CN106644083B - 太赫兹材料的偏振光谱特性测量装置及系统 - Google Patents

太赫兹材料的偏振光谱特性测量装置及系统 Download PDF

Info

Publication number
CN106644083B
CN106644083B CN201710100671.9A CN201710100671A CN106644083B CN 106644083 B CN106644083 B CN 106644083B CN 201710100671 A CN201710100671 A CN 201710100671A CN 106644083 B CN106644083 B CN 106644083B
Authority
CN
China
Prior art keywords
detection
subpulse
polarization
sample
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710100671.9A
Other languages
English (en)
Other versions
CN106644083A (zh
Inventor
徐世祥
林庆刚
郑水钦
李玲
蔡懿
曾选科
刘俊敏
陈振宽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201710100671.9A priority Critical patent/CN106644083B/zh
Publication of CN106644083A publication Critical patent/CN106644083A/zh
Application granted granted Critical
Publication of CN106644083B publication Critical patent/CN106644083B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/447Polarisation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1291Generating the spectrum; Monochromators polarised, birefringent

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明所提供的太赫兹材料的偏振光谱特性测量装置或测量系统,包括一片旋光晶体、一聚焦镜、一切割方向为111度的闪锌矿晶体、一脉冲延时器、一宽带1/4波片、一硅片、一非偏振分束器、两只聚焦透镜、二片宽带半波片、二块偏振分束器以及两只平衡探测器。由于光路中引入了旋光晶体,因此只需经过一次时间扫描,即可获得待测样本在不同光谱、不同偏振方向入射情况下的光谱特性;同时,本发明采用切割方向为111度的闪锌矿晶体,可以实现同时在两个垂直方向上的电光取样测量,从而大大提高了测量效率。因此,本发明所提供的装置或系统能够达到高效测量的效果。

