CN106637508B - 一种Li掺杂NiO有序纳米管气敏材料及其制备方法 - Google Patents

一种Li掺杂NiO有序纳米管气敏材料及其制备方法 Download PDF

Info

Publication number
CN106637508B
CN106637508B CN201610896094.4A CN201610896094A CN106637508B CN 106637508 B CN106637508 B CN 106637508B CN 201610896094 A CN201610896094 A CN 201610896094A CN 106637508 B CN106637508 B CN 106637508B
Authority
CN
China
Prior art keywords
nio
ordered nano
preparation
spinning solution
tube gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610896094.4A
Other languages
English (en)
Other versions
CN106637508A (zh
Inventor
王娇
刘少辉
郝好山
赵利敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Institute of Engineering
Original Assignee
Henan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Engineering filed Critical Henan Institute of Engineering
Priority to CN201610896094.4A priority Critical patent/CN106637508B/zh
Publication of CN106637508A publication Critical patent/CN106637508A/zh
Application granted granted Critical
Publication of CN106637508B publication Critical patent/CN106637508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种Li掺杂NiO有序纳米管气敏材料及其制备方法,采用同轴静电纺丝法制备Li掺杂NiO有序纳米管气敏材料,以NiCO3和Li2CO3为原料,将原料溶解在稀盐酸中,加入高聚物PVP制备出壳层纺丝液,将PVP将加入到酒精中,制备出芯层纺丝液;将壳层纺丝液和芯层纺丝液进行静电纺丝,收集装置由绝缘基板和平行布设于绝缘基板上的两块导体金属板组成,将得到的样品放入马弗炉中进行热处理,得到Li掺杂NiO有序纳米管气敏材料。制备的该纳米管气敏材料具有优异的气敏性能。该方法制备的Li掺杂NiO纳米管气敏材料具有成本低、样品制备速度快、制备的样品气敏性能优异等优点,适合大规模生产。

