CN106637490A - 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法 - Google Patents

一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法 Download PDF

Info

Publication number
CN106637490A
CN106637490A CN201610838660.6A CN201610838660A CN106637490A CN 106637490 A CN106637490 A CN 106637490A CN 201610838660 A CN201610838660 A CN 201610838660A CN 106637490 A CN106637490 A CN 106637490A
Authority
CN
China
Prior art keywords
chitosan oligosaccharide
graphene
porous
electrically conductive
bacterial fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610838660.6A
Other languages
English (en)
Inventor
王文庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd
Original Assignee
Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd filed Critical Dongguan Lianzhou Intellectual Property Operation and Management Co Ltd
Priority to CN201610838660.6A priority Critical patent/CN106637490A/zh
Publication of CN106637490A publication Critical patent/CN106637490A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明提供一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,包括以下步骤:将壳寡糖经γ射线辐照降解后得到降解的壳寡糖,溶于去离子水中,搅拌至溶解,然后充入氮气,滴加ETA,加热搅拌,得到改性壳寡糖;将氧化石墨烯溶液超声分散均匀,加入聚苯乙烯高聚物,搅拌,再加入改性壳寡糖,搅拌均匀得到纺丝液;将纺丝液经静电纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于还原液中,加热反应,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。本发明制备方法简单,可操控性强,制备的纤维多孔质轻,抗菌导电,机械性能良好。

