CN106611866A - 一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法 - Google Patents

一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法 Download PDF

Info

Publication number
CN106611866A
CN106611866A CN201510690936.6A CN201510690936A CN106611866A CN 106611866 A CN106611866 A CN 106611866A CN 201510690936 A CN201510690936 A CN 201510690936A CN 106611866 A CN106611866 A CN 106611866A
Authority
CN
China
Prior art keywords
sulfimide
exchange membrane
proton exchange
ether
sulfonic fluoropolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510690936.6A
Other languages
English (en)
Inventor
薛立新
聂锋
王树华
邵春明
傅寅翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Institute of Material Technology and Engineering of CAS
Juhua Group Technology Centre
Original Assignee
Ningbo Institute of Material Technology and Engineering of CAS
Juhua Group Technology Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Institute of Material Technology and Engineering of CAS, Juhua Group Technology Centre filed Critical Ningbo Institute of Material Technology and Engineering of CAS
Priority to CN201510690936.6A priority Critical patent/CN106611866A/zh
Publication of CN106611866A publication Critical patent/CN106611866A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0293Matrices for immobilising electrolyte solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法。该质子交换膜由侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂为基体,加入聚偏氟乙烯树脂(PVDF)混合形成,能够兼顾高电导率、高强度、高稳定性,以及低钒离子渗透率、低溶胀度和吸水率,在全钒液流电池领域具有良好的应用前景。

Description

一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法
技术领域
本发明属于高分子材料领域,具体涉及一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法,可用于全钒液流电池技术领域。
背景技术
全钒液流电池作为一种新型的大规模储能设备,在风力发电、太阳能发电、潮汐发电等领域有着十分广阔的应用前景。与锂电池、铅蓄电池等储能设备相比,全钒液流电池具有规模大、寿命长、充放电转换快、环境污染小等优点,正日益受到重视。
全钒液流电池装置主要由电解液、质子交换膜、石墨毡电极、板框和密封件以及电源管理装置组成。其中,质子交换膜作为全钒液流电池的关键材料,很大程度上决定着电池的性能。
目前在全钒液流电池中广泛使用以杜邦公司的nafion系列为代表的全氟质子交换膜,这种膜具有全氟主链结构,因而具有超强的耐腐蚀性和高的电导率。但是,这种膜高的钒离子透过率导致使用其组装的全钒液流电池的电流效率较低,同时其昂贵的价格也导致以其组装的电池价格居高不下,限制了全钒液流电池的大规模推广。
为此,许多公司和机构做了大量研究,尝试了许多种材料和体系,其中以磺化芳香族树脂为主要组成的质子交换膜体现出较好的综合性能,其力学强度高、隔离性能好,价格低廉、制备方便、原料来源广泛、质子传导率也可以接受。但是,由于大多数磺化芳香族聚合物的主链结构易被氧化性物质进攻,导致其寿命难以满足钒电池的使用要求。同时,由于其导电基团为苯磺酸根,酸度较弱,在室温条件下,酸根解离度较低,在同样的质子交换容量下,质子传导率难以与全氟磺酸膜相比。为此,业界普遍的做法是提高磺化度,但是高磺化度条件下,膜的溶胀度和吸水率将大幅上升,同时隔离性能也将变差。
发明内容
针对上述技术现状,本发明旨在提供一种新型结构的质子交换膜,能够兼顾高电导率、高强度、高稳定性,以及低钒离子渗透率、低溶胀度和吸水率,因此在全钒液流电池领域具有良好的应用前景。
本发明实现上述技术目的所采取的技术方案为:一种含氟磺酸/磺酰亚胺基复合质子交换膜,该质子交换膜由侧链含氟磺酸聚醚醚酮树脂与聚偏氟乙烯树脂(PVDF)混合形成,并且PVDF与侧链含氟磺酸聚醚醚酮树脂的质量比小于或者等于1:1;所述的侧链含氟磺酸聚醚醚酮树脂结构为:
其中,R1为全氟烷烃或者全氟醚,R2为烷基、全氟烷基、全氟醚基或芳香基链式结构;M为H+
或者,该质子交换膜由侧链含磺酰亚胺基聚醚醚酮树脂与PVDF树脂混合形成,并且PVDF与侧链含磺酰亚胺基聚醚醚酮树脂的质量比小于或者等于1:1;所述的侧链含磺酰亚胺基聚醚醚酮树脂结构为:
其中,R1为全氟烷烃或者全氟醚,R2为烷基、全氟烷基、全氟醚基或芳香基链式结构;M为H+
作为优选,所述的PVDF与侧链含氟磺酸聚醚醚酮树脂的质量比大于5:95;所述的PVDF与侧链含磺酰亚胺基聚醚醚酮树脂的质量比大于5:95。
为了兼顾膜的强度和传导率,膜厚度优选在20μm-500μm之间,进一步优选40μm-200μm之间。
本发明还提供了一种制备上述质子交换膜的方法,采用溶液流延法,首先,将侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂溶于有机溶剂,得到基体溶液;然后,在基体溶液中共混PVDF,得到混合溶液;最后,将混合溶液流延成膜,烘干后得到含氟磺酸/磺酰亚胺复合质子交换膜。
所述的有机溶剂不限,包括二甲基亚砜、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基甲酰胺、乙腈、丙酮、乙酸乙酯、氯仿、二氯甲烷、甲基乙基酮、四氢呋喃或甲醇等。
综上所述,本发明提供了一种新型结构的质子交换膜,该质子交换膜以侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂为基体,在其中加入PVDF树脂,具有如下有益效果:
(1)与磺化芳香族聚合物相比,本发明以侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂为基体,通过在聚醚醚酮树脂主链引入全氟磺酸或者全氟磺酰亚胺侧链,利用全氟磺酸酸性强的特点,提高了磺酸基团在室温状态下的解离度,从而提高了质子交换膜的电导率,同时保留了芳香族聚合物质子交换膜价格低廉、隔离性能优良、加工性能好、力学强度高的优点,避免了高磺化度带来的高溶胀率和隔离性下降的问题;
(2)PVDF是一种在膜材料领域应用广泛的高性能基材,其具有化学结构稳定、力学强度高、溶解性好等诸多优点。侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂中,由于含氟侧链的引入,与传统的苯环磺化树脂相比,使其与具有氟相的PVDF的相容性更好,所形成的微相分离结构更加细密而均匀,容易形成长程连续结构,从而具有更高的电导率和更低的钒离子渗透率。
因此,当侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂为基体,在其中混合PVDF树脂后形成的混合树脂的微相分离结构细密均匀,很好地保留了两种材料的特性。即,侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂作为提供树脂质子交换膜高质子传导率的主体部分,PVDF可进一步提高质子交换膜的强度、化学稳定性、钒离子隔离性,并且降低质子交换膜的吸水率和溶胀度。所以,以该混合树脂作为质子交换膜组装的全钒液流电池的库伦效率和能量效率高、电池循环寿命长。
附图说明
图1是本发明实施例1中的PVDF/侧链含氟磺酸聚醚醚酮共混质子交换膜以及Nafion117的电导率图;
图2是本发明实施例2中的PVDF/侧链含氟磺酰-对甲基苯磺酰亚胺基聚醚醚酮共混质子交换膜以及Nafion117的电导率图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述,需要指出的是,以下所述实施例旨在便于对本发明的理解,而对其不起任何限定作用。
实施例1:
本实施例中,质子交换膜以侧链含氟磺酸聚醚醚酮为基体,与PVDF树脂溶液共混得到,并且PVDF与侧链含氟磺酸聚聚醚醚酮的质量比分别为小于1:9、2:8、1:1。