Description

一种Li掺杂NiO有序纳米管气敏材料及其制备方法
技术领域
本发明属于功能材料制备技术领域,尤其是涉及一种Li掺杂NiO有序纳米管气敏材料及其制备方法。
背景技术
近年来,用于检测有毒和易燃气体的半导体氧化物气敏传感器具有高敏感,快速响应和恢复,稳定性好以及低成本等优点。常见的半导体氧化物有SnO2、TiO2、ZnO等,而NiO作为一种宽带隙p型半导体材料,其独特的电学、磁学、催化特性和气敏特性,得到人们的重视。
NiO禁带宽度在3.7eV以上,化学计量比的NiO是Mott-Hubbard型绝缘体,其室温电导率小于l0-13S/cm,当材料中存在Ni2+空位或者引入Li+离子时将转变成为p型宽带隙半导体。纳米NiO对外界温度、光、湿度、气体等十分敏感,外界条件的改变能迅速引起NiO表面、界面离子价态、电子输运的变化,利用纳米NiO制备出的传感器而且具有响应快、稳定性好等特点。关于NiO气敏的研究均集中在零维纳米级粉体的方面,合成的NiO基p型稀磁半导体纳米材料形貌有纳米颗粒、纳米线等形貌,而一定取向排列的纳米管与块体材料相比,由于其特殊的尺寸与结构,往往具有取向排列、多孔结构,比表面积大、长径比大的等优点,更有利于对气体的吸附,可以有效提高对气体的灵敏度,同时可以大幅缩小气敏器件体积、提高性能,便于集成化制造。
目前制备一维NiO纳米管材料的方法有很多种,包括模板法,水热法等。而模版法存在制备的样品纯度不高、产量比较低等缺点,水热法存在设备要求高、反应周期长、制备的粉体不具有取向排列等缺点,因此很有必要探索一种新的合成Li掺杂NiO有序纳米管气敏材料的方法。
而高压静电纺丝法是指利用无机盐的高分子溶液在梯度电场作用下,以纺丝的形式在接收板上得到复合纳米纤维,复合纳米纤维再经过高温退火之后就可以得到无机纳米纤维。高压静电纺丝法已经制备出了多种无机纳米纤维材料,材料具有比表面积大,长径比大,纤维表面呈现多孔状,并且具有掺杂精确,过程可控,耗能低,操作方便等优点,已经成为制备一维纳米材料的重要途径。多人采用静电纺丝法制备了NiO纳米纤维,而目前采用静电纺丝法合成Li掺杂NiO有序纳米管气敏材料的资料鲜有报道。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷,提供一种简单易行、成本低、方便快速、样品纯度高的Li掺杂NiO有序纳米管气敏材料的制备方法。
实现本发明的技术方案是:一种Li掺杂NiO有序纳米管气敏材料的制备方法,具体步骤如下:
(1)以NiCO3和Li2CO3为原料,NiCO3与Li2CO3的物质的量之比为0.99:0.01-0.9:0.1,将原料溶解在体积分数为5%-10%的稀盐酸中,加入高聚物PVP制备出壳层纺丝液,高聚物PVP与稀盐酸的质量比为1:2-4;
(2)将高聚物PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:2-3,制备出芯层纺丝液;
(3)将步骤(1)中的壳层纺丝液和步骤(2)中的芯层纺丝液进行静电纺丝得到样品,收集装置由绝缘基板和平行布设于绝缘基板上的两块导体金属板组成,两块导体金属板之间的距离为5mm-20mm,将得到的样品放入马弗炉中进行热处理,得到Li掺杂NiO有序纳米管气敏材料。
所述步骤(3)中两块导体金属板材质为铁、镍等金属材料,绝缘基板的材料为聚四氟乙烯、聚氯乙烯、橡胶等绝缘材料。
所述步骤(3)中热处理条件是:升温速率为1-3℃/min,在600-900℃保温1-4小时。
所述Li掺杂NiO有序纳米管气敏材料可用于作为检测甲醛、酒精等气体的半导体材料。
本发明的有益效果是:提供了Li掺杂NiO有序纳米管气敏材料及其制备方法,采用同轴静电纺丝法和由绝缘基板和平行布设于绝缘基板上的两块导体金属板组成的收集装置,得到Li掺杂NiO有序纳米管气敏材料。制备的Li掺杂NiO有序纳米管气敏材料具有比表面积大,长径比大,有一定的取向性,并且具有掺杂精确,过程可控,耗能低,操作方便等优点。采用以NiCO3和Li2CO3为原料,成本较低。
附图说明
图1为实施例1制备的Ni0.99Li0.01O纳米管的X射线衍射(XRD)图谱;
图2为实施例1制备的Ni0.99Li0.01O纳米管的透射电子显微镜(TEM)图谱;
图3为实施例1制备的Ni0.99Li0.01O有序纳米管的扫描电子显微镜(SEM)图谱;
图4为实施例1制备的Ni0.99Li0.01O纳米管的气敏特性。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
以NiCO3和Li2CO3为原料,按照Ni元素、Fe元素物质的量之比为0.99:0.01称量样品,以体积分数5%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP与稀盐酸质量之比为1:2,制备出壳层纺丝液,将高聚物PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:2,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。
收集装置由聚四氟乙烯绝缘基板和平行布设于绝缘基板上的两块铜板组成,两块导体收集板之间的距离为5mm,将得到的样品放入马弗炉中进行热处理,升温速率为1℃/min,在600℃保温4小时,得到Li掺杂NiO有序纳米管气敏材料。
该实施例制备的Ni0.99Li0.01O纳米管的X射线衍射(XRD)图谱如图1所示。从图中可以看出,在2θ=37.2°,43.4°,62.9°,75.2°和79.4°处出现的分别对应于立方相NiO(111)、(200)、(220)、(311)和(222)晶面的五个特征峰外。不存在与Li相关的其他物相的衍射峰,这表明在Li掺杂量较低时,制备出的Ni0.99Li0.01O的晶体仍然具有立方晶相结构,Li离子很好地进入了NiO的晶格,而不是形成新的杂相。
该实施例制备的Ni0.99Li0.01O纳米管的透射电子显微镜(TEM)图谱如图2所示,从图中可以看出最终合成的Ni0.99Fe0.01O纳米管,外形为管状。制备的Ni0.99Li0.01O纳米管的扫描电子显微镜(SEM)图如图3所示,从图中可以看出Ni0.99Li0.01O纳米管有一定的取向。
如图4所示实例1制备的Ni0.99Li0.01O纳米管对不同浓度的HCHO气体的灵敏度曲线。随着HCHO气体浓度的提高,厚膜气敏元件的灵敏度也相应增加,Ni0.99Li0.01O纳米管表现出良好的HCHO气敏性能。
实施例2
以NiCO3和Li2CO3为原料,按照Ni元素、Li元素摩尔比为0.9:0.1称量样品,以体积分数10%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP与稀盐酸质量之比为1:4,制备出壳层纺丝液,将PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:3,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。收集装置由橡胶绝缘基板和平行布设于绝缘基板上的两块铝板组成,两块导体收集板之间的距离为20mm,将得到的样品放入马弗炉中进行热处理,升温速率为3℃/min,在900℃保温1小时,得到Li掺杂NiO有序纳米管气敏材料。
实施例3
以NiCO3和Li2CO3为原料,按照Ni元素、Li元素摩尔比为0.95:0.15称量样品,以体积分数8%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP与稀盐酸质量之比为1:3,制备出壳层纺丝液,将高聚物PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:2.5,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。收集装置由聚氯乙烯绝缘基板和平行布设于绝缘基板上的两块铁板组成,两块导体收集板之间的距离为15mm,将得到的样品放入马弗炉中进行热处理,升温速率为2℃/min,在800℃保温1小时,得到Li掺杂NiO有序纳米管气敏材料。