Description

太赫兹材料的偏振光谱特性测量装置及系统
技术领域
本发明属于太赫兹测量技术领域,尤其涉及一种太赫兹材料的偏振光谱特性测量装置及系统。
背景技术
太赫兹电磁波段的开发和利用具有重大的科学意义和潜在的应用价值。太赫兹波的频率范围为0.1THz到10THz,由于太赫兹波具有高透视性、高安全性、高光谱分辨率等独特的性质,因此,基于太赫兹波的太赫兹时域光谱技术被广泛应用于物理、化学、材料、生物医学等领域。太赫兹时域光谱技术可以进行太赫兹成像、传感、材料光谱特性检测等。其中,太赫兹材料的偏振光谱特性检测成为近几年来该领域的重要研究内容。
目前,市场上主要是应用常规的台式太赫兹时域光谱仪、或利用多触点光导天线对太赫兹偏振光谱进行测量。但是,太赫兹时域光谱仪在测量时,需要改变入射太赫兹场的偏振方向,并需要经过多次扫描才能完成测量,从而大大影响了测量效率;而利用多触点光导天线对太赫兹偏振光谱进行测量时,主要原理是用于测量相互垂直的太赫兹电场分量,可实现单次测量入射场经待测样品后的偏振态的变化,但不能测量不同入射偏振方向的太赫兹光谱特性,因此,利用多触点光导天线进行的测量,测量范围单一,并且多触点光导天线价格昂贵。
发明内容
本发明提供了一种太赫兹材料的偏振光谱特性测量装置及系统,旨在解决现有的偏振光谱特性测量装置测量效率低下的问题。
本发明是这样实现的,一种太赫兹材料的偏振光谱特性测量装置,所述装置包括:
旋光晶体,用于使入射的太赫兹脉冲产生旋光色散,已产生旋光色散的太赫兹脉冲透射过待测样本而生成携带待测样本光谱信息的太赫兹脉冲,所述携带待测样本光谱信息的太赫兹脉冲入射至聚焦镜;
所述聚焦镜,用于将所述携带待测样本光谱信息的太赫兹脉冲经硅片后聚焦至闪锌矿晶体;
脉冲延时器,用于使入射的探测脉冲产生延时,已延时的探测脉冲入射至宽带1/4波片;
所述宽带1/4波片,用于使所述已延时的探测脉冲转变为圆偏振态的探测脉冲,所述圆偏振态的探测脉冲入射至第一聚焦透镜;
所述第一聚焦透镜,用于将所述圆偏振态的探测脉冲经所述硅片后聚焦至所述闪锌矿晶体;
所述硅片,用于将所述携带待测样本光谱信息的太赫兹脉冲透射至闪锌矿晶体,并将所述圆偏振态的探测脉冲反射至所述闪锌矿晶体;
所述闪锌矿晶体,其切割方向为111°,用于使所述圆偏振态的探测脉冲与所述携带待测样本光谱信息的太赫兹脉冲重合,以实现探测脉冲对所述携带待测样本光谱信息的太赫兹脉冲的探测,已被所述携带待测样本光谱信息的太赫兹脉冲调制后的探测脉冲入射至第二聚焦透镜;
所述第二聚焦透镜,用于使调制后的探测脉冲准直,准直后的探测脉冲透射至非偏振分束器;
所述非偏振分束器,用于将所述准直后的探测脉冲分成第一探测子脉冲与第二探测子脉冲,所述第一探测子脉冲入射至第一宽带半波片,所述第二探测子脉冲入射至第二宽带半波片;
所述第一宽带半波片,用于调整所述第一探测子脉冲的偏振态,已调整偏振态的第一探测子脉冲入射至第一偏振分束器;
所述第一偏振分束器,用于对所述已调整偏振态的第一探测子脉冲进行偏振灵敏分束,已偏振分束的第一探测子脉冲入射至第一平衡探测器;
所述第一平衡探测器,用于对接收的所述已偏振分束的第一探测子脉冲进行偏振灵敏测量,以生成第一探测子脉冲的测量数据,以便基于所述第一探测子脉冲的测量数据得到所述待测样本的偏振光谱特性;
所述第二宽带半波片,用于调整所述第二探测子脉冲的偏振态,已调整偏振态的第二探测子脉冲入射至第二偏振分束器;
所述第二偏振分束器,用于对所述已调整偏振态的第二探测子脉冲进行偏振灵敏分束,已偏振分束的第二探测子脉冲入射至第二平衡探测器;