Description

一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法
技术领域
本发明属于纺织材料技术领域,具体涉及一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法。
背景技术
壳聚糖是迄今为止人们发现的唯一的碱性糖,它资源丰富,来源广泛,绿色无毒,可生物降解,而且具有良好的吸附性、成膜性、吸湿性、亲肤性和抗菌性,而基于壳聚糖降解后生成的壳寡糖其功能性更佳,具有优异的水溶性,抗菌性,吸湿和锁水性能。目前壳聚糖已经在生物医疗、农业、食品、纺织、化工等领域取得了较为广泛的应用,因此,基于壳聚糖降解制备的壳寡糖必然也会很有强大的市场前景。
中国专利CN 103938445A公开的用壳寡糖加工整理生态透氧抗菌口罩的方法,将壳寡糖溶液与植物多糖溶液混合形成整理剂,将针织面料浸渍于整理剂中,固化两次,得到壳寡糖针织面料,经剪裁缝合得到口罩成品。中国专利CN 104532571A公开的一种壳寡糖修饰棉纤维的制备工艺,将环氧氯丙烷与壳寡糖反应形成羟丙基壳寡糖,然后分别用羟丙基壳寡糖和双缩水甘油醚分别对预处理的棉纤维进行处理,得到接枝羟丙基壳寡糖棉纤维的醚化物,再经焙烤得到壳寡糖修饰的棉纤维。中国专利CN 105442353A公开的一种无盐低碱深染性纤维素纤维织物的改性方法及其染色工艺,将壳寡糖与2,3-环氧丙基三甲基氯化铵、丙烯酸羟基酯、阻聚剂和氯化铵反应生产壳寡糖衍生物,将纤维素纤维浸轧与含壳寡糖衍生物的弱碱性整理液中,二浸二轧,水洗烘干得到成品。由上述现有技术可知,目前壳寡糖在纺织方面也有所运用,可以作为原料之一制备形成整理剂对纤维或者织物进行功能化整理,但其运用方面多余壳聚糖的应用类似,没有体现出其更加优异的性能。
发明内容
本发明要解决的技术问题是提供一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法,选用季铵盐改性的小分子壳寡糖、氧化石墨烯和聚苯乙烯作为主要原料,经静电纺丝技术制备形成初纺纤维,再经还原剂处理将氧化石墨烯形成石墨烯泡沫,既而形成多孔导电抗菌纤维。本发明制备方法简单,可操控性强,制备的纤维多孔质轻,抗菌导电,机械性能良好。
为解决上述技术问题,本发明的技术方案是:
一种基于石墨烯和壳寡糖的多孔导电抗菌纤维,所述基于石墨烯和壳寡糖的多孔导电抗菌纤维包括改性石墨烯、改性壳寡糖、高分子聚合物和助剂。
作为上述技术方案的优选,所述助剂为还原剂和溶剂,所述高分子聚合物为聚苯乙烯。
本发明还提供一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,包括以下步骤:
(1)将壳寡糖经γ射线辐照降解后得到降解的壳寡糖,将降解的壳寡糖溶于去离子水中,充分搅拌至溶解,然后充入氮气,滴加ETA,加热搅拌,得到改性壳寡糖;
(2)将氧化石墨烯溶液超声分散均匀,加入聚苯乙烯高聚物,充分搅拌后,再加入步骤(1)制备的改性壳寡糖,搅拌均匀得到纺丝液;
(3)将步骤(2)制备的纺丝液置于静电纺丝装置中,经纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于还原液中,加热反应,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
作为上述技术方案的优选,所述步骤(1)中,γ射线辐照的强度为10-15Gy,时间为5-20min。
作为上述技术方案的优选,所述步骤(1)中,降解的壳寡糖的分子量为200-800。
作为上述技术方案的优选,所述步骤(1)中,降解的壳寡糖、去离子水和ETA的料液比为1g:30-50ml:5-8ml。
作为上述技术方案的优选,所述步骤(1)中,加热搅拌的温度为60-70℃,时间为2-3h。
作为上述技术方案的优选,所述步骤(2)中,纺丝液的组分,按重量份计,包括:氧化石墨烯5-10份、聚苯乙烯20-30份、改性壳寡糖15-25份。
作为上述技术方案的优选,所述步骤(2)中,聚苯乙烯的相对分子质量为30000。
作为上述技术方案的优选,所述步骤(3)中,还原液为水合肼。
与现有技术相比,本发明具有以下有益效果:
(1)本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维中包含壳寡糖,壳寡糖为降解后的壳寡糖分子量更小,水溶性、抗菌性等性能更加优异,而且经季铵盐处理后,表面含有更多的活性基团,有利于与石墨烯和聚苯乙烯之间形成化学键和氢键,促进纺丝液的稳定和纤维的性能的均一稳定。
(2)本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维中包含石墨烯,石墨烯经还原剂处理后会形成石墨烯三维孔洞结构,即为石墨烯泡沫,石墨烯泡沫可以赋予纤维三维孔洞结构,而且赋予纤维导电抗菌、吸附、自清洁等功效。
(3)本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维含有高分子量的聚苯乙烯,高分子量的聚苯乙烯制备的纤维具有超强的机械性能和弹性,能改善静电纺丝纳米纤维机械强度较差的弱点,提高多孔导电抗菌纤维的机械强度。
(4)本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维先由静电纺丝技术制备成纳米纤维,再经还原剂处理形成多孔纤维,该制备方法简便,不需要经过高温烧结等工艺,节能,而且能最大程度的保留原有纤维的性能。
(5)本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维制备方法简单,可操控性强,制备的纤维多孔质轻,抗菌导电,机械性能良好。
具体实施方式
下面将结合具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
实施例1:
(1)将壳寡糖,在10Gy强度下,经γ射线辐照5min得到分子量为800的降解的壳寡糖,将1g的降解的壳寡糖溶于30ml的去离子水中,充分搅拌至溶解,然后充入氮气,以1ml/min的速度滴加5ml的ETA,在60℃下加热搅拌2h,得到改性壳寡糖。
(2)按重量份计,将含5份的氧化石墨烯的溶液超声分散至均匀,加入20份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入15份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在15kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在160℃下加热反应2h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例2:
(1)将壳寡糖,在15Gy强度下,经γ射线辐照20min得到分子量为200的降解的壳寡糖,将1g的降解的壳寡糖溶于50ml的去离子水中,充分搅拌至溶解,然后充入氮气,以3ml/min的速度滴加8ml的ETA,在70℃下加热搅拌3h,得到改性壳寡糖。
(2)按重量份计,将含10份的氧化石墨烯的溶液超声分散至均匀,加入30份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入25份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在20kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在170℃下加热反应3h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例3:
(1)将壳寡糖,在12Gy强度下,经γ射线辐照10min得到分子量为500的降解的壳寡糖,将1g的降解的壳寡糖溶于40ml的去离子水中,充分搅拌至溶解,然后充入氮气,以2ml/min的速度滴加6ml的ETA,在65℃下加热搅拌2.5h,得到改性壳寡糖。
(2)按重量份计,将含8份的氧化石墨烯的溶液超声分散至均匀,加入25份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入20份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在17kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在165℃下加热反应2h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例4:
