CN106607014A - 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法 - Google Patents

一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法 Download PDF

Info

Publication number
CN106607014A
CN106607014A CN201611248393.3A CN201611248393A CN106607014A CN 106607014 A CN106607014 A CN 106607014A CN 201611248393 A CN201611248393 A CN 201611248393A CN 106607014 A CN106607014 A CN 106607014A
Authority
CN
China
Prior art keywords
peg
cooh
composite nano
plga
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611248393.3A
Other languages
English (en)
Other versions
CN106607014B (zh
Inventor
羊梦诗
李鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Zhongsi Trade Technology Co ltd
Original Assignee
Jiaxing Deyang Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing Deyang Biotechnology Co Ltd filed Critical Jiaxing Deyang Biotechnology Co Ltd
Priority to CN201611248393.3A priority Critical patent/CN106607014B/zh
Publication of CN106607014A publication Critical patent/CN106607014A/zh
Application granted granted Critical
Publication of CN106607014B publication Critical patent/CN106607014B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明涉及一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法,包括:将聚乙二醇化胸腺嘧啶PEG‑T修饰到第五代聚酰胺‑胺树状大分子G5.NH2表面,得到G5‑PEG‑T,之后将G5‑PEG‑T与聚乳酸羟基乙酸PLGA混合并用静电纺丝方法得到PLGA/G5‑PEG‑T复合纳米纤维膜。本发明使用原料价格相对低廉,制备的聚乳酸羟基乙酸基复合纳米纤维膜具有优异的特异性和高效的Hg2+吸附效果,制备工艺简单,可用于处理氯碱制造、造纸、炼油、油漆、制药和电池制造等工业生产中含Hg2+的废水。

Description

一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的 制备方法
技术领域
本发明属于吸附重金属离子的纳米纤维膜的制备领域,特别涉及一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法。
背景技术
由于汞的持久影响、流动性和生物富集性,汞被认为是最毒的重金属。不论是汞单质或是汞的化合物在特殊情况下都可以形成甲基汞,微量的甲基汞就可破坏人类中枢神经系统、肾脏和替他器官。氯碱制造、造纸、炼油、油漆、制药和电池制造等工业生产往往产生大量的含Hg2+废水。目前,已有很多方法用于去除废水中的Hg2+,如电化学沉降、生物处理及吸附技术、离子交换、氧化还原、反渗透等。其中,高分子吸附剂具有高吸附效率、易工业化生产和表面易功能化等优点而越来越受到关注。
有研究证明,Hg2+可选择性地结合在DNA上,形成胸腺嘧啶-汞(Ⅱ)-胸腺嘧啶 (T-Hg(Ⅱ)-T)碱基对,并且有研究者用胸腺嘧啶接枝的高分子吸附剂选择性的Hg2+。还有研究者利用富含胸腺嘧啶的DNA来改性聚丙烯酰胺凝胶,以达到选择性探测和去除Hg2+的目的。综上研究表明,通过胸腺嘧啶的接枝方法能够得到具有Hg2+选择性的吸附剂,但这类复合物对Hg2+的吸附效率都比较低。此外,静电纺丝技术是一种有效制备纳米纤维膜的途径。静电纺丝可以制备的纳米纤维膜种类丰富,包括有机、有机/无机复合和无机纳米纤维膜,广泛应用于光电器件、高效催化、过滤膜、生物传感器、药物传输、生物组织工程、环境治理等方面。
检索国内外有关Hg2+吸附的纳米纤维膜方面的文献和专利结果表明:目前,还没有发现利用聚乙二醇化的胸腺嘧啶修饰到第五代聚酰胺-胺树状大分子后,通过静电纺丝方法得到复合纳米纤维膜膜用于Hg2+选择性的高效吸附方面的报道。
发明内容
本发明所要解决的技术问题是提供一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法,该复合纳米纤维膜制备工艺简单,成本较低,并具有特异性和高效性的Hg2+吸附效果,具有产业化实施的前景。
本发明的一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法,包括步骤如下:
(1)先在胸腺嘧啶-1-乙酸Thymine-COOH溶液中分别加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC和N-羟基琥珀酰亚胺NHS进行羧基活化,再将聚乙二醇NH2-PEG-COOH加入到Thymine-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到胸腺嘧啶修饰的聚乙二醇T-PEG-COOH,其中Thymine-COOH、EDC、NHS和NH2-PEG-COOH的物质的量之比为2:10:10:1;
(2)分别称取质量比为1:2的T-PEG-COOH和第五代聚酰胺-胺树状大分子G5.NH2并用超纯水进行搅拌溶解。在T-PEG-COOH溶液中分别加入EDC和NHS进行羧基活化,再将G5.NH2加入T-PEG-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到T-PEG-COOH修饰的树状大分子G5-PEG-T,其中T-PEG-COOH、EDC和NHS的物质的量之比为1:5:5;
(3) 将质量比为1:20的G5-PEG-T与聚乳酸-羟基乙酸PLGA混合溶解在四氢呋喃THF与二甲基甲酰胺DMF的混合溶剂中,配成含有25 wt% PLGA混合纺丝液,用磁力搅拌约8 h,直至混合成均匀溶液,并通过静电纺丝法制成PLGA/G5-PEG-T复合纳米纤维膜,纺丝后,将所纺的复合纳米纤维膜置于真空干燥12-24 h,去除残留混合溶剂,得到高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜。
所述的步骤(3)中THF和DMF的体积比为3:1,纺丝条件为:纺丝电压15 kV,流速0.3mL/h,接收距离15 cm,环境湿度40-50 %。
本发明利用聚乙二醇和树状大分子的特定结构和性质,将Thymine-COOH连接到聚乙二醇上,并接枝到树状大分子的表面,然后将G5-PEG-T与PLGA通过静电纺丝的方式混纺成的PLGA/G5-PEG-T复合纳米纤维膜,从而制备的PLGA/G5-PEG-T复合纳米纤维膜。该复合纳米纤维膜上的G5-PEG-T由于聚乙二醇化修饰使得胸腺嘧啶裸露在复合纳米纤维膜的外面,使得PLGA/G5-PEG-T复合纳米纤维膜具有优异的特异性和高效性的Hg2+吸附效果。
有益效果:
(1)本发明的PLGA/G5-PEG-T复合纳米纤维膜由于通过聚乙二醇化修饰胸腺嘧啶,使得胸腺嘧啶裸露在复合纳米纤维膜的外面,从而复合纳米纤维膜对Hg2+具有高效的吸附效率,其对Hg2+吸附率分别比对比例1制备的PLGA/ G5-T复合纳米纤维膜和对比例2制备的PLGA/G5-PEG复合纳米纤维膜提高了46%和73%;
(2)本发明的PLGA/G5-PEG-T复合纳米纤维膜具有特异性吸附Hg2+的优点,当Hg2+、Cu2+、Cd2+和Co2+同时存在时,其对Hg2+吸附率为81%,而对Cu2+、Cd2+和Co2+的吸附率分别为23%、21%和22%;
(3)本发明采用温和的反应条件制备PLGA/G5-PEG-T复合纳米纤维膜用于Hg2+吸附,制备方法简单,成本较低,具有产业化实施的前景。
附图说明
图1为本发明制备的PLGA/G5-PEG-T和PLGA/G5-T、PLGA/G5-PEG复合纳米纤维膜的Hg2+吸附效率。
图2为本发明制备PLGA/G5-PEG-T复合纳米纤维膜对不同离子的特异性吸附试验。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
(1)先在胸腺嘧啶-1-乙酸Thymine-COOH溶液中分别加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC和N-羟基琥珀酰亚胺NHS进行羧基活化,再将聚乙二醇NH2-PEG-COOH加入到Thymine-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到胸腺嘧啶修饰的聚乙二醇T-PEG-COOH,其中Thymine-COOH、EDC、NHS和NH2-PEG-COOH的物质的量之比为2:10:10:1;
(2)分别称取质量比为1:2的T-PEG-COOH和第五代聚酰胺-胺树状大分子G5.NH2并用超纯水进行搅拌溶解。在T-PEG-COOH溶液中分别加入EDC和NHS进行羧基活化,再将G5.NH2加入T-PEG-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到T-PEG-COOH修饰的树状大分子G5-PEG-T,其中T-PEG-COOH、EDC和NHS的物质的量之比为1:5:5;
(3)将质量比为1:20的G5-PEG-T与聚乳酸-羟基乙酸PLGA混合溶解在四氢呋喃THF与二甲基甲酰胺DMF的混合溶剂中,其中THF和DMF的体积比为3:1,配成含有25 wt% PLGA混合纺丝液,用磁力搅拌约8 h,直至混合成均匀溶液,并通过静电纺丝法制成PLGA/G5-PEG-T复合纳米纤维膜,纺丝后将所纺的复合纳米纤维膜置于真空干燥12-24 h,去除残留混合溶剂,纺丝条件为:纺丝电压15 kV,流速0.3 mL/h,接收距离15 cm,环境湿度40-50 %。
实施例2
复合纳米纤维膜对Hg2+吸附效率的测试结果。
选取HgCl2作为模拟污染物,配置40 mL浓度为20 mg/L的HgCl2溶液。取对比例1、对比例2和实施例1中(3)所得产品的PLGA/G5-T、PLGA/G5-PEG和PLGA/G5-PEG-T复合纳米纤维膜,在室温下分别加入HgCl2溶液中,并搅拌。在预定时间点取样进行ICP-OES测试,监测溶液中的Hg2+离子含量变化(图1)。
结果表明:与对比例1加入的PLGA/ G5-T复合纳米纤维膜和对比例2加人的PLGA/G5-PEG复合纳米纤维膜相比,在加入PLGA/G5-PEG-T复合纳米纤维膜后的60 min内,溶液中Hg2+浓度明显下降,下降至19%,经计算可得该复合纳米纤维的Hg2+吸附率分别提高了46%和73%。虽然PLGA/G5-T复合纳米纤维膜具有一定的Hg2+离子吸附效果,但是PLGA/G5-PEG-T复合纳米纤维膜中的聚乙二醇化的胸腺嘧啶显著增强了该复合纳米纤维膜对Hg2+的吸附效率。
实施例3
复合纳米纤维膜对不同离子特异性吸附的测试结果。
采用CuCl2、CdCl2、CoCl2和HgCl2配制含有Cu2+、Cd2+、Co2+和Hg2+的混合金属离子溶液,混合金属离子溶液中的各种金属离子的初始浓度相同。用ICP-OES来检测PLGA/G5-PEG-T复合纳米纤维膜对Hg2+的选择吸附性能。实验时配制各离子浓度均为15 mg/mL的混合溶液,取70 mg的PLGA/G5-PEG-T进行吸附,在30 min和60 min两个时间点取样进行ICP-OES测试,检测溶液中的Cu2+、Cd2+、Co2+和Hg2+离子含量变化(图2)。
结果表明:在30 min和60 min两个时间进行测试,发现在30 min和60 min 时Cu2+、Cd2+、Co2+和Hg2+的浓度都有所下降,但Cu2+、Cd2+和Co2+浓度的下降量很少,而Hg2+的浓度的下降量很大且下降速度最快,其中在60 min时PLGA/G5-PEG-T对溶液中Hg2+的吸附率为81%,对Cu2+、Cd2+和Co2+的吸附率分别为23%、21%和22%。由此可知,PLGA/G5-PEG-T复合纳米纤维膜对Cu2+、Cd2+、Co2+有略微的吸附效果,但其对Hg2+吸附效果显著,PLGA/G5-PEG-T复合纳米纤维膜对水溶液中的Hg2+有特异性吸附作用。
对比例1
制备不含聚乙二醇的PLGA/G5-T:
分别称取质量比为1:2的胸腺嘧啶-1-乙酸Thymine-COOH和第五代聚酰胺-胺树状大分子G5.NH2并用超纯水进行搅拌溶解。在Thymine-COOH溶液中分别加入EDC和NHS进行羧基活化,再将G5.NH2加入Thymine-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到G5-T。将质量比为1:20的G5-T与PLGA混合溶解在THF与DMF的混合溶剂中,其中THF和DMF的体积比为3:1,配成含有25 wt%PLGA混合纺丝液,用磁力搅拌约8 h,直至混合成均匀溶液,并通过静电纺丝法制成PLGA/G5-T复合纳米纤维膜,纺丝后将所纺的纤维毡置于真空干燥12-24 h,去除残留溶剂,纺丝条件为:纺丝电压15 kV,流速0.3 mL/h,接收距离15 cm,环境湿度40-50 %。
对比例2
制备不含胸腺嘧啶的PLGA/G5-PEG:
分别称取质量比为1:2的聚乙二醇NH2-PEG-COOH和第五代聚酰胺-胺树状大分子G5.NH2并用超纯水进行搅拌溶解。在NH2-PEG-COOH溶液中分别加入EDC和NHS进行羧基活化,再将G5.NH2加入NH2-PEG-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到G5-PEG。将质量比为1:20的G5-PEG与PLGA混合溶解在THF与DMF的混合溶剂中,其中THF和DMF的体积比为3:1,配成含有25 wt%PLGA混合纺丝液,用磁力搅拌约8 h,直至混合成均匀溶液,并通过静电纺丝法制成PLGA/G5-PEG复合纳米纤维膜,纺丝后将所纺的纤维毡置于真空干燥12-24h,去除残留溶剂,纺丝条件为:纺丝电压15 kV,流速0.3 mL/h,接收距离15 cm,环境湿度40-50 %。

Claims (2)

1.一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法,其特征在于,包括步骤如下:
(1)先在胸腺嘧啶-1-乙酸Thymine-COOH溶液中分别加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDC和N-羟基琥珀酰亚胺NHS进行羧基活化,再将聚乙二醇NH2-PEG-COOH加入到Thymine-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到胸腺嘧啶修饰的聚乙二醇T-PEG-COOH,其中Thymine-COOH、EDC、NHS和NH2-PEG-COOH的物质的量之比为2:10:10:1;
(2)分别称取质量比为1:2的T-PEG-COOH和第五代聚酰胺-胺树状大分子G5.NH2并用超纯水进行搅拌溶解,在T-PEG-COOH溶液中分别加入EDC和NHS进行羧基活化,再将G5.NH2加入T-PEG-COOH溶液中,搅拌反应3 d,通过透析后冷冻干燥得到T-PEG-COOH修饰的树状大分子G5-PEG-T,其中T-PEG-COOH、EDC和NHS的物质的量之比为1:5:5;
(3) 将质量比为1:20的G5-PEG-T与聚乳酸-羟基乙酸PLGA混合溶解在四氢呋喃THF与二甲基甲酰胺DMF的混合溶剂中,配成含有25 wt% PLGA混合纺丝液,用磁力搅拌约8 h,直至混合成均匀溶液,并通过静电纺丝法制成PLGA/G5-PEG-T复合纳米纤维膜,纺丝后,将所纺的复合纳米纤维膜置于真空干燥12-24 h,去除残留混合溶剂,得到高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜。
2.根据权利要求1所述的一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法,其特征在于:所述的步骤(3)中THF和DMF的体积比为3:1,纺丝条件为:纺丝电压15 kV,流速0.3 mL/h,接收距离15 cm,环境湿度40-50 %。
CN201611248393.3A 2016-12-29 2016-12-29 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法 Active CN106607014B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611248393.3A CN106607014B (zh) 2016-12-29 2016-12-29 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611248393.3A CN106607014B (zh) 2016-12-29 2016-12-29 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法

Publications (2)

Publication Number Publication Date
CN106607014A true CN106607014A (zh) 2017-05-03
CN106607014B CN106607014B (zh) 2019-01-01

Family

ID=58636436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611248393.3A Active CN106607014B (zh) 2016-12-29 2016-12-29 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法

Country Status (1)

Country Link
CN (1) CN106607014B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754872A (zh) * 2018-05-29 2018-11-06 郑州豫力新材料科技有限公司 静电纺plga超细纤维膜的生产方法
CN109187689A (zh) * 2018-06-26 2019-01-11 广东省测试分析研究所(中国广州分析测试中心) 一种自组装电化学传感器及其在水相中痕量汞离子的检测中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119643A1 (en) * 2005-05-12 2006-11-16 Replicor Inc. Anti-ocular angiogenesis molecules and their uses
CN103113605A (zh) * 2013-01-15 2013-05-22 东华大学 特异性吸附汞离子pva/pei-t纳米纤维膜的制备方法
CN103435815A (zh) * 2013-07-11 2013-12-11 东华大学 一种功能化聚酰胺-胺树状大分子及其纳米复合物用于基因转染的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119643A1 (en) * 2005-05-12 2006-11-16 Replicor Inc. Anti-ocular angiogenesis molecules and their uses
CN103113605A (zh) * 2013-01-15 2013-05-22 东华大学 特异性吸附汞离子pva/pei-t纳米纤维膜的制备方法
CN103435815A (zh) * 2013-07-11 2013-12-11 东华大学 一种功能化聚酰胺-胺树状大分子及其纳米复合物用于基因转染的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIRTHIGA RAMALINGAM ET AL.: "Gene delivery using dendrimer/pDNA complexes immobilized in electrospun fibers using the Layer-by-Layer technique", 《RSC ADV》 *
XIANGANG HU ET AL.: "Polymeric nanoparticle–aptamer bioconjugates can diminish the toxicity of mercury in vivo", 《TOXICOLOGY LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754872A (zh) * 2018-05-29 2018-11-06 郑州豫力新材料科技有限公司 静电纺plga超细纤维膜的生产方法
CN108754872B (zh) * 2018-05-29 2021-09-10 郑州豫力新材料科技有限公司 静电纺plga超细纤维膜的生产方法
CN109187689A (zh) * 2018-06-26 2019-01-11 广东省测试分析研究所(中国广州分析测试中心) 一种自组装电化学传感器及其在水相中痕量汞离子的检测中的应用

Also Published As

Publication number Publication date
CN106607014B (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
Shi et al. A simple and universal strategy to construct robust and anti-biofouling amidoxime aerogels for enhanced uranium extraction from seawater
Sagitha et al. Recent advances in post-modification strategies of polymeric electrospun membranes
Kim et al. Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules
CN107321319B (zh) 多孔纳米纤维膜的制备及其在重金属离子吸附应用
Cao et al. Hydroxypropyl chitosan-based dual self-healing hydrogel for adsorption of chromium ions
Fan et al. A nanoprotein-functionalized hierarchical composite air filter
Li et al. Thermo-responsive polysulfone membranes with good anti-fouling property modified by grafting random copolymers via surface-initiated eATRP
Lan et al. Electrospun nanofibrous cellulose diacetate nitrate membrane for protein separation
Wang et al. Recent progress of the preparation and application of electrospun porous nanofibers
CN106731886B (zh) 一种介孔复合膜的制备方法
Amaly et al. Copper complex formed with pyridine rings grafted on cellulose nanofibrous membranes for highly efficient lysozyme adsorption
CN104971632B (zh) 一种易清洗型聚偏氟乙烯超滤膜及其制备方法
CN105968215B (zh) 一种纳米纤维素接枝氨基酸的方法在超滤膜方面的应用
CN103394293B (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
Xiao et al. Functionalization of electrospun poly (vinyl alcohol)(PVA) nanofiber membranes for selective chemical capture
Wu et al. Bioinspired synthesis of janus nanocomposite-incorporated molecularly imprinted membranes for selective adsorption and separation applications
Jiang et al. Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance
CN106076271A (zh) 一种纳米磁性聚赖氨酸/(石墨烯‑碳纳米管)生物吸附材料的制备方法及应用
Irfan et al. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites
CN101195083A (zh) 亲水性聚氯乙烯合金中空纤维过滤膜及其制备方法
CN106607014A (zh) 一种高效吸附汞离子的聚乳酸羟基乙酸基复合纳米纤维膜的制备方法
CN107675281B (zh) Pvp/pan纳米复合纤维的制备方法
Zhu et al. Biomimetic sulfated silk nanofibrils for constructing rapid mid-molecule toxins removal nanochannels
Wang et al. Preparation of egg white@ zeolitic imidazolate framework-8@ polyacrylic acid aerogel and its adsorption properties for organic dyes
CN110523282A (zh) 一种UiO-66复合正渗透膜及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201123

Address after: No.39, group 9, Chenjia village, Baima Town, Gaogang District, Taizhou City, Jiangsu Province

Patentee after: Wang Yajun

Address before: 314413, Fenghuang building, No. 1, Fenghuang Road, 2 Fenghuang Road, Haining, Zhejiang, Jiaxing

Patentee before: JIAXING DEYANG BIOTECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230926

Address after: 2704, Building 7, Qiaoxiang Mansion, No. 3028 Qiaoxiang Road, Futian District, Shenzhen City, Guangdong Province, 518000

Patentee after: Qiu Lin

Address before: No.39, group 9, Chenjia village, Baima Town, Gaogang District, Taizhou City, Jiangsu Province

Patentee before: Wang Yajun

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231031

Address after: 518000 Room 201, building A, No. 1, Qian Wan Road, Qianhai Shenzhen Hong Kong cooperation zone, Shenzhen, Guangdong (Shenzhen Qianhai business secretary Co., Ltd.)

Patentee after: Shenzhen Zhongsi Trade Technology Co.,Ltd.

Address before: 2704, Building 7, Qiaoxiang Mansion, No. 3028 Qiaoxiang Road, Futian District, Shenzhen City, Guangdong Province, 518000

Patentee before: Qiu Lin

TR01 Transfer of patent right