该质子交换膜的制备方法包括如下步骤:
步骤1:取10.0gPVDF溶解在90.0g二甲基亚砜中,60℃下充分分散,过滤后静置脱泡,配成质量百分含量为10%的PVDF溶液;同时取10g侧链含氟磺酸聚醚醚酮(IEC约2.0mmol/g)树脂,溶解在90.0g二甲基亚砜中,60℃下充分分散,过滤后静置脱泡,配成质量百分比为10%的溶液。
步骤2:将PVDF溶液与侧链含氟磺酸聚醚醚酮溶液按照一定比例混合均匀,配置三种混合溶液,其中PVDF与侧链含氟磺酸聚醚醚酮的质量比分别为1:9、2:8、1:1;将每种混合溶液静置消泡后,以0.3mm厚度的刮刀在平整的玻璃板上流延,然后在90℃下烘干24h充分除去溶剂,得到厚度为0.04-0.06mm的质子交换膜。
将上述制得的三种质子交换膜取下浸泡在2mol/L的稀硫酸溶液中48h,然后测试其电导率、溶胀率以及全钒液流电池循环性能。
这三种质子交换膜以及nafion117膜的电导率如图1所示。虽然相比nafion117膜,该三种质子交换膜的电导率较低,但是由于其阻隔性较好,在厚度较薄的情况下也能保持高强度和低渗透率。
这三种质子交换膜的线性溶胀率分别为15%、7%和2%。
以这三种质子交换膜组装的全钒液流电池的循环性能为:在80mA/cm2下,其能量效率分别为78%、83%和65%。与在同样条件下包含Nafion117隔膜的全钒液流电池的能量效率80%相当。
实施例2:
本实施例中,离子交换膜以侧链含氟磺酰亚胺聚醚醚酮为基体,与PVDF树脂溶液共混得到,并且PVDF与侧链含氟磺酰亚胺聚醚醚酮的质量比分别为小于1:9、2:8、1:1。
该质子交换膜的制备方法包括如下步骤:
步骤1:取10.0gPVDF溶解在90.0g二甲基亚砜中,60℃下充分分散,过滤后静置脱泡,配成质量百分含量为10%的PVDF溶液;同时取10g侧链含氟磺酸聚醚醚酮(IEC约1.8mmol/g)树脂,溶解在90.0g二甲基亚砜中,60℃下充分分散,过滤后静置脱泡,配成质量百分比为10%的溶液;
步骤2:将PVDF溶液与侧链含氟磺酰亚胺聚醚醚酮溶液按照一定比例混合均匀,配置三种混合溶液,其中PVDF与侧链含氟磺酰亚胺聚醚醚酮的质量比分别为1:9、2:8、1:1;将每种混合溶液静置消泡后,以0.3mm厚度的刮刀在平整的玻璃板上流延,然后在90℃下烘干24h充分除去溶剂,得到厚度为0.06-0.08mm的质子交换膜。
将上述制得的三种质子交换膜取下浸泡在2mol/L的稀硫酸溶液中48h,然后测试其电导率、溶胀率以及全钒液流电池循环性能。
这三种质子交换膜以及nafion212膜的电导率如图2所示。虽然相比nafion212膜,该三种质子交换膜的电导率较低,但是由于其阻隔性较好,在厚度较薄的情况下也能保持高强度和低渗透率,故此能量效率相差不大。
三种质子交换膜的线性溶胀率分别为12%、6%和2%。
以这三种质子交换膜组装的全钒液流电池的循环性能为:在80mA/cm2下,其能量效率分别为84%、79%和60%。与在同样条件下包含Nafion117隔膜的全钒液流电池的能量效率80%相当。
以上所述实施例对本发明的技术方案进行了详细说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种含氟磺酸/磺酰亚胺基复合质子交换膜,其特征是:该质子交换膜由侧链含氟磺酸聚醚醚酮树脂与PVDF混合形成,并且PVDF与侧链含氟磺酸聚醚醚酮树脂的质量比小于或者等于1:1;
所述的侧链含氟磺酸聚醚醚酮树脂结构为:
其中,R1为全氟烷烃或者全氟醚,R2为烷基、全氟烷基、全氟醚基或芳香基链式结构;M为H+
或者,该质子交换膜由侧链含磺酰亚胺基聚醚醚酮树脂与PVDF树脂混合形成,并且PVDF与侧链含磺酰亚胺基聚醚醚酮树脂的质量比小于或者等于1:1;所述的侧链含磺酰亚胺基聚醚醚酮树脂结构为:
其中,R1为全氟烷烃或者全氟醚,R2为烷基、全氟烷基、全氟醚基或芳香基链式结构;M为H+
2.如权利要求1所述的含氟磺酸/磺酰亚胺基复合质子交换膜,其特征是:所述的PVDF与侧链含氟磺酸聚醚醚酮树脂的质量比大于5:95;所述的PVDF与侧链含磺酰亚胺基聚醚醚酮树脂的质量比大于5:95。
3.如权利要求1所述的含氟磺酸/磺酰亚胺基复合质子交换膜,其特征是:所述的含氟磺酸/磺酰亚胺基复合质子交换膜厚度在20μm-500μm之间。
4.如权利要求1所述的含氟磺酸/磺酰亚胺基复合质子交换膜,其特征是:所述的含氟磺酸/磺酰亚胺基复合质子交换膜厚度在40μm-200μm之间。
5.制备权利要求1至4中任一权利要求所述的含氟磺酸/磺酰亚胺基复合质子交换膜的方法,其特征是:首先,将侧链含氟磺酸/磺酰亚胺基聚醚醚酮树脂溶于有机溶剂,得到基体溶液;然后,在基体溶液中共混PVDF,得到混合溶液;最后,将混合溶液流延成膜,烘干后得到含氟磺酸/磺酰亚胺复合质子交换膜。
6.如权利要求5所述的制备含氟磺酸/磺酰亚胺基复合质子交换膜的方法,其特征是:所述的有机溶剂是二甲基亚砜、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基甲酰胺、乙腈、丙酮、乙酸乙酯、氯仿、二氯甲烷、甲基乙基酮、四氢呋喃或甲醇。
7.一种全钒液流电池,其质子交换膜是权利要求1至4中任一权利要求所述的含氟磺酸/磺酰亚胺基复合质子交换膜。
CN201510690936.6A 2015-10-22 2015-10-22 一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法 Pending CN106611866A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510690936.6A CN106611866A (zh) 2015-10-22 2015-10-22 一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510690936.6A CN106611866A (zh) 2015-10-22 2015-10-22 一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106611866A true CN106611866A (zh) 2017-05-03

Family

ID=58610381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510690936.6A Pending CN106611866A (zh) 2015-10-22 2015-10-22 一种含氟磺酸/磺酰亚胺基复合质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106611866A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220984A (zh) * 2022-02-21 2022-03-22 长沙理工大学 Speek/改性膨润土复合离子交换膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142080A1 (zh) * 2009-06-12 2010-12-16 北京普能世纪科技有限公司 聚合物共混质子交换膜及其制备方法
CN103013039A (zh) * 2012-09-11 2013-04-03 中国科学院宁波材料技术与工程研究所 磺化芳族聚合物/侧链含磺酰亚胺基芳族聚合物共混离子交换膜、其制备方法及应用
CN103219532A (zh) * 2013-04-02 2013-07-24 清华大学深圳研究生院 液流电池用磺化聚醚醚酮基共混离子交换膜及其制备方法
CN103840163A (zh) * 2012-11-20 2014-06-04 中国科学院宁波材料技术与工程研究所 锂离子电池正极用粘结剂,使用该粘结剂的锂离子电池正极及制备方法
CN103881042A (zh) * 2012-12-21 2014-06-25 中国科学院宁波材料技术与工程研究所 一种含氟磺酸侧链的聚醚醚酮树脂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142080A1 (zh) * 2009-06-12 2010-12-16 北京普能世纪科技有限公司 聚合物共混质子交换膜及其制备方法
CN103013039A (zh) * 2012-09-11 2013-04-03 中国科学院宁波材料技术与工程研究所 磺化芳族聚合物/侧链含磺酰亚胺基芳族聚合物共混离子交换膜、其制备方法及应用
CN103840163A (zh) * 2012-11-20 2014-06-04 中国科学院宁波材料技术与工程研究所 锂离子电池正极用粘结剂,使用该粘结剂的锂离子电池正极及制备方法
CN103881042A (zh) * 2012-12-21 2014-06-25 中国科学院宁波材料技术与工程研究所 一种含氟磺酸侧链的聚醚醚酮树脂及其制备方法
CN103219532A (zh) * 2013-04-02 2013-07-24 清华大学深圳研究生院 液流电池用磺化聚醚醚酮基共混离子交换膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220984A (zh) * 2022-02-21 2022-03-22 长沙理工大学 Speek/改性膨润土复合离子交换膜及其制备方法

Similar Documents

Publication Publication Date Title
Ji et al. Highly selective sulfonated poly (ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries
Xi et al. Effect of degree of sulfonation and casting solvent on sulfonated poly (ether ether ketone) membrane for vanadium redox flow battery
Liu et al. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications
Lee et al. Polymer electrolyte membranes for fuel cells
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
Quan et al. Novel sulfonated poly (ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications
CN105789668A (zh) 金属有机骨架材料/聚合物复合质子交换膜的制备方法
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
CN103219532B (zh) 液流电池用磺化聚醚醚酮基共混离子交换膜及其制备方法
CN103762375B (zh) 聚四氟乙烯夹层保护离子交换膜、其制备方法及液流电池
Zhang et al. Sulfonated polyimide/AlOOH composite membranes with decreased vanadium permeability and increased stability for vanadium redox flow battery
CN105161738B (zh) 钒电池用复合膜及其连续化生产的方法和用途
KR101569719B1 (ko) 방사선을 이용한 다이올 가교 탄화수소계 고분자 전해질막 및 이의 제조방법
CN102838863A (zh) 一种新型聚合物质子交换膜及其制备方法
CN107546398A (zh) 一种具有微相分离结构的离子传导膜及其制备和应用
Li et al. Highly selective sulfonated poly (ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries
US20170331136A1 (en) Polymer electrolyte membrane
Li et al. Sulfonated poly (ether ether ketone)/polyimide acid-base hybrid membranes for vanadium redox flow battery applications
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
CN106009017A (zh) 一种支化磺化聚酰亚胺/二维层状材料复合质子导电膜的制备方法
Jin et al. An imidazolium type ionic liquid functionalized ether-free poly (terphenyl piperidinium) membrane for high temperature polymer electrolyte membrane fuel cell applications
US20060105215A1 (en) Novel membrane and membrane electrode assemblies
Jiang et al. A new long-side-chain sulfonated poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO)/polybenzimidazole (PBI) amphoteric membrane for vanadium redox flow battery
CN107546397B (zh) 一种液流电池用多孔离子传导膜及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170503

RJ01 Rejection of invention patent application after publication