Claims (4)

1.一种Li掺杂NiO有序纳米管气敏材料的制备方法,其特征在于步骤如下:
(1)以NiCO3和Li2CO3为原料,NiCO3与Li2CO3的物质的量之比为0.99:0.01-0.9:0.1,将原料溶解在体积分数为5%-10%的稀盐酸中,加入高聚物PVP制备出壳层纺丝液,高聚物PVP与稀盐酸的质量比为1:2-4;
(2)将高聚物PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:2-3,制备出芯层纺丝液;
(3)将步骤(1)中的壳层纺丝液和步骤(2)中的芯层纺丝液进行静电纺丝,静电纺丝的收集装置由绝缘基板和平行布设于绝缘基板上的两块导体金属板组成,两块导体金属板之间的距离为5mm-20mm,将收集到的样品放入马弗炉中进行热处理,得到Li掺杂NiO有序纳米管气敏材料。
2.根据权利要求1所述的Li掺杂NiO有序纳米管气敏材料的制备方法,其特征在于:所述步骤(3)中导体金属板材质为铁、镍金属材料,绝缘基板的材料为聚四氟乙烯、聚氯乙烯、橡胶绝缘材料。
3.根据权利要求1所述的Li掺杂NiO有序纳米管气敏材料的制备方法,其特征在于:所述步骤(3)中热处理条件是:升温速率为1-3℃/min,在600-900℃保温1-4小时。
4.权利要求1所述的Li掺杂NiO有序纳米管气敏材料的应用,其特征在于:所述Li掺杂NiO有序纳米管气敏材料作为检测甲醛、酒精气体的半导体材料。
CN201610896094.4A 2016-10-14 2016-10-14 一种Li掺杂NiO有序纳米管气敏材料及其制备方法 Active CN106637508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610896094.4A CN106637508B (zh) 2016-10-14 2016-10-14 一种Li掺杂NiO有序纳米管气敏材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610896094.4A CN106637508B (zh) 2016-10-14 2016-10-14 一种Li掺杂NiO有序纳米管气敏材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106637508A CN106637508A (zh) 2017-05-10
CN106637508B true CN106637508B (zh) 2018-07-27