(1)将壳寡糖,在15Gy强度下,经γ射线辐照5min得到分子量为500的降解的壳寡糖,将1g的降解的壳寡糖溶于35ml的去离子水中,充分搅拌至溶解,然后充入氮气,以1.5ml/min的速度滴加6.5ml的ETA,在60℃下加热搅拌2h,得到改性壳寡糖。
(2)按重量份计,将含6份的氧化石墨烯的溶液超声分散至均匀,加入30份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入15份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在20kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在160℃下加热反应3h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例5:
(1)将壳寡糖,在12Gy强度下,经γ射线辐照10min得到分子量为750的降解的壳寡糖,将1g的降解的壳寡糖溶于45ml的去离子水中,充分搅拌至溶解,然后充入氮气,以2.5ml/min的速度滴加6ml的ETA,在70℃下加热搅拌2h,得到改性壳寡糖。
(2)按重量份计,将含6份的氧化石墨烯的溶液超声分散至均匀,加入25份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入20份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在16kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在160℃下加热反应3h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例6:
(1)将壳寡糖,在15Gy强度下,经γ射线辐照15min得到分子量为700的降解的壳寡糖,将1g的降解的壳寡糖溶于40ml的去离子水中,充分搅拌至溶解,然后充入氮气,以3ml/min的速度滴加7ml的ETA,在70℃下加热搅拌3h,得到改性壳寡糖。
(2)按重量份计,将含10份的氧化石墨烯的溶液超声分散至均匀,加入20份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入15份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在15kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在165℃下加热反应2h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例7:
(1)将壳寡糖,在15Gy强度下,经γ射线辐照5min得到分子量为400的降解的壳寡糖,将1g的降解的壳寡糖溶于50ml的去离子水中,充分搅拌至溶解,然后充入氮气,以1ml/min的速度滴加6ml的ETA,在60℃下加热搅拌2h,得到改性壳寡糖。
(2)按重量份计,将含10份的氧化石墨烯的溶液超声分散至均匀,加入25份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入20份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在20kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在160℃下加热反应3h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
实施例8:
(1)将壳寡糖,在10Gy强度下,经γ射线辐照15min得到分子量为350的降解的壳寡糖,将1g的降解的壳寡糖溶于40ml的去离子水中,充分搅拌至溶解,然后充入氮气,以3ml/min的速度滴加7ml的ETA,在70℃下加热搅拌2h,得到改性壳寡糖。
(2)按重量份计,将含10份的氧化石墨烯的溶液超声分散至均匀,加入20份的相对分子质量为30000的聚苯乙烯高聚物,充分搅拌后,再加入20份的改性壳寡糖,搅拌均匀得到纺丝液。
(3)将纺丝液置于静电纺丝装置中,在20kV下,纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于水合肼还原液中,在160℃下加热反应2.5h,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
经检测,实施例1-8制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维的孔隙率、导电性能、机械性能和抗菌性能的结果如下所示:
由上表可见,本发明制备的基于石墨烯和壳寡糖的多孔导电抗菌纤维孔隙率和机械强度良好,还具有较好的导电和抗菌性能。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种基于石墨烯和壳寡糖的多孔导电抗菌纤维,其特征在于:所述基于石墨烯和壳寡糖的多孔导电抗菌纤维包括改性石墨烯、改性壳寡糖、高分子聚合物和助剂。
2.根据权利要求1所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维,其特征在于:所述助剂为还原剂和溶剂,所述高分子聚合物为聚苯乙烯。
3.一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:包括以下步骤:
(1)将壳寡糖经γ射线辐照降解后得到降解的壳寡糖,将降解的壳寡糖溶于去离子水中,充分搅拌至溶解,然后充入氮气,滴加ETA,加热搅拌,得到改性壳寡糖;
(2)将氧化石墨烯溶液超声分散均匀,加入聚苯乙烯高聚物,充分搅拌后,再加入步骤(1)制备的改性壳寡糖,搅拌均匀得到纺丝液;
(3)将步骤(2)制备的纺丝液置于静电纺丝装置中,经纺丝得到初生的纳米纤维,将初生的纳米纤维浸渍于还原液中,加热反应,取出,真空干燥,得到基于石墨烯和壳寡糖的多孔导电抗菌纤维。
4.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(1)中,γ射线辐照的强度为10-15Gy,时间为5-20min。
5.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(1)中,降解的壳寡糖的分子量为200-800。
6.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(1)中,降解的壳寡糖、去离子水和ETA的料液比为1g:30-50ml:5-8ml。
7.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(1)中,加热搅拌的温度为60-70℃,时间为2-3h。
8.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(2)中,纺丝液的组分,按重量份计,包括:氧化石墨烯5-10份、聚苯乙烯20-30份、改性壳寡糖15-25份。
9.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(2)中,聚苯乙烯的相对分子质量为30000。
10.根据权利要求3所述的一种基于石墨烯和壳寡糖的多孔导电抗菌纤维的制备方法,其特征在于:所述步骤(3)中,还原液为水合肼。
CN201610838660.6A 2016-09-21 2016-09-21 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法 Pending CN106637490A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610838660.6A CN106637490A (zh) 2016-09-21 2016-09-21 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610838660.6A CN106637490A (zh) 2016-09-21 2016-09-21 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法