所述第二平衡探测器,用于对接收的所述已偏振分束的第二探测子脉冲进行偏振灵敏测量,以生成第二探测子脉冲的测量数据,以便基于所述第二探测子脉冲的测量数据得到所述待测样本的偏振光谱特性。
进一步地,将所述测量装置的待测样本放置区域内空置,在没有所述待测样本插入光路的情况下,测量得到不含所述待测样本光谱信息的定标样本测量数据,以便基于所述定标样本测量数据得到所述待测样本的偏振光谱特性。
进一步地,所述第一平衡探测器和所述第二平衡探测器还用于分别与外部系统连接,以将所述第一探测子脉冲的测量数据和所述第二探测子脉冲的测量数据同步输出至外部系统显示或处理。
进一步地,所述硅片为高纯硅片,其两面抛光。
进一步地,所述第一宽带半波片与所述第二宽带半波片分别用于对所述第一探测子脉冲的偏振态和所述第二探测子脉冲的偏振态进行调整,以使所述第一平衡探测器接收的已偏振分束的第一探测子脉冲与所述第二平衡探测器接收的已偏振分束的第二探测子脉冲互相成垂直角度。
进一步地,所述非偏振分束器为50:50的非偏振分束器。
本发明还提供了一种包括上述太赫兹材料的偏振光谱特性测量装置的太赫兹材料的偏振光谱特性测量系统。
本发明与现有技术相比,有益效果在于:
本发明所提供的太赫兹材料的偏振光谱特性测量装置或测量系统,包括一片旋光晶体、一聚焦镜、一切割方向为111度的闪锌矿晶体、一脉冲延时器、一宽带1/4波片、一硅片、一非偏振分束器、两只聚焦透镜、二片宽带半波片、二块偏振分束器以及两只平衡探测器。太赫兹脉冲依次经过旋光晶体、待测样本、聚焦镜、硅片后,与依次经过脉冲延时器、宽带1/4波片、第一聚焦透镜、硅片的探测脉冲在闪锌矿晶体内部重合,以实现探测脉冲对所述携带待测样本光谱信息的太赫兹脉冲的探测。已被所述携带待测样本光谱信息的太赫兹脉冲调制后的探测脉冲经由非偏振分束器被分成两路探测子脉冲,第一探测子脉冲一路依次经过第一宽带半波片以及第一偏振分束器被第一平衡探测器接收,从而生成第一探测子脉冲的测量数据;另一路第二探测子脉冲一路依次经过第二宽带半波片以及第二偏振分束器被第二平衡探测器接收,从而生成第二探测子脉冲的测量数据。最终基于第一探测子脉冲的测量数据、第二探测子脉冲的测量数据得到所述待测样本的偏振光谱特性。本发明由于光路中引入了旋光晶体,因此只需经过一次时间扫描,即可获得待测样本在不同光谱、不同偏振方向入射情况下的光谱特性;同时,本发明采用切割方向为111度的闪锌矿晶体,可以实现同时在两个垂直方向上的电光取样测量,从而大大提高了测量效率。因此,本发明所提供的装置或系统能够达到高效测量的效果。
附图说明
图1是本发明实施例提供的一种太赫兹材料的偏振光谱特性测量装置结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
作为本发明的第一实施例,如图1所示,本发明提供了一种太赫兹材料的偏振光谱特性测量装置。其中,ORD表示旋光晶体、Sample表示待测样本、FM表示聚焦镜、Si表示硅片、ZB表示闪锌矿晶体、TDL表示脉冲延时器、BQW表示宽带1/4波片、L1表示第一聚焦透镜、L2表示第二聚焦透镜、NPS表示非偏振分束器、BHW1表示第一宽带半波片、BHW2表示第二宽带半波片、LP1表示第一偏振分束器、LP2表示第二偏振分束器、BD1表示第一平衡探测器和BD2表示第二平衡探测器。
旋光晶体ORD,用于使入射的太赫兹脉冲产生旋光色散,已产生旋光色散的太赫兹脉冲透射过待测样本Sample而生成携带待测样本光谱信息的太赫兹脉冲,该携带待测样本光谱信息的太赫兹脉冲入射至聚焦镜FM。其中,旋光晶体ORD使入射的太赫兹脉冲产生旋光色散,即完成光谱-偏振编码;
聚焦镜FM,用于将所述携带待测样本光谱信息的太赫兹脉冲经硅片Si后聚焦至闪锌矿晶体ZB。其中,该聚焦镜FM可以采用太赫兹透镜,也可以采用太赫兹聚焦反射镜;
脉冲延时器TDL,用于使入射的探测脉冲产生延时,已延时的探测脉冲入射至宽带1/4波片BQW。设置该脉冲延时器TDL的主要目的是为了使入射的探测脉冲的时间相对于上述的太赫兹脉冲的时间延时,由于探测脉冲时间宽度比太赫兹脉冲时间宽度短得多,因此,该脉冲延时器TDL可改变探测脉冲和太赫兹脉冲的相对时间位置,从而使得探测脉冲可以探测到太赫兹脉冲在不同时间点的信息,每次扫描一个时间点,探测脉冲在闪锌矿晶体ZB处探测到该时间点的太赫兹脉冲信息;
宽带1/4波片BQW,用于使所述已延时的探测脉冲转变为圆偏振态的探测脉冲,该圆偏振态的探测脉冲入射至第一聚焦透镜L1。其中,宽带1/4波片BQW主要是把所述已延时的探测脉冲的线偏振态变为圆偏振态;
第一聚焦透镜L1,用于将所述圆偏振态的探测脉冲经硅片Si后聚焦至闪锌矿晶体ZB;
硅片Si,用于将所述携带待测样本光谱信息的太赫兹脉冲在低损耗的情况下透射至闪锌矿晶体ZB,并将所述圆偏振态的探测脉冲反射至闪锌矿晶体ZB;
闪锌矿晶体ZB,其切割方向为111°,用于使所述圆偏振态的探测脉冲与所述携带待测样本光谱信息的太赫兹脉冲重合,以实现探测脉冲对所述携带待测样本光谱信息的太赫兹脉冲的探测,已被所述携带待测样本光谱信息的太赫兹脉冲调制后的探测脉冲入射至第二聚焦透镜L2。此处,设置闪锌矿晶体ZB的目的主要是为了实现探测脉冲对所述携带待测样本光谱信息的太赫兹脉冲的探测,即实现对太赫兹脉冲光谱的电光取样。
第二聚焦透镜L2,用于使所述调制后的探测脉冲准直,准直后的探测脉冲透射至非偏振分束器NPS;
非偏振分束器NPS,用于将所述准直后的探测脉冲分成第一探测子脉冲S1与第二探测子脉冲S2,第一探测子脉冲S1入射至第一宽带半波片BHW1,第二探测子脉冲S2入射至第二宽带半波片BHW2。在本实施例中,非偏振分束器NPS为50:50的非偏振分束片,用于将所述准直后的探测脉冲等分成第一探测子脉冲S1与第二探测子脉冲S2;
第一宽带半波片BHW1,用于调整第一探测子脉冲S1的偏振态,已调整偏振态的第一探测子脉冲入射至第一偏振分束器LP1;
第一偏振分束器LP1,用于对所述已调整偏振态的第一探测子脉冲进行偏振灵敏分束,已偏振分束的第一探测子脉冲入射至第一平衡探测器BD1;
第一平衡探测器BD1,用于对接收的所述已偏振分束的第一探测子脉冲进行偏振灵敏测量,以生成第一探测子脉冲的测量数据,以便基于所述第一探测子脉冲的测量数据得到待测样本Sample的偏振光谱特性;
第二宽带半波片BHW2,用于调整第二探测子脉冲S2的偏振态,已调整偏振态的第二探测子脉冲入射至第二偏振分束器LP2;
第二偏振分束器LP2,用于对所述已调整偏振态的第二探测子脉冲进行偏振灵敏分束,已偏振分束的第二探测子脉冲入射至第二平衡探测器BD2;
第二平衡探测器BD2,用于对接收的所述已偏振分束的第二探测子脉冲进行偏振灵敏测量,以生成第二探测子脉冲的测量数据,以便基于所述第二探测子脉冲的测量数据得到待测样本Sample的偏振光谱特性。
在对待测样本进行测量之前,应首先将所述测量装置的待测样本放置区域内空置,在没有待测样本Sample插入光路的情况下,测量得到不含所述待测样本光谱信息的定标样本测量数据,以便基于所述定标样本测量数据得到所述待测样本的偏振光谱特性。此处测量得到定标样本测量数据,目的是为了对旋光介质,如旋光晶体ORD的旋光特性进行定标测量。因此,在测量得到定标样本测量数据时,所采用的入射太赫兹脉冲、入射探测脉冲、以及本装置中所包括的其他光学元件的角度、大小等特性应与测量待测样本时的太赫兹脉冲、入射探测脉冲、以及本装置中所包括的其他光学元件的特性设置相同。
通过分别测量有和没有待测样本插入光路的两种情况下,第一平衡探测器BD1和第二平衡探测器BD2得到不同的测量数据结果;并根据第一平衡探测器BD1和第二平衡探测器BD2得到的不同的测量数据结果,即可推算出经过待测样品后太赫兹脉冲的振幅、相位以及偏振信息等数据,从而基于该太赫兹脉冲的振幅、相位以及偏振信息等数据,进一步得到待测样品的偏振光谱特性。
进一步地,第一宽带半波片BHW1与第二宽带半波片BHW2分别用于对第一探测子脉冲S1的偏振态和第二探测子脉冲S2的偏振态进行调整,以使所述第一平衡探测器接收的已偏振分束的第一探测子脉冲与所述第二平衡探测器接收的已偏振分束的第二探测子脉冲互相成垂直角度。
进一步地,第一平衡探测器BD1还用于与外部系统连接,第二平衡探测器BD2还用于与外部系统连接,以将所述第一探测子脉冲的测量数据和所述第二探测子脉冲的测量数据同步输出至外部系统显示或处理。所述外部系统可以为PC电脑等。
进一步地,硅片Si为高纯硅片,其两面抛光。
综上所述,本发明第一实施例通过引入具有旋光色散功能的介质,只需经过一次时间扫描,即可获得待测样本在不同光谱、不同偏振方向入射情况下的光谱特性,因此本发明所提供的装置能够达到高效测量的效果;同时,本发明实施例采用切割方向为111度的闪锌矿晶体替代了传统的切割方向为110度的闪锌矿晶体,可以实现同时在两个垂直方向上的电光取样测量。
作为本发明的第二实施例,如图1所示,本实施例提供了一种太赫兹材料的偏振光谱特性测量装置。
首先,可采用800nm的钛宝石飞秒激光泵浦太赫兹电光晶体、光导开关、或空气等来产生太赫兹脉冲。所产生的太赫兹脉冲可先用一90°离轴抛物面镜进行准直后,再入射至旋光晶体中。该旋光晶体可选择既具备旋光色散特性,又对太赫兹场吸收较弱的石英晶体。待测样本被放置于前述的石英晶体的后面,太赫兹脉冲经待测样本后,可用另一90°离轴抛物面镜进行聚焦,即图中所示FM,其焦点位置在闪锌矿晶体处。其中,该闪锌矿晶体的作用是为了电光取样。在本实施例中,该闪锌矿晶体为切割角度为111度的闪锌矿晶体。
同时,本实施例所用的探测脉冲取自于800nm的钛宝石飞秒激光器的输出脉冲的一小部分。该探测脉冲先经一脉冲时间延时器TDL和一宽带1/4波片BQW后,原来的线偏振状态被调整为圆偏振状态。聚焦透镜L1可采用平凸石英透镜。圆偏振状态的探测脉冲经聚焦透镜L1后也被聚焦于上述切割角度为111度的闪锌矿晶体处。在该闪锌矿晶体内,探测脉冲与太赫兹脉冲在该处空间重合,从而进一步通过扫描时间延时线实现探测脉冲对太赫兹脉冲的探测。
然后,探测脉冲透过闪锌矿晶体,被一50:50的非偏振分束片等分为两子脉冲,分别为S1和S2。S1经过第一宽带半波片BHW1和第一偏振分束器LP1后被第一平衡探测器BD1接收,其中,第一偏振分束器LP1为线偏振器。该第一平衡探测器BD1的输出光强,即第一探测子脉冲的测量数据表达式如下:
其中,Ptot表示探测脉冲的功率,ψ1表示闪锌矿晶体方向与第一偏振分束器的主轴间的夹角,δ1表示闪锌矿晶体方向和第一宽带半波片主轴间的夹角,n表示闪锌矿晶体的折射率、γ41表示闪锌矿晶体的电光系数、L表示闪锌矿晶体的厚度、分别表示相互垂直的两个方向上的太赫兹电场。
同样地,S2经过第二宽带半波片BHW2和第二偏振分束LP2后被第二平衡探测器BD2接收,其中,第二偏振分束器LP2为线偏振器。该第二平衡探测器BD2的输出光强,即第二探测子脉冲的测量数据表达式如下:
其中,Ptot表示探测脉冲的功率,ψ2表示闪锌矿晶体方向与第二偏振分束器的主轴间的夹角,δ2表示闪锌矿晶体方向和第二宽带半波片主轴间的夹角,n表示闪锌矿晶体的折射率、γ41表示闪锌矿晶体的电光系数、L表示闪锌矿晶体的厚度、分别表示相互垂直的两个方向上的太赫兹电场。
通过调整第一宽带半波片和第二宽带半波片,使得cos(2ψ1-4δ1)=±1、以及sin(2ψ2-4δ2)=±1,可以同时测量并依据同时测量得到的两个垂直方向的太赫兹场时间波形,根据需要将该时间波形进行傅里叶变换,即可得到不同待测太赫兹材料的偏振光谱的振幅、相位以及偏振变化。
当上述cos(2ψ1-4δ1)=+1或cos(2ψ1-4δ1)=-1时,sin(2ψ2-4δ2)=0;同样,sin(2ψ1-4δ1)=+1或sin(2ψ1-4δ1)=-1时,cos(2ψ2-4δ2)=0。因此,通过分别调整第一宽带半波片和第二宽带半波片,使得两路光分别满足上述两种情况,就可同时分别测量可以理解为如下:
闪锌矿晶体方向与第一偏振分束器的主轴间的夹角ψ1,通过转动第一宽带半波片调整δ1,使得cos(2ψ1-4δ1)=±1,即2ψ1-4δ1=0或2ψ1-4δ1=π,从第一探测子脉冲的测量数据即可得到的波形。
同时,闪锌矿晶体方向与第二偏振分束器的主轴间的夹角ψ2,通过转动第二宽带半波片调整δ2,使得cos(2ψ2-4δ2)=0,即2ψ1-4δ1=π/2或2ψ1-4δ1=-π/2,从第二探测子脉冲的测量数据即可得到的波形。
也就是通过分别转动第一宽带半波片和第二宽带半波片,使得两路光同时各自满足上述两种情况,就可以分别测量
综上所述,本发明第二实施例通过引入具有旋光色散功能的介质,只需经过一次时间扫描,即可获得待测样本在不同光谱、不同偏振方向入射情况下的光谱特性,因此本发明所提供的装置能够达到高效测量的效果;同时,本发明实施例采用切割方向为111度的闪锌矿晶体替代了传统的切割方向为110度的闪锌矿晶体,可以实现同时在两个垂直方向上的电光取样测量。
作为本发明的第三实施例,本发明提供了一种太赫兹材料的偏振光谱特性测量系统,所述系统包括上述太赫兹材料的偏振光谱特性测量装置内所包含的所有元件,以及具有上述光谱相位干涉装置所具有的功能,在此处不详加赘述。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种太赫兹材料的偏振光谱特性测量装置,其特征在于,所述装置包括:
旋光晶体,用于使入射的太赫兹脉冲产生旋光色散,已产生旋光色散的太赫兹脉冲透射过待测样本而生成携带待测样本光谱信息的太赫兹脉冲,所述携带待测样本光谱信息的太赫兹脉冲入射至聚焦镜;
所述聚焦镜,用于将所述携带待测样本光谱信息的太赫兹脉冲经硅片后聚焦至闪锌矿晶体;
脉冲延时器,用于使入射的探测脉冲产生延时,已延时的探测脉冲入射至宽带1/4波片;
所述宽带1/4波片,用于使所述已延时的探测脉冲转变为圆偏振态的探测脉冲,所述圆偏振态的探测脉冲入射至第一聚焦透镜;
所述第一聚焦透镜,用于将所述圆偏振态的探测脉冲经所述硅片后聚焦至所述闪锌矿晶体;
所述硅片,用于将所述携带待测样本光谱信息的太赫兹脉冲透射至闪锌矿晶体,并将所述圆偏振态的探测脉冲反射至所述闪锌矿晶体;
所述闪锌矿晶体,其切割方向为111°,用于使所述圆偏振态的探测脉冲与所述携带待测样本光谱信息的太赫兹脉冲重合,以实现探测脉冲对所述携带待测样本光谱信息的太赫兹脉冲的探测,已被所述携带待测样本光谱信息的太赫兹脉冲调制后的探测脉冲入射至第二聚焦透镜;
所述第二聚焦透镜,用于使所述调制后的探测脉冲准直,准直后的探测脉冲透射至非偏振分束器;
所述非偏振分束器,用于将所述准直后的探测脉冲分成第一探测子脉冲与第二探测子脉冲,所述第一探测子脉冲入射至第一宽带半波片,所述第二探测子脉冲入射至第二宽带半波片;
所述第一宽带半波片,用于调整所述第一探测子脉冲的偏振态,已调整偏振态的第一探测子脉冲入射至第一偏振分束器;
所述第一偏振分束器,用于对所述已调整偏振态的第一探测子脉冲进行偏振灵敏分束,已偏振分束的第一探测子脉冲入射至第一平衡探测器;
所述第一平衡探测器,用于对接收的所述已偏振分束的第一探测子脉冲进行偏振灵敏测量,以生成第一探测子脉冲的测量数据,以便基于所述第一探测子脉冲的测量数据得到所述待测样本的偏振光谱特性;
所述第二宽带半波片,用于调整所述第二探测子脉冲的偏振态,已调整偏振态的第二探测子脉冲入射至第二偏振分束器;
所述第二偏振分束器,用于对所述已调整偏振态的第二探测子脉冲进行偏振灵敏分束,已偏振分束的第二探测子脉冲入射至第二平衡探测器;
所述第二平衡探测器,用于对接收的所述已偏振分束的第二探测子脉冲进行偏振灵敏测量,以生成第二探测子脉冲的测量数据,以便基于所述第二探测子脉冲的测量数据得到所述待测样本的偏振光谱特性;
其中,所述第一宽带半波片具体用于:通过转动以调整所述第一探测子脉冲的偏振态,以使cos(2ψ1-4δ1)=±1;其中,ψ1表示所述闪锌矿晶体方向与所述第一偏振分束器的主轴间的夹角,δ1表示所述闪锌矿晶体方向和所述第一宽带半波片主轴间的夹角;
所述第二宽带半波片具体用于:通过转动以调整所述第二探测子脉冲的偏振态,以使cos(2ψ2-4δ2)=0;其中,ψ2表示所述闪锌矿晶体方向与所述第二偏振分束器的主轴间的夹角,δ2表示所述闪锌矿晶体方向和所述第二宽带半波片主轴间的夹角。
2.如权利要求1所述的测量装置,其特征在于,将所述测量装置的待测样本放置区域内空置,在没有所述待测样本插入光路的情况下,测量得到不含所述待测样本光谱信息的定标样本测量数据,以便基于所述定标样本测量数据得到所述待测样本的偏振光谱特性。
3.如权利要求1所述的测量装置,其特征在于,所述第一平衡探测器和所述第二平衡探测器还用于分别与外部系统连接,以将所述第一探测子脉冲的测量数据和所述第二探测子脉冲的测量数据同步输出至外部系统显示或处理。
4.如权利要求1所述的测量装置,其特征在于,所述硅片为高纯硅片,其两面抛光。
5.如权利要求1所述的测量装置,其特征在于,所述第一宽带半波片与所述第二宽带半波片分别用于对所述第一探测子脉冲的偏振态和所述第二探测子脉冲的偏振态进行调整,以使所述第一平衡探测器接收的已偏振分束的第一探测子脉冲与所述第二平衡探测器接收的已偏振分束的第二探测子脉冲互相成垂直角度。
6.如权利要求1所述的测量装置,其特征在于,所述非偏振分束器为50:50的非偏振分束器。
7.一种太赫兹材料的偏振光谱特性测量系统,其特征在于,所述系统包括如权利要求1-6中任一项所述的太赫兹材料的偏振光谱特性测量装置。
CN201710100671.9A 2017-02-23 2017-02-23 太赫兹材料的偏振光谱特性测量装置及系统 Expired - Fee Related CN106644083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710100671.9A CN106644083B (zh) 2017-02-23 2017-02-23 太赫兹材料的偏振光谱特性测量装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710100671.9A CN106644083B (zh) 2017-02-23 2017-02-23 太赫兹材料的偏振光谱特性测量装置及系统

Publications (2)

Publication Number Publication Date
CN106644083A CN106644083A (zh) 2017-05-10
CN106644083B true CN106644083B (zh) 2018-05-29

Family

ID=58846485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710100671.9A Expired - Fee Related CN106644083B (zh) 2017-02-23 2017-02-23 太赫兹材料的偏振光谱特性测量装置及系统

Country Status (1)

Country Link
CN (1) CN106644083B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107233076B (zh) * 2017-05-24 2018-02-23 西北核技术研究所 一种介入式在体实时肿瘤成像系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303574A (ja) * 2001-04-04 2002-10-18 Tochigi Nikon Corp テラヘルツ光装置及びこれの調整方法
CN201540244U (zh) * 2009-09-18 2010-08-04 深圳大学 一种用于测量太赫兹光脉冲的电光取样装置
CN102496834A (zh) * 2011-11-18 2012-06-13 电子科技大学 一种自由空间太赫兹波源的结构设计方法
CN102798608A (zh) * 2012-08-17 2012-11-28 中国计量学院 利用波形重建技术测量水溶性蛋白类药物太赫兹介电谱的方法
CN105067556A (zh) * 2015-08-17 2015-11-18 绍兴文理学院 一种快速检测生物液态样品的光学装置及光学方法
CN105841816A (zh) * 2016-04-18 2016-08-10 深圳市太赫兹系统设备有限公司 太赫兹时域光谱系统
CN206514951U (zh) * 2017-02-23 2017-09-22 深圳大学 太赫兹材料的偏振光谱特性测量装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559650B2 (ja) * 2001-03-22 2010-10-13 シチズンホールディングス株式会社 旋光度測定装置及び旋光度測定方法
US20080014580A1 (en) * 2003-04-17 2008-01-17 Alfano Robert R Detection of biological molecules using THz absorption spectroscopy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303574A (ja) * 2001-04-04 2002-10-18 Tochigi Nikon Corp テラヘルツ光装置及びこれの調整方法
CN201540244U (zh) * 2009-09-18 2010-08-04 深圳大学 一种用于测量太赫兹光脉冲的电光取样装置
CN102496834A (zh) * 2011-11-18 2012-06-13 电子科技大学 一种自由空间太赫兹波源的结构设计方法
CN102798608A (zh) * 2012-08-17 2012-11-28 中国计量学院 利用波形重建技术测量水溶性蛋白类药物太赫兹介电谱的方法
CN105067556A (zh) * 2015-08-17 2015-11-18 绍兴文理学院 一种快速检测生物液态样品的光学装置及光学方法
CN105841816A (zh) * 2016-04-18 2016-08-10 深圳市太赫兹系统设备有限公司 太赫兹时域光谱系统
CN206514951U (zh) * 2017-02-23 2017-09-22 深圳大学 太赫兹材料的偏振光谱特性测量装置

Also Published As

Publication number Publication date
CN106644083A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US6504612B2 (en) Electromagnetic wave analyzer
CN101666626B (zh) 一种椭偏测量的方法及其装置
CN106248616B (zh) 太赫兹全偏振态检测光谱仪
CN107782694A (zh) 太赫兹时域光谱全极化电磁散射测量系统及获取方法
EP1271115A3 (en) Polarization analyzing apparatus and method for polarization analysis
CN109115690A (zh) 实时偏振敏感的太赫兹时域椭偏仪及光学常数测量方法
CN106441580A (zh) 可变角度入射同时测透射和反射的太赫兹时域光谱仪
JP6632059B2 (ja) デュアルコム分光法を用いた偏光計測装置及び偏光計測方法
CN206514951U (zh) 太赫兹材料的偏振光谱特性测量装置
US7609978B2 (en) Interferometric polarization control
CN108332945A (zh) 一种光栅衍射效率测试系统及方法
JP2015117964A (ja) テラヘルツ分光システム
CN105444882B (zh) 实现自定标功能的八通道辐射计
CN106644083B (zh) 太赫兹材料的偏振光谱特性测量装置及系统
JP2017211182A (ja) 光学解析装置及び光学解析方法
CN107219191B (zh) 一种基于傅里叶变换的斜入射光反射差装置
CN108931495A (zh) 太赫兹时域光谱同步测量系统与方法
US11105737B2 (en) Spectroscopic analysis device
CN208847653U (zh) 一种实时偏振敏感的太赫兹时域椭偏仪
CN208026605U (zh) 一种小型化的太赫兹时域光谱仪装置
JP3533651B1 (ja) 時間分解・非線形複素感受率測定装置
CN108680500A (zh) 一种小型化的太赫兹时域光谱仪装置及分析方法
US6721050B2 (en) Method and device for the spectral analysis of light
Genzel et al. A dispersive polarising MM-wave interferometer
JP5700527B2 (ja) 分析装置および分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180529

Termination date: 20200223

CF01 Termination of patent right due to non-payment of annual fee