫化物壳层、氟化物壳层、金属壳层中的一种。
8.如权利要求7所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于所述氧化物壳层选自二氧化硅壳层、三氧化二铝壳层、二氧化钛壳层中的一种;所述氮化物壳层可选自氮化硅壳层、氮化钛壳层、氮化铝壳层中的一种;所述硫化物壳层可选自硫化锌壳层、硫化钙壳层中的一种;所述氟化物壳层可选自氟化锌壳层、氟化锶壳层中的一种;所述金属壳层可选自铂壳层、铱壳层、钯壳层、钨壳层中的一种。
9.如权利要求8所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于所述二氧化硅壳层采用前驱体三二甲氨基硅烷,所述三氧化二铝壳层采用前驱体三甲基铝,所述二氧化钛壳层采用前驱体四氯化钛。
10.如权利要求1所述一种双重包覆壳层隔绝针尖的制备方法,其特征在于在步骤3)中,所述高聚物可选自聚甲基苯乙烯、指甲油、石蜡中的一种。
CN201610896305.4A 2016-10-14 2016-10-14 一种双重包覆壳层隔绝针尖的制备方法 Pending CN106645809A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610896305.4A CN106645809A (zh) 2016-10-14 2016-10-14 一种双重包覆壳层隔绝针尖的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610896305.4A CN106645809A (zh) 2016-10-14 2016-10-14 一种双重包覆壳层隔绝针尖的制备方法

Publications (1)

Publication Number Publication Date
CN106645809A true CN106645809A (zh) 2017-05-10

Family

ID=58855308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610896305.4A Pending CN106645809A (zh) 2016-10-14 2016-10-14 一种双重包覆壳层隔绝针尖的制备方法

Country Status (1)

Country Link
CN (1) CN106645809A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205110A (zh) * 2019-05-05 2019-09-06 厦门大学 孔道限域-壳层隔绝双重保护钙钛矿纳米粒子的制备方法
CN113376097A (zh) * 2021-06-08 2021-09-10 厦门大学 一种纳米级银针尖的高重现性制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414394A (zh) * 2001-10-25 2003-04-30 陈文祺 探针测试卡的探针包覆装置
CN1431694A (zh) * 2002-01-10 2003-07-23 裕沛科技股份有限公司 晶圆级测试卡的探针构造及其制造方法
CN1555489A (zh) * 2001-03-13 2004-12-15 3M 保持弹簧探针的方法和设备
CN1651912A (zh) * 2005-03-24 2005-08-10 厦门大学 一种复合型扫描氯离子敏感微探针及其制备方法
CN1730378A (zh) * 2005-08-04 2006-02-08 上海交通大学 基于二氧化硅薄膜的悬臂梁式点样针尖的集成制造方法
CN101105469A (zh) * 2007-08-03 2008-01-16 厦门大学 一种纳米环-盘电极的制备方法
US7438885B1 (en) * 2003-07-16 2008-10-21 University Of Central Florida Research Foundation, Inc. Synthesis of carbon nanotubes filled with palladium nanoparticles using arc discharge in solution
CN101425449A (zh) * 2007-11-01 2009-05-06 株式会社半导体能源研究所 半导体衬底的制造方法、半导体装置、及电子设备
CN101687385A (zh) * 2005-05-12 2010-03-31 佐治亚科技研究公司 包覆的金属氧化物纳米颗粒及其制备方法
CN101694474A (zh) * 2009-10-22 2010-04-14 浙江大学 一种纳米孔电学传感器
CN101975807A (zh) * 2010-09-09 2011-02-16 天津大学 三维Pt-Pb纳米花针式无酶葡萄糖传感器电极及制备和应用
US20110226069A1 (en) * 2010-03-18 2011-09-22 Korea Research Institute Of Standards And Science Flexible force or pressure sensor array using semiconductor strain gauge, fabrication method thereof and measurement method thereof
CN103323634A (zh) * 2012-03-20 2013-09-25 旺矽科技股份有限公司 高频探针及其探针卡
CN103585004A (zh) * 2013-11-19 2014-02-19 湖北中医药大学 纳米传感针及其制备方法
CN103616367A (zh) * 2013-11-27 2014-03-05 东南大学 一种双重离子响应的sers探针及其制备方法
CN103808968A (zh) * 2014-02-18 2014-05-21 中国科学院化学研究所 用于针尖增强拉曼光谱的金属修饰的afm针尖及其制法
CN104931734A (zh) * 2015-06-18 2015-09-23 厦门大学 一种壳层隔绝金纳米针尖的制备方法
CN105189821A (zh) * 2013-04-18 2015-12-23 崔波 纳米级结构的制造方法及使用该方法制造的纳米级结构
CN105712281A (zh) * 2016-02-18 2016-06-29 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1555489A (zh) * 2001-03-13 2004-12-15 3M 保持弹簧探针的方法和设备
CN1414394A (zh) * 2001-10-25 2003-04-30 陈文祺 探针测试卡的探针包覆装置
CN1431694A (zh) * 2002-01-10 2003-07-23 裕沛科技股份有限公司 晶圆级测试卡的探针构造及其制造方法
US7438885B1 (en) * 2003-07-16 2008-10-21 University Of Central Florida Research Foundation, Inc. Synthesis of carbon nanotubes filled with palladium nanoparticles using arc discharge in solution
CN1651912A (zh) * 2005-03-24 2005-08-10 厦门大学 一种复合型扫描氯离子敏感微探针及其制备方法
CN101687385A (zh) * 2005-05-12 2010-03-31 佐治亚科技研究公司 包覆的金属氧化物纳米颗粒及其制备方法
CN1730378A (zh) * 2005-08-04 2006-02-08 上海交通大学 基于二氧化硅薄膜的悬臂梁式点样针尖的集成制造方法
CN101105469A (zh) * 2007-08-03 2008-01-16 厦门大学 一种纳米环-盘电极的制备方法
CN101425449A (zh) * 2007-11-01 2009-05-06 株式会社半导体能源研究所 半导体衬底的制造方法、半导体装置、及电子设备
CN101694474A (zh) * 2009-10-22 2010-04-14 浙江大学 一种纳米孔电学传感器
US20110226069A1 (en) * 2010-03-18 2011-09-22 Korea Research Institute Of Standards And Science Flexible force or pressure sensor array using semiconductor strain gauge, fabrication method thereof and measurement method thereof
CN101975807A (zh) * 2010-09-09 2011-02-16 天津大学 三维Pt-Pb纳米花针式无酶葡萄糖传感器电极及制备和应用
CN103323634A (zh) * 2012-03-20 2013-09-25 旺矽科技股份有限公司 高频探针及其探针卡
CN105189821A (zh) * 2013-04-18 2015-12-23 崔波 纳米级结构的制造方法及使用该方法制造的纳米级结构
CN103585004A (zh) * 2013-11-19 2014-02-19 湖北中医药大学 纳米传感针及其制备方法
CN103616367A (zh) * 2013-11-27 2014-03-05 东南大学 一种双重离子响应的sers探针及其制备方法
CN103808968A (zh) * 2014-02-18 2014-05-21 中国科学院化学研究所 用于针尖增强拉曼光谱的金属修饰的afm针尖及其制法
CN104931734A (zh) * 2015-06-18 2015-09-23 厦门大学 一种壳层隔绝金纳米针尖的制备方法
CN105712281A (zh) * 2016-02-18 2016-06-29 国家纳米科学中心 一种锥形纳米碳材料功能化针尖及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIAN FENG LI ET AL: "Shell-isolated nanoparticle-enhanced Raman spectroscopy", 《NATURE》 *
JIAN FENG LI ET AL: "Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy", 《NATURE PROTOCOL》 *
冯丽萍 等: "《薄膜技术与应用》", 29 February 2016, 西北工业大学出版社 *
曾智聪: "电化学针尖增强拉曼光谱", 《万方数据知识服务平台》 *
王文静 等: "《晶体硅太阳电池制造技术》", 31 May 2014, 机械工业出版社 *
王迎军: "《生物医用陶瓷材料》", 31 October 2010, 华南理工大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205110A (zh) * 2019-05-05 2019-09-06 厦门大学 孔道限域-壳层隔绝双重保护钙钛矿纳米粒子的制备方法
CN110205110B (zh) * 2019-05-05 2020-07-10 厦门大学 孔道限域-壳层隔绝双重保护钙钛矿纳米粒子的制备方法
CN113376097A (zh) * 2021-06-08 2021-09-10 厦门大学 一种纳米级银针尖的高重现性制备方法