Publications (1)

Publication Number Publication Date
CN106637490A true CN106637490A (zh) 2017-05-10

Family

ID=58852792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610838660.6A Pending CN106637490A (zh) 2016-09-21 2016-09-21 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN106637490A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029409A (zh) * 2018-11-30 2019-07-19 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
CN112226839A (zh) * 2020-10-16 2021-01-15 武汉智达纺织科技有限公司 一种氧化石墨烯改性聚偏氯乙烯压电织物及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
CN103103628A (zh) * 2013-01-14 2013-05-15 北京大学深圳研究生院 纳米材料及其应用以及纳米材料的制备方法和装置
CN103267786A (zh) * 2013-04-10 2013-08-28 太原理工大学 微型针式无酶葡萄糖传感器电极及其制备方法
CN103611432A (zh) * 2013-12-17 2014-03-05 哈尔滨工业大学 一种聚合物/石墨烯纳米复合膜的制备方法
CN104674383A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 碳纳米纤维气凝胶的静电纺丝构建方法
CN104674384A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 基于静电纺丝技术的三维油水分离材料及其制备方法
CN105063796A (zh) * 2015-07-21 2015-11-18 中国科学院宁波材料技术与工程研究所 一种高分子复合导电纤维及其制备方法
CN105261767A (zh) * 2015-09-07 2016-01-20 武汉理工大学 纳米碳掺杂多孔纤维单电极、膜电极及制备方法
WO2016145429A1 (en) * 2015-03-12 2016-09-15 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Novel electro-spun sulfur wire for fabricating mattes of lithium-sulfur batteries

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
CN103103628A (zh) * 2013-01-14 2013-05-15 北京大学深圳研究生院 纳米材料及其应用以及纳米材料的制备方法和装置
CN103267786A (zh) * 2013-04-10 2013-08-28 太原理工大学 微型针式无酶葡萄糖传感器电极及其制备方法
CN103611432A (zh) * 2013-12-17 2014-03-05 哈尔滨工业大学 一种聚合物/石墨烯纳米复合膜的制备方法
CN104674383A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 碳纳米纤维气凝胶的静电纺丝构建方法
CN104674384A (zh) * 2015-02-12 2015-06-03 中国科学院城市环境研究所 基于静电纺丝技术的三维油水分离材料及其制备方法
WO2016145429A1 (en) * 2015-03-12 2016-09-15 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Novel electro-spun sulfur wire for fabricating mattes of lithium-sulfur batteries
CN105063796A (zh) * 2015-07-21 2015-11-18 中国科学院宁波材料技术与工程研究所 一种高分子复合导电纤维及其制备方法
CN105261767A (zh) * 2015-09-07 2016-01-20 武汉理工大学 纳米碳掺杂多孔纤维单电极、膜电极及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
冯延民: "《壳寡糖与人类健康》", 31 March 2008 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110029409A (zh) * 2018-11-30 2019-07-19 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
CN110029409B (zh) * 2018-11-30 2024-03-12 青岛大学 一种氧化石墨烯纤维的制备方法及得到的纤维
CN112226839A (zh) * 2020-10-16 2021-01-15 武汉智达纺织科技有限公司 一种氧化石墨烯改性聚偏氯乙烯压电织物及其制备方法

Similar Documents

Publication Publication Date Title
Ul-Islam et al. Comparative study of plant and bacterial cellulose pellicles regenerated from dissolved states
CN102733001B (zh) 一种羽毛蛋白纤维及其制备方法
CN106702535B (zh) 一种石墨烯纤维及其制备方法
JP5324710B2 (ja) 溶媒紡糸ハイウェットモデュラス竹繊維及びその製造方法
CN106435830A (zh) 一种高强度壳聚糖复合纤维及其制备方法
CN102936835B (zh) 一种纳米银抗菌真丝的制备方法
CN108659525B (zh) 一种基于原位聚合法制备PA6/介孔纳米材料@Ag复合抗菌纤维的方法
CN105019142B (zh) 一种高孔容微纳米pet纤维的制备方法
CN106930096B (zh) 一种改性纤维制品、制备方法及其用途
CN105854853A (zh) 一种抗菌金属有机骨架复合纳米纤维的制备方法
CN104073907A (zh) 一种聚酯纤维及其制备方法
CN103061174A (zh) 一种强酸预处理辅助制备纤维素纳米纤丝的方法
CN106996035A (zh) 具有导电阻燃涂层的织物及其制备方法
CN110904522A (zh) 一种富勒烯亲肤复合纤维及其制备方法
Cao et al. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers
CN106637490A (zh) 一种基于石墨烯和壳寡糖的多孔导电抗菌纤维及其制备方法
CN107747165A (zh) 一种超亲水聚酯纳米纤维膜及其制备方法
CN107700203A (zh) 一种改性大豆纤维的加工方法
CN108277548B (zh) 一种石墨烯涤纶阻燃纤维及其制备方法
CN112680884A (zh) 一种抗菌口罩材料的制备方法
CN103103757A (zh) 一种织物抗菌整理液的制备方法
CN109972279A (zh) 一种宽幅凉爽混纺面料的制备方法
CN102230279A (zh) 一种制备单面免烫纺织品的方法
CN105803777B (zh) 一种抗菌材料的制造方法
CN110195266B (zh) 一种功能纤维的生产方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication