CN106637310B - 一种Cu/PAA复合膜及其制备方法以及应用 - Google Patents

一种Cu/PAA复合膜及其制备方法以及应用 Download PDF

Info

Publication number
CN106637310B
CN106637310B CN201611228337.3A CN201611228337A CN106637310B CN 106637310 B CN106637310 B CN 106637310B CN 201611228337 A CN201611228337 A CN 201611228337A CN 106637310 B CN106637310 B CN 106637310B
Authority
CN
China
Prior art keywords
paa
composite membrane
preparation
reaming
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611228337.3A
Other languages
English (en)
Other versions
CN106637310A (zh
Inventor
倪似愚
刘玉昆
梅琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201611228337.3A priority Critical patent/CN106637310B/zh
Publication of CN106637310A publication Critical patent/CN106637310A/zh
Application granted granted Critical
Publication of CN106637310B publication Critical patent/CN106637310B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/028Other inorganic materials not covered by A61L31/022 - A61L31/026
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Veterinary Medicine (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及一种Cu/PAA复合膜及其制备方法以及应用,所述复合膜的结构为:纳米Cu通过交流电沉积均匀分布在PAA的孔道结构内。制备方法包括:将多孔阳极氧化铝PAA进行减薄阻挡层和扩孔预处理;将预处理得到的PAA加入电沉积液中,进行外加交流电沉积,得到Cu/PAA复合膜。本发明方法操作简单高效,便于推广;制备得到的复合膜同时具有抗菌性能和促进成骨细胞粘附增殖的能力,有望作为一种人工植入材料的表面涂层而获得应用。

Description

一种Cu/PAA复合膜及其制备方法以及应用
技术领域
本发明属于生物活性材料及其制备领域,特别涉及一种Cu/PAA复合膜及其制备方法以及应用。
背景技术
多孔阳极氧化铝(Porous Anodic Alumina,PAA)是一种典型的具有长程有序的纳米多孔自组装材料。其表面相互平行排列的大面积纳米孔道能够模拟骨组织中胶原纤维的尺寸和排列(International Journal of Nanomedicine 2014;9:3325-3334)。研究表明,阳极氧化铝的纳米孔阵列能显著促进成骨细胞生长,细胞能在其表面牢固附着(ActaBiomaterialia 2014;10:968-74)。然而,PAA表面不具有抗菌活性,易于受到细菌的侵染。利用PAA表面高度规整的孔道结构负载生物活性物质,可赋予其抑制细菌感染同时促进相关功能细胞生长的多重生物学功能,因此PAA是一种潜在的生物医学材料表面涂层。
Cu因为具有突出的杀菌作用而在生物材料领域被广泛运用。作为人体内必需的一种微量元素,Cu参与多种蛋白质和酶的构成。近期的研究表明,Cu在机体骨的正常生长发育过程中发挥着重要的作用,能刺激骨组织的再生与修复(International Journal ofNanomedicine 2014;9:3325-3334)。另有研究表明,Cu可以诱导相关生长因子表达,从而促进新血管的生成(Applied and Environmental Microbiology:2011.77:1541-1547)。引入适量Cu的生物陶瓷材料对成骨相关细胞的黏附、增殖及功能表达方面具有明显的促进作用(Journal of Controlled Release 2014;193:282-295)。
生物材料的表面修饰已发展出诸多技术方法,包括低温等离子体法、辐射接枝技术、表面固定化、自组装技术等。然而大多数表面修饰方法均难以实现生物材料表面生物活性物质装载量的有效控制。
发明内容
本发明所要解决的技术问题是提供一种Cu/PAA复合膜及其制备方法以及应用,该方法快速,简便,高效;该方法制得的Cu/PAA复合生物膜材料具有良好抗菌性能并且可促进成骨相关细胞增殖。
本发明的一种Cu/PAA复合膜,所述复合膜的结构为:纳米Cu通过交流电沉积均匀分布在PAA的孔道结构内。
上述交流电沉积在PAA表面多孔结构中由孔底向外组装纳米Cu,使得Cu均匀分布于PAA多孔结构内。
所述纳米Cu的尺寸为8-46nm,PAA的孔道尺寸为25-75nm。
本发明的一种Cu/PAA复合膜的制备方法,包括:
(1)将多孔阳极氧化铝PAA进行减薄阻挡层和扩孔预处理;
(2)将步骤(1)中预处理得到的PAA加入电沉积液中,进行外加交流电沉积,得到Cu/PAA复合膜;其中,电沉积液为CuSO4·5H2O、(NH4)2SO4、H3BO3的混合液;交流电压为5V-15V,沉积时间为2s-10s。
所述步骤(1)中PAA的制备方法包括:将高纯铝(99.999%)在C2H2O4·2H2O溶液体系中进行两次阳极氧化,得到PAA。
所述C2H2O4·2H2O溶液的浓度为0.4M;阳极氧化的条为:40V,0~2℃,每次阳极氧化的时间为2~3h。
所述步骤(1)中减薄阻挡层的方法为:将PAA进行阶梯降压处理;扩孔的方法为:PAA浸入H3PO4溶液中进行扩孔。
所述阶梯降压速率为1-2V/30s,阶梯降压下限为2V-6V;H3PO4溶液的浓度为5wt.%,扩孔温度为45℃,扩孔的时间为55min-65min。
所述步骤(2)中电沉积液中CuSO4·5H2O浓度为8.0wt.%-10.0wt.%,(NH4)2SO4浓度为1.0wt.%-2.0wt.%,H3BO3浓度为2.0wt.%-2.5wt.%;使用1mol/L H2SO4溶液调节电沉积液pH至3.0。
所述Cu/PAA复合膜应用于同时具备抗菌性能和促进成骨细胞粘附增殖的医用涂层的制备。
本发明利用电化学阳极氧化工艺制备多孔阳极氧化铝(PAA),运用交流电沉积技术在其孔道结构内组装纳米Cu生物活性粒子,赋予材料表面抗菌性能和促进成骨细胞增殖作用,以期望获得良好的抗菌性能,促进成骨相关细胞的黏附、增殖。
本发明利用交流电沉积技术可以实现各种金属在PAA孔道内的组装,并且可以通过改变电沉积时间对孔道内金属沉积量进行有效控制。通过运用交流电沉积在PAA表面多孔结构中由孔底向外组装纳米Cu,使得Cu均匀分布于PAA多孔结构内。通过改变电沉积时间有效地控制孔道内Cu装载量,以期望获得同时具备抗菌性能和促进成骨细胞增殖的新型医用涂层。
采用场发射扫描电镜(FESEM)观察PAA、Cu/PAA表面形貌,并用X-射线能谱分析法(EDS)分析材料元素组成。为了进一步确定Cu/PAA中Cu元素的价态,对其进行了X射线光电子能谱(XPS)扫描。
有益效果
(1)本发明的制备方法简单高效,成本低廉;可以通过控制电沉积时间,有效控制铜的装载量;
(2)本发明方法制备得到的Cu/PAA仍然保持了PAA表面的纳米多孔结构;
(3)本发明方法中制备得到的纳米Cu分布均匀、分散性好;
(4)本发明方法制备得到的Cu/PAA抗菌效率高,对大肠杆菌的抑菌率在82%±11%,对金黄色葡萄球菌的抑菌率达到89%±4%;
(5)本发明方法制备得到的Cu/PAA可明显促进乳鼠成骨细胞增殖。
附图说明
图1为实施例2中PAA(A、C、E)、Cu/PAA(B、D、F)表面纳米结构放大20.0K、50.0K、100.0K的FESEM图;
图2为实施例2中Cu/PAA的XRD图谱;
图3为实施例3中Cu/PAA的XPS图谱;
图4为实施例3中Cu/PAA XPS的Cu元素分峰图谱;
图5为实施例1中PAA、Cu/PAA对于E.coli(A1、B1)和S.aureus(A2,B2)抗菌效果鉴定图;
图6为实施例1中PAA、Cu/PAA分别对于E.coli和S.aureus抗菌率统计图;
图7为实施例1中PAA、Cu/PAA对于乳鼠成骨细胞增殖促进作用统计图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)高纯铝片作为阳极,以石墨板作为对阴极,采用40V直流恒压在2℃的0.4MC2H2O4·2H2O溶液中进行两次阳极氧化,第一次阳极氧化2h,第二次阳极氧化3h,得到PAA;
(2)二次阳极氧化结束后立即进行阶梯降压,降幅1V/30s,阶梯降压下限为2V,去离子水冲洗;
(3)在45℃条件下,采用5wt%H3PO4溶液对氧化铝薄膜进行扩孔,时间为55min;
(4)预先配制CuSO4·5H2O浓度为10.0wt.%、(NH4)2SO4浓度为2.0wt.%、H3BO3浓度为2.5wt.%的混合溶液作为电沉积液;
(5)步骤(3)中得到的PAA用去离子水清洗后立即浸入电沉积液中,以石墨板为对电极进行电沉积,外加交流电电压10V、时间10s,制得Cu(10s)/PAA,沉积完成后去离子水冲洗,自然风干;
将PAA、Cu/PAA用于抗菌性能和乳鼠成骨细胞增殖性能的评价。
抗菌性能的测试采用如下方法:
实验菌种采用大肠杆菌(E.coli,ATCC 8099)和金黄色葡萄球菌(S.aureus,ATCC6538)。取一定量的菌种接种于50mL的LB培养基中,于37℃的恒温摇床上160rpm培养18h-24h,以备抗菌实验测试。实验样品及测试中所用器材经121℃高温灭菌20min;从恒温摇床培养后的菌液中取出1mL的菌悬液加入到9mL的磷酸盐缓冲溶液(PBS)的试管中,震荡均匀,再取1mL到另一支9mL的PBS试管中,原菌液被稀释100倍;稀释后的菌液1mL接种于装有规格为10mm×10mm的材料的24孔板中,使菌液浸没材料,其中用PAA作为对照组;样品于菌液在37℃的恒温培养箱中培养16h-24h后,吸去孔中多余菌液,用1mL的无菌PBS轻轻洗去材料表面没有粘附上的细菌,重复三次;将材料移入试管中,加10mL PBS,塞紧塞子,超声5min,将贴附在材料表面的细菌洗脱下来;洗脱后的菌液用PBS稀释适当的倍数后,取100μL在LB固体培养基上涂板,平行涂3个,在37℃的恒温培养箱中培养18h-24h后计数取平均值,然后进行换算得到试管中的细菌存活数。按照如公式计算抗菌样品的抑菌率:
式中:
C-对照样接种并培养24h后测得的细菌数的平均值;
T-实验样接种并培养24h后测得的细菌数的平均值。
成骨细胞的增殖实验采用CCK-8法,实验方法如下:
从1日龄乳鼠中取原代成骨细胞培养传代后用于后续实验。取对数生长期的成骨细胞,调节细胞的浓度,使得细胞的密度为5×103个/孔,将细胞接种到事先加有灭菌过的PAA薄膜的24孔板中,每孔加入400μL培养液并使细胞悬液在材料整个表面铺展开来,将接种了细胞的多孔板放入37℃,5%CO2的培养箱中,培养过程中根据消耗情况及时更换培养基。具体操作均在超净台内完成。为了定量比较细胞在各种材料上的增殖情况,分别在培养1天、2天和3天后取样进行细胞活性检测。具体测试步骤如下,在特定的时间点,取出种植有细胞的PAA、Cu/PAA薄膜,置于新的24孔培养板中,用PBS轻轻漂洗材料以去除未贴附的细胞。每孔加入0.5mL新鲜培养液,避光条件下每孔加入20μL CCK-8试剂,放置于培养箱中遮光培养3h后,利用酶联免疫检测仪测定在波长为450nm处测定OD值。每次实验重复3次,每组样品设置5个复孔。
根据上述方法得到的抗菌效果如图5、图6所示,乳鼠成骨细胞增殖统计如图7所示。图5、图6表明Cu/PAA对E.coli和S.aureus均具有明显抗菌作用;同时,从图中可以看出Cu/PAA对两种细菌均有显著杀菌效果;Cu/PAA抗大肠杆菌的效率达到82%±11%,抗金黄色葡萄球菌的效率达到89%±4%。图7表明Cu/PAA对乳鼠成骨细胞的黏附和增殖具有显著促进作用。
实施例2
(1)以高纯铝片作为阳极,石墨板作为对阴极,以40V直流恒压在0℃的0.4MC2H2O4·2H2O溶液中进行两次阳极氧化,第一次阳极氧化3h,第二次阳极氧化3h,得到PAA;
(2)二次阳极氧化结束后立即进行阶梯降压,降幅2V/30s,阶梯降压下限为6V,去离子水冲洗;
(3)在45℃条件下,采用5wt%H3PO4溶液对氧化铝薄膜进行扩孔,时间为65min;
(4)预先配制CuSO4·5H2O浓度为9.0wt.%、(NH4)2SO4浓度为1.5wt.%、H3BO3浓度为2.0wt.%的混合溶液作为电沉积液;
(5)步骤(3)中得到的PAA用去离子水清洗后立即浸入电沉积液中,以石墨板为对电极进行电沉积,外加交流电电压10V、时间10s,制得Cu(10s)/PAA,沉积完成后去离子水冲洗,自然风干;
(6)采用场发射扫描电镜(FESEM)观察样品表面微观结构,如图1所示;采用X射线衍射(XRD)分析样品表面物象,如图2所示。
(7)图1A、1C、1E表明,PAA表面纳米孔直径均匀,图1B、1D、1F表明,纳米Cu充分装载进PAA纳米孔道,并且完整地保持了PAA表面原有的纳米多孔结构;
(8)图2中看出纳米Cu沿Cu(111)晶面择优取向,没有明显杂峰;
(9)将PAA、Cu/PAA用于抗菌性能和乳鼠成骨细胞增殖性能的评价,同发明内容中的性能评价;所得PAA、Cu(10s)/PAA基本特性与实施例1相似。
实施例3
(1)以石墨板为阴极,高纯铝片作为阳极,在0℃的0.4M C2H2O4·2H2O溶液中以40V直流恒压进行两次阳极氧化,第一次阳极氧化2h,第二次阳极氧化2.5h,得到PAA;
(2)二次阳极氧化结束后立即进行阶梯降压,降幅2V/30s,阶梯降压下限为4V,去离子水冲洗;
(3)在45℃条件下,采用5wt%H3PO4溶液对氧化铝薄膜进行扩孔,时间为60min;
(4)配制CuSO4·5H2O浓度为8.0wt.%、(NH4)2SO4浓度为1.0wt.%、H3BO3浓度为2.0wt.%的混合溶液作为电沉积液;
(5)步骤(3)中得到的PAA用去离子水清洗后立即浸入电沉积液中,以石墨板为对电极进行电沉积,外加交流电电压13V、时间5s,制得Cu(5s)/PAA,沉积完成后去离子水冲洗,自然风干;
(6)采用X射线光电子能谱分析样品表面元素组成和重要元素价态,如图3所示。
(7)由图3可知,Cu/PAA主要含有Cu、O、Al、C、S等元素,由图4可知Cu/PAA中Cu元素为0价和+2价;
(7)将PAA、Cu(5s)/PAA用于抗菌性能和乳鼠成骨细胞增殖性能的评价,同发明内容中的性能评价;所得PAA、Cu/PAA基本特性与实施例1相似。

Claims (6)

1.一种Cu/PAA复合膜的制备方法,包括:
(1)将多孔阳极氧化铝PAA进行减薄阻挡层和扩孔预处理,其中减薄阻挡层的方法为:将PAA进行阶梯降压处理,阶梯降压速率为1-2V/30s,阶梯降压下限为2V-6V;扩孔的方法为:PAA浸入H3PO4溶液中进行扩孔,H3PO4溶液的浓度为5wt.%,扩孔温度为45℃,扩孔的时间为55min-65min;
(2)将步骤(1)中预处理得到的PAA加入电沉积液中,进行外加交流电沉积,得到Cu/PAA复合膜;其中,电沉积液为CuSO4·5H2O、(NH4)2SO4、H3BO3的混合液,电沉积液中CuSO4·5H2O浓度为8.0wt.%-10.0wt.%,(NH4)2SO4浓度为1.0wt.%-2.0wt.%,H3BO3浓度为2.0wt.%-2.5wt.%;交流电压为5V-15V,沉积时间为2s-10s。
2.根据权利要求1所述的一种Cu/PAA复合膜的制备方法,其特征在于,所述步骤(1)中PAA的制备方法包括:将高纯铝在C2H2O4·2H2O溶液体系中进行两次阳极氧化,得到PAA。
3.根据权利要求1所述的一种Cu/PAA复合膜的制备方法,其特征在于,所述步骤(2)中电沉积液的pH为3.0。
4.根据权利要求1所述的一种Cu/PAA复合膜的制备方法,其特征在于,所述步骤(2)中Cu/PAA复合膜的结构为:纳米Cu通过交流电沉积均匀分布在PAA的孔道结构内。
5.根据权利要求4所述的一种Cu/PAA复合膜的制备方法,其特征在于,所述纳米Cu的尺寸为8-46nm,PAA的孔道尺寸为25-75nm。
6.根据权利要求1所述的一种Cu/PAA复合膜的制备方法,其特征在于,所述步骤(2)中Cu/PAA复合膜应用于同时具备抗菌性能和促进成骨细胞粘附增殖的医用涂层的制备。
CN201611228337.3A 2016-12-27 2016-12-27 一种Cu/PAA复合膜及其制备方法以及应用 Expired - Fee Related CN106637310B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611228337.3A CN106637310B (zh) 2016-12-27 2016-12-27 一种Cu/PAA复合膜及其制备方法以及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611228337.3A CN106637310B (zh) 2016-12-27 2016-12-27 一种Cu/PAA复合膜及其制备方法以及应用

Publications (2)

Publication Number Publication Date
CN106637310A CN106637310A (zh) 2017-05-10
CN106637310B true CN106637310B (zh) 2019-05-03

Family

ID=58831648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611228337.3A Expired - Fee Related CN106637310B (zh) 2016-12-27 2016-12-27 一种Cu/PAA复合膜及其制备方法以及应用

Country Status (1)

Country Link
CN (1) CN106637310B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111317856B (zh) * 2020-02-28 2022-04-15 江苏厚生新能源科技有限公司 一种医用持久杀菌透气隔离膜的制备方法
WO2022008439A1 (en) * 2020-07-06 2022-01-13 Syddansk Universitet A method for manufacturing copper film on porous aluminum oxide (pao) on an aluminum alloy substrate
CN113463158B (zh) * 2021-06-09 2022-08-09 中国科学院金属研究所 一种铝合金的表面抗菌阳极氧化工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994142A (zh) * 2010-12-09 2011-03-30 沈阳大学 一种铝材表面制备二氧化钛/铜纳米复合抗菌涂层的方法
CN102206846A (zh) * 2011-05-03 2011-10-05 东华大学 具有有序排列纳米小孔的氧化铝薄膜及其制备和应用
CN102793949A (zh) * 2012-08-23 2012-11-28 东华大学 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法
CN104274425A (zh) * 2014-09-29 2015-01-14 东华大学 一种CaO-SiO2-CuO/PAA复合生物膜材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937119A (zh) * 2011-08-15 2013-02-20 周跃平 一种调密码的液压阀

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101994142A (zh) * 2010-12-09 2011-03-30 沈阳大学 一种铝材表面制备二氧化钛/铜纳米复合抗菌涂层的方法
CN102206846A (zh) * 2011-05-03 2011-10-05 东华大学 具有有序排列纳米小孔的氧化铝薄膜及其制备和应用
CN102793949A (zh) * 2012-08-23 2012-11-28 东华大学 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法
CN104274425A (zh) * 2014-09-29 2015-01-14 东华大学 一种CaO-SiO2-CuO/PAA复合生物膜材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity;Juan Ye et al;《Biotechnol Lett》;20140222;第961-968页
基于AAO模板交流电制备铜纳米线及载Cu多孔膜抗菌性能研究;胡勇;《广东工业大学硕士学位论文》;20141014;第58页
纳米Cu/Al2O3 组装体模板合成与光吸收;王银海 等;《物理学报》;20010912;第50卷(第9期);第1751-1754

Also Published As

Publication number Publication date
CN106637310A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
Zhang et al. The dual function of Cu-doped TiO 2 coatings on titanium for application in percutaneous implants
Shin et al. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation
US8518420B2 (en) Enhanced bone cells growth and proliferation on TiO2 nanotubular substrates treated by radio-frequency plasma discharge
Li et al. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating
Lan et al. Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes
CN105597157B (zh) 一种可促进血管形成与抗感染生物活性涂层及其制备方法和应用
CN101485901B (zh) 一种脉冲电化学沉积制备羟基磷灰石/纳米银抗菌复合涂层的方法
Lewandowska et al. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties
Zhao et al. Enhanced osteogenic activity and antibacterial ability of manganese–titanium dioxide microporous coating on titanium surfaces
CN106637310B (zh) 一种Cu/PAA复合膜及其制备方法以及应用
Chen et al. Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition
CN102058904A (zh) 生物功能化纳米钛材及其制备方法
Li et al. Improved osteoblast adhesion and osseointegration on TiO2 nanotubes surface with hydroxyapatite coating
Li et al. Influence of nanostructures on the biological properties of Ti implants after anodic oxidation
CN107661544A (zh) 抗菌促成骨复合功能多孔骨科植入物及其制备方法
Ionita et al. Antimicrobial activity of the surface coatings on TiAlZr implant biomaterial
US9353453B2 (en) Metal substrate modified with silicon based biomimetic treatment having antibacterial property for the osteointegration thereof
CN104645414A (zh) 钛基表面抗菌与骨组织再生诱导性功能涂层及其制备方法和应用
KR101612510B1 (ko) 항균 티타늄 임플란트의 제조방법 및 그에 따라 제조된 항균 티타늄 임플란트
CN107841778B (zh) 一种医用金属材料的表面改性方法
Zhang et al. Biological and antibacterial properties of TiO 2 coatings containing Ca/P/Ag by one-step and two-step methods
CN111569146A (zh) 一种载Sr和Ag的提高生物相容性的医用钛材制备方法
Zhang et al. A novel La3+ doped MIL spherical analogue used as antibacterial and anticorrosive additives for hydroxyapatite coating on titanium dioxide nanotube array
CN111945207B (zh) 掺Sr/Ag微弧氧化涂层及其制备方法和应用
CN106902384B (zh) 一种在钛表面制备类骨结构膜层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190503

Termination date: 20211227

CF01 Termination of patent right due to non-payment of annual fee