Similar Documents

Publication Publication Date Title
Li et al. Comparison of chemical stability and corrosion resistance of group IV metal oxide films formed by thermal and plasma-enhanced atomic layer deposition
Sartori et al. Laser-induced periodic surface structures (LIPSS) on heavily boron-doped diamond for electrode applications
Wong et al. What a difference a bond makes: the structural, chemical, and physical properties of methyl-terminated Si (111) surfaces
Roth et al. Measurements of electron-transfer rates of charge-storage molecular monolayers on Si (100). Toward hybrid molecular/semiconductor information storage devices
Raja et al. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes
Del Frari et al. Degradation of polydopamine coatings by sodium hypochlorite: A process depending on the substrate and the film synthesis method
Volatron et al. Electron transfer properties of a monolayer of hybrid polyoxometalates on silicon
Decker et al. Electrochemical reversibility of vinylferrocene monolayers covalently attached on H-terminated p-Si (100)
US7553776B2 (en) Patterned functionalized silicon surfaces
Xu et al. Ultra-thin MoO3 film goes wafer-scaled nano-architectonics by atomic layer deposition
Kim et al. Platinum-enhanced electron transfer and surface passivation through ultrathin film aluminum oxide (Al2O3) on Si (111)–CH3 photoelectrodes
CN113325053A (zh) 一种镉离子电化学传感器工作电极及其制备、检测方法和应用
Borisenko et al. An in situ STM and DTS study of the extremely pure [EMIM] FAP/Au (111) Interface
CN106645809A (zh) 一种双重包覆壳层隔绝针尖的制备方法
Rojo et al. Characterization of a conductive carbon film electrode for voltammetry
CN108483389A (zh) 一种银纳米电极及其制备方法
Siegenthaler STM in electrochemistry
Esmaeili et al. A Cd x Zn 1− x S/TiO 2 nanotube array electrode for a highly sensitive and selective nonenzymatic photoelectrochemical glucose sensor
Shalabny et al. Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer
CN105823769A (zh) 一种原位检测的表面增强拉曼基底及制备和循环使用方法
Riskin et al. Cyclic control of the surface properties of a monolayer‐functionalized electrode by the electrochemical generation of Hg nanoclusters
Wang et al. Electrosorption and electrooxidation of CO on Ru (0001)
EP1807551B1 (en) Titanium oxide based hybrid material, respective preparation process and uses
Yagati et al. Electrochemical Scanning Tunneling Microscopy (ECSTM)–From Theory to Future Applications
Bui et al. Free-standing three dimensional graphene incorporated with gold nanoparticles as novel binder-free electrochemical sensor for enhanced glucose detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170821

Address after: Xiamen City, Fujian Province, 361005 South Siming Road No. 422

Applicant after: Xiamen University

Applicant after: Shenzhen Research Institute of Xiamen University

Address before: Xiamen City, Fujian Province, 361005 South Siming Road No. 422

Applicant before: Xiamen University

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510