Family

ID=58855336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610896094.4A Active CN106637508B (zh) 2016-10-14 2016-10-14 一种Li掺杂NiO有序纳米管气敏材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106637508B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031512B (zh) * 2019-04-28 2021-09-07 湖州师范学院 一种单个粒子敏感气体传感器及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786596A (zh) * 2010-03-04 2010-07-28 长春理工大学 铕离子掺杂铝酸镧多晶纳米纤维及其制备方法
CN102041583A (zh) * 2010-11-19 2011-05-04 长春理工大学 一种制备掺铕氟氧化钇纳米纤维的方法
CN102493022A (zh) * 2011-11-24 2012-06-13 长春理工大学 一种制备掺铕钇铝石榴石纳米带的方法
CN103305964A (zh) * 2013-06-24 2013-09-18 清华大学 NiO基稀磁半导体纳米纤维及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786596A (zh) * 2010-03-04 2010-07-28 长春理工大学 铕离子掺杂铝酸镧多晶纳米纤维及其制备方法
CN102041583A (zh) * 2010-11-19 2011-05-04 长春理工大学 一种制备掺铕氟氧化钇纳米纤维的方法
CN102493022A (zh) * 2011-11-24 2012-06-13 长春理工大学 一种制备掺铕钇铝石榴石纳米带的方法
CN103305964A (zh) * 2013-06-24 2013-09-18 清华大学 NiO基稀磁半导体纳米纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Preparation of Li(Ni0.5Mn1.5)O4 by polymer precursor method and its electrochemical properties;M.V. Reddya et al.;《Electrochimica Acta》;20121231;第62卷;第269-275页 *
高比表面积氧化镍纳米管的制备及形成机理的研究;李辰轩 等;《科学中国人》;20150930;第30页 *

Also Published As

Publication number Publication date
CN106637508A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
Wang et al. Design of morphology-controlled and excellent electromagnetic wave absorption performance of sheet-shaped ZnCo2O4 with a special arrangement
Jia et al. One-pot template-free synthesis and highly ethanol sensing properties of ZnSnO3 hollow microspheres
Xu et al. The advances of Co3O4 as gas sensing materials: A review
Yang et al. Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: experimental and theoretical studies
Guan et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures
Chen et al. An evolution from 3D face-centered-cubic ZnSnO3 nanocubes to 2D orthorhombic ZnSnO3 nanosheets with excellent gas sensing performance
Zhang et al. Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde
CN109830661B (zh) 硒掺杂MXene复合纳米材料及其制备方法和应用
Sun et al. Conductometric n-butanol gas sensor based on Tourmaline@ ZnO hierarchical micro-nanostructures
Zhou et al. Environmentally friendly room temperature synthesis and humidity sensing applications of nanostructured Bi2O2CO3
Feng et al. Highly efficient rapid ethanol sensing based on In2− xNixO3 nanofibers
Guo et al. The enhanced ethanol sensing properties of CNT@ ZnSnO3 hollow boxes derived from Zn-MOF (ZIF-8)
Shah et al. NO2 gas sensing responses of In2O3 nanoparticles decorated on GO nanosheets
Wu et al. Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas-sensing properties
Sun et al. Synthesis and enhanced gas sensing properties of flower-like SnO2 hierarchical structures decorated with discrete ZnO nanoparticles
Zeng et al. Synthesis of multifarious hierarchical flower-like SnO2 and their gas-sensing properties
Zhang et al. Controllable biomolecule-assisted synthesis and gas sensing properties of In2O3 micro/nanostructures with double phases
Hu et al. One–step solvothermal synthesis of 3D tube–globular Dy2O3 nanostructure for ultra–fast response to humidity
Shen et al. Highly sensitive ethanol gas sensor based on In 2 O 3 spheres
Jia et al. Highly sensitive formaldehyde chemical sensor based on in situ precipitation synthesis of ZnSnO 3 microspheres
Chen et al. Hydrothermal synthesis and hydrogen sensing properties of nanostructured SnO2 with different morphologies
CN103935982B (zh) 石墨烯纳米带的制备方法
Li et al. Synthesis of Sponge‐Like Bi2O3 by Using a Soft/Hard‐Combined Biomembrane Support System for Application as Supercapacitor
Ding et al. Size and morphology dependent gas-sensing selectivity towards acetone vapor based on controlled hematite nano/microstructure (0D to 3D)
Chen et al. Co, N-doped GQDs/SnO 2 mesoporous microspheres exhibit synergistically enhanced gas sensing properties for H 2 S gas detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant