CN106599340A - Method for optimizing parameters of contact line and pantograph based on sensitivity analysis - Google Patents

Method for optimizing parameters of contact line and pantograph based on sensitivity analysis Download PDF

Info

Publication number
CN106599340A
CN106599340A CN201610912875.8A CN201610912875A CN106599340A CN 106599340 A CN106599340 A CN 106599340A CN 201610912875 A CN201610912875 A CN 201610912875A CN 106599340 A CN106599340 A CN 106599340A
Authority
CN
China
Prior art keywords
contact pressure
parameter
pantograph
parameters
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610912875.8A
Other languages
Chinese (zh)
Other versions
CN106599340B (en
Inventor
张坚
刘文正
于美丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201610912875.8A priority Critical patent/CN106599340B/en
Publication of CN106599340A publication Critical patent/CN106599340A/en
Application granted granted Critical
Publication of CN106599340B publication Critical patent/CN106599340B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

The invention discloses a method for optimizing parameters of a contact line and a pantograph based on sensitivity analysis. According to bow-net contact pressure during running of a high speed train, the existing problem is analyzed, level value design of the parameters is carried out through central composite design, and multi-factor and five-level parameters are obtained; an Spearman rank correlation coefficient method is adopted to compute correlation coefficients between the parameters of the contact line and the pantograph and the contact pressure to judge the correlation; and an Sobol method is adopted to compute sensitivity coefficients of the parameters of the contact line and the pantograph about the contact pressure, judge the impact of the parameters on the contact pressure and determine an optimization order of the parameters when the bow-net parameter optimization is carried out, after each index meets relevant standard requirements, optimization is ended and all bow-net parameter values are output. The method has reasonable optimization, and the parameters of the contact line and the pantograph can be adjusted quickly and reasonably, so that the contact pressure of the parameters of the contact line and the pantograph can be controlled reasonably.

Description

一种基于敏感度分析的接触网和受电弓参数的优化方法An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis

技术领域technical field

本发明涉及高铁弓网受流技术领域,具体是一种基于敏感度分析的接触网和受电弓参数的优化方法。The invention relates to the technical field of high-speed rail pantograph-catenary current collection, in particular to an optimization method for catenary and pantograph parameters based on sensitivity analysis.

背景技术Background technique

列车以较高速度运行时,在轮轨和气动激扰的影响下,受电弓振动和接触网波动严重,影响受电弓持续稳定取流。在受电弓运行速度、外部激扰条件一定的情况下,弓网间的受流质量主要受接触网和受电弓参数的影响。也就是说,可以通过调整接触网和受电弓的参数值,改善弓网受流质量。那么确定参数的变化方向及各参数对接触压力的影响程度,成为优化弓网受流质量的关键。When the train is running at a high speed, under the influence of wheel-rail and aerodynamic excitation, the vibration of the pantograph and the fluctuation of the catenary are serious, which affects the continuous and stable flow of the pantograph. Under the conditions of pantograph running speed and external excitation conditions, the quality of current receiving between pantograph and catenary is mainly affected by the parameters of catenary and pantograph. That is to say, the pantograph-catenary current receiving quality can be improved by adjusting the parameter values of catenary and pantograph. Then determining the changing direction of the parameters and the degree of influence of each parameter on the contact pressure becomes the key to optimize the pantograph-catenary flow quality.

但是在先前的技术中,多是根据工程经验,或者采用多次试验调整接触网参数及改变受电弓型号的方式改善弓网受流质量的,工程量比较大。本方法是从接触网和受电弓参数与接触压力相关性及确定参数对接触压力敏感性的两个角度展开,提出定量优化弓网参数的方法,实现弓网之间良好受流。But in the previous technology, most of them are based on engineering experience, or adopt multiple tests to adjust the catenary parameters and change the pantograph model to improve the current quality of the pantograph-catenary, and the amount of work is relatively large. This method is developed from two perspectives, the correlation between catenary and pantograph parameters and contact pressure, and the sensitivity of parameters to contact pressure, and proposes a method for quantitatively optimizing pantograph-catenary parameters to achieve good flow between pantograph-catenary.

发明内容Contents of the invention

本发明的目的是为高速铁路弓网设计提供一种合理的优化方法。并通过接触网和受电弓参数与接触压力相关性及弓网参数的敏感性的判定,进而通过快速合理的调整接触网及受电弓参数来实现。The purpose of the invention is to provide a reasonable optimization method for the pantograph-catenary design of high-speed railway. And through the determination of the correlation between the catenary and pantograph parameters and the contact pressure and the sensitivity of the pantograph-catenary parameters, and then through the rapid and reasonable adjustment of the catenary and pantograph parameters to achieve.

进行接触网结构优化时,一般以接触压力及其统计量,也就是以接触压力标准偏差值、平均值、最大值及最小值为受流指标,通过调整接触网和受电弓参数值将接触压力控制在合理的范围内。When optimizing the structure of the catenary, the contact pressure and its statistics, that is, the standard deviation, average value, maximum value and minimum value of the contact pressure are used as the current receiving index, and the contact network and pantograph parameters are adjusted. The pressure is controlled within a reasonable range.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种基于敏感度分析的接触网和受电弓参数的优化方法,包括以下步骤:A method for optimizing catenary and pantograph parameters based on sensitivity analysis, comprising the following steps:

步骤1:针对设计或初始的弓网模型,根据高速列车运行时的弓网接触压力,计算出接触压力平均值、标准偏差、最大值及最小值,分析出现的问题;Step 1: According to the design or initial pantograph-catenary model, according to the pantograph-catenary contact pressure when the high-speed train is running, calculate the average value, standard deviation, maximum value and minimum value of the contact pressure, and analyze the problems that arise;

接触压力平均值:Average contact pressure:

接触压力标准偏差:Contact Pressure Standard Deviation:

接触压力最大值:Maximum contact pressure:

Fmax=Max(Fi) (3)F max =Max(F i ) (3)

接触压力最小值:Contact pressure min:

Fmin=Min(Fi) (4)F min =Min(F i ) (4)

在式(1)-(4)中,Fi表示各采样点处的接触压力值(N);n为采样点数;In formulas (1)-(4), F i represents the contact pressure value (N) at each sampling point; n is the number of sampling points;

步骤2:以当前的接触网-受电弓结构为初始模型,通过中心复合设计进行参数的水平值设计,得出多因素五水平的参数组合,以及各参数水平值集合;分别表示标准化后的接触网及受电弓设计参数Zi,i=1,2…n,n为弓网参数数量;Step 2: Taking the current catenary-pantograph structure as the initial model, the level value design of the parameters is carried out through the central composite design, and the multi-factor five-level parameter combination and the set of level values of each parameter are obtained; respectively represent the standardized Catenary and pantograph design parameters Z i , i=1, 2...n, n is the number of pantograph-catenary parameters;

步骤3:根据以上得出的参数水平组合,采用Spearman秩相关系数法计算接触网和受电弓参数与接触压力间的相关系数,并根据相关系数的符号判定参数与接触压力间的相关性,Step 3: According to the combination of parameter levels obtained above, the correlation coefficient between catenary and pantograph parameters and contact pressure is calculated by Spearman rank correlation coefficient method, and the correlation between parameters and contact pressure is determined according to the sign of the correlation coefficient.

ρ表示秩相关系数,且-1≤ρ≤1;n为仿真试验的次数;aj、bj分别表示接触网参数及接触压力指标的集合水平值的秩,1≤j≤n;ρ represents the rank correlation coefficient, and -1≤ρ≤1; n is the number of simulation tests; a j and b j respectively represent the ranks of the set level values of catenary parameters and contact pressure indicators, 1≤j≤n;

步骤4:采用Sobol法,计算接触网和受电弓参数对接触压力的敏感度系数,判定该参数对接触压力的影响程度,从而确定进行弓网参数优化时的参数的优化顺序,Step 4: Using the Sobol method, calculate the sensitivity coefficient of the catenary and pantograph parameters to the contact pressure, and determine the degree of influence of this parameter on the contact pressure, so as to determine the optimization order of the parameters when optimizing the pantograph-catenary parameters.

各阶敏感度系数均满足的关系;The sensitivity coefficients of each order satisfy the Relationship;

其中,偏方差Di=∫fi 2(xi)dxi, 总方差Si是一阶敏感度系数,表示单一接触网和受电弓参数对接触压力的影响程度;Sij为二阶敏感度系数,表示接触网及受电弓参数的两两交互作用对接触压力的影响程度;Among them, partial variance D i =∫f i 2 ( xi )dx i, total variance Si is the first-order sensitivity coefficient, indicating the degree of influence of a single catenary and pantograph parameter on the contact pressure; Sij is the second-order sensitivity coefficient, indicating the influence of the pairwise interaction of catenary and pantograph parameters on the contact pressure influence level;

步骤5:针对步骤1中出现的问题,结合步骤3和4,改变弓网参数值;Step 5: For the problems in step 1, combine steps 3 and 4 to change the pantograph-catenary parameter value;

步骤6:根据步骤5中调整的接触网和受电弓参数,在仿真软件中,进行计算,并得出弓网接触压力;Step 6: According to the catenary and pantograph parameters adjusted in step 5, calculate in the simulation software, and obtain the pantograph-catenary contact pressure;

步骤7:根据接触压力值,统计接触压力标准偏差值、平均值、最大值、最小值及离线率,并与相应标准中的规定进行对比,当计算值在标准规定范围内时,则停止优化,并输出接触网和受电弓的参数值;否则进行步骤8;Step 7: According to the contact pressure value, count the standard deviation value, average value, maximum value, minimum value and offline rate of the contact pressure, and compare with the regulations in the corresponding standards. When the calculated value is within the range specified by the standard, stop the optimization , and output the parameter values of catenary and pantograph; otherwise, go to step 8;

步骤8:继续改变接触网或者受电弓的参数值,如果此时仍在其最大拉断力的范围内,则重复步骤6和7;否则,则进行步骤9;Step 8: Continue to change the parameter value of catenary or pantograph, if it is still within the range of its maximum breaking force, repeat steps 6 and 7; otherwise, proceed to step 9;

步骤9:首先判断参数是否已经改变所有的参数值,如果没有,则继续调整下一个参数值,然后继续进行步骤8;否则进行步骤10;Step 9: First judge whether the parameter has changed all parameter values, if not, continue to adjust the next parameter value, and then proceed to step 8; otherwise, proceed to step 10;

步骤10:在调整所有参数的条件下,如果各指标依然不满足标准的要求,则在最后参数值得基础上,重新添加其他的参数,重新进行试验设计,并重复步骤2-9;Step 10: Under the condition of adjusting all parameters, if each indicator still does not meet the requirements of the standard, add other parameters on the basis of the final parameter value, re-design the experiment, and repeat steps 2-9;

步骤11:重复进行以上所有步骤,各指标满足相关标准要求后,结束优化,并输出所有的弓网参数值。Step 11: Repeat all the above steps. After each index meets the requirements of the relevant standards, the optimization ends and all pantograph-catenary parameter values are output.

作为本发明进一步的方案:所述步骤(3)中,当秩相关系数ρ>0时,弓网参数与接触压力正相关;当秩相关系数ρ<0时,接触压力与弓网参数的变化成负相关。As a further solution of the present invention: in the step (3), when the rank correlation coefficient ρ>0, the pantograph-catenary parameter is positively correlated with the contact pressure; when the rank correlation coefficient ρ<0, the change of the contact pressure and the pantograph-catenary parameter into a negative correlation.

与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:

本发明为高速铁路弓网设计提供一种合理的优化方法,并通过接触网和受电弓参数与接触压力相关性及弓网参数的敏感性的判定,进而通过快速合理的调整接触网及受电弓参数来实现。进行接触网结构优化时,以接触压力及其统计量,通过调整接触网和受电弓参数值将接触压力控制在合理的范围内。The present invention provides a reasonable optimization method for pantograph-catenary design of high-speed railways, and through the determination of the correlation between catenary and pantograph parameters and contact pressure and the sensitivity of pantograph-catenary parameters, and then through rapid and reasonable adjustment of catenary and pantograph Pantograph parameters to achieve. When optimizing the catenary structure, the contact pressure and its statistics are used to control the contact pressure within a reasonable range by adjusting the parameter values of the catenary and pantograph.

附图说明Description of drawings

图1为参照接触网的结构示意图。Figure 1 is a schematic diagram of the structure of the reference catenary.

图2为参照受电弓的结构示意图。(其中,①②③④代表不同部位的编号,k代表弹簧的弹性系数)Fig. 2 is a schematic structural diagram of the reference pantograph. (Among them, ①②③④ represent the numbers of different parts, and k represents the elastic coefficient of the spring)

图3为接触网结构优化流程图。Figure 3 is a flow chart of catenary structure optimization.

图4为中心复合设计原理图。Figure 4 is a schematic diagram of the central composite design.

图5为实例参数敏感度系数。Figure 5 shows the example parameter sensitivity coefficient.

图6为实例的实际效果波形图。Figure 6 is the actual effect waveform diagram of the example.

图7a、7b、7c、7d为实例的实际效果图。Figures 7a, 7b, 7c, and 7d are actual effect diagrams of examples.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

实施例Example

基于敏感度分析的接触网参数的优化方法,包括以下步骤:The optimization method of catenary parameters based on sensitivity analysis includes the following steps:

步骤1:针对初始的设计方案或初始的弓网模型,根据高速列车运行时的弓网接触压力,计算出接触压力标准偏差、平均值、最大值及离线率,分析出现的问题;Step 1: According to the initial design scheme or the initial pantograph-catenary model, according to the pantograph-catenary contact pressure when the high-speed train is running, calculate the standard deviation, average value, maximum value and offline rate of the contact pressure, and analyze the problems that arise;

初始弓网模型:图中的结构参数分别参考了京津城际高速铁路接触网和法维莱CX系列受电弓,如图1和图2所示;Initial pantograph-catenary model: The structural parameters in the figure refer to the Beijing-Tianjin intercity high-speed railway catenary and the Faiveley CX series pantograph, as shown in Figure 1 and Figure 2;

接触压力平均值、标准偏差值及最大值作为评价指标,分析接触压力的变化,各指标可以根据图5所示的接触压力计算得出,具体如下:The average value, standard deviation and maximum value of contact pressure are used as evaluation indicators to analyze the change of contact pressure. Each index can be calculated according to the contact pressure shown in Figure 5, as follows:

接触压力平均值:Average contact pressure:

接触压力标准偏差:Contact Pressure Standard Deviation:

接触压力最大值:Maximum contact pressure:

Fmax=Max(Fi) (3)F max =Max(F i ) (3)

接触压力最小值:Contact pressure min:

Fmin=Min(Fi) (4)F min =Min(F i ) (4)

在式(1)-(4)中,Fi表示各采样点处的接触压力值(N);n为采样点数;In formulas (1)-(4), F i represents the contact pressure value (N) at each sampling point; n is the number of sampling points;

③列车运行过程中,通过受电弓与接触线滑动接触,弓网接触压力是评价弓网受流质量的主要指标,一般用接触压力平均值、标准偏差及最大值等接触压力统计量作为衡量接触压力变化的指标;根据相关的标准规定,当接触压力在一定范围内时才能保证弓网间的受流质量;③ During the operation of the train, through the sliding contact between the pantograph and the contact wire, the pantograph-catenary contact pressure is the main index to evaluate the quality of the pantograph-catenary flow, and the contact pressure statistics such as the average value, standard deviation and maximum value of the contact pressure are generally used as a measure The index of contact pressure change; according to relevant standards, the flow quality between pantograph and catenate can be guaranteed only when the contact pressure is within a certain range;

所以,在此处问题就是接触压力各指标不符合相关标准的要求;比如,标准偏差值太大,离线率过高等;Therefore, the problem here is that the indicators of contact pressure do not meet the requirements of relevant standards; for example, the standard deviation value is too large, the offline rate is too high, etc.;

步骤2:以当前的接触网-受电弓结构为初始模型(已给出),通过中心复合设计进行参数的水平值设计,得出多因素五水平的参数组合,以及各参数水平值集合;分别表示标准化后的接触网及受电弓设计参数Zi,i=1,2…n,n为弓网参数数量;Step 2: Taking the current catenary-pantograph structure as the initial model (given), the level value design of the parameters is carried out through the central composite design, and the multi-factor five-level parameter combination and the set of level values of each parameter are obtained; respectively represent the standardized catenary and pantograph design parameters Z i , i=1, 2...n, n is the number of pantograph-catenary parameters;

其中,中心复合设计:Among them, the central composite design:

首先需要得到各接触网参数及接触压力指标水平值集合,采用中心复合设计法,设计仿真试验的参数水平值组合;为了讨论接触网设计参数变化时对接触压力的影响;图1中的接触网设计参数为初始值,将其设为零水平,并以0.1倍的初始值变化,得到各参数的水平值取值表,如表1所示;First of all, it is necessary to obtain the set of catenary parameters and contact pressure index level values, and use the central composite design method to design the combination of parameter level values for simulation experiments; in order to discuss the influence of contact pressure when the catenary design parameters change; the catenary in Figure 1 The design parameter is the initial value, set it as zero level, and change it by 0.1 times the initial value, and obtain the level value table of each parameter, as shown in Table 1;

表1接触网参数取值表Table 1 Catenary parameter value table

将接触网设计参数零水平值标准化为(1,1,1,1),然后依次标准化参数其他的水平值,如表2所示;Standardize the zero-level value of the catenary design parameter to (1, 1, 1, 1), and then standardize the other level values of the parameter in turn, as shown in Table 2;

表2接触网参数水平编码表Table 2 Catenary parameter level coding table

其中,Zi(i=1,2,3,4)分别表示标准化后的接触网各设计参数;Among them, Z i (i=1, 2, 3, 4) respectively represent the design parameters of the standardized catenary;

根据图3和图4所示的中心复合设计流程以及原则,进行各参数水平值的组合设计,并采用Design-Expert软件实现四因素五水平的参数组合,得到30种组合方式;也就是需要在MSC.Marc软件中进行30次仿真计算,并得到相应的接触压力平均值、标准偏差及最大值;According to the central composite design process and principles shown in Figure 3 and Figure 4, the combination design of each parameter level value is carried out, and the parameter combination of four factors and five levels is realized by Design-Expert software, and 30 combinations are obtained; Perform 30 simulation calculations in MSC.Marc software, and obtain the corresponding contact pressure average value, standard deviation and maximum value;

步骤3:根据以上得出的参数水平组合,首先采用Spearman秩相关系数法计算接触线张力与接触压力间的相关系数,并根据相关系数的符号判定参数与接触压力间的相关性,Step 3: According to the combination of parameter levels obtained above, the correlation coefficient between the contact line tension and the contact pressure is firstly calculated by the Spearman rank correlation coefficient method, and the correlation between the parameters and the contact pressure is determined according to the sign of the correlation coefficient.

式中,ρ表示秩相关系数,且-1≤ρ≤1;n为仿真试验的次数,n=30;aj,bj(1≤j≤30)分别表示第j个接触线张力值和标准偏差值在接触线张力和标准偏差集合中的排序,也称为秩。用{Tcj}表示接触线张力水平值集合,用{Sj}表示标准偏差集合,其中,Tcj、Sj分别表示两集合中的元素。对两集合中的元素分别进行升序排列,得到两数列秩的集合{aj}、{bj},两列变量的元素分别用aj,bj表示;In the formula, ρ represents the rank correlation coefficient, and -1≤ρ≤1; n is the number of simulation tests, n=30; a j , b j (1≤j≤30) represent the jth contact line tension value and The ordering, also known as the rank, of the standard deviation values in the set of contact line tensions and standard deviations. Use {T cj } to represent the set of contact line tension level values, and use {S j } to represent the set of standard deviations, where T cj and S j represent the elements in the two sets respectively. Arrange the elements in the two sets in ascending order to obtain the sets {a j } and {b j } of the ranks of the two series, and the elements of the two columns of variables are represented by a j and b j respectively;

|ρ|的大小表示接触线张力与标准偏差的相关程度,|ρ|越接近1,说明接触线张力与标准偏差的相关程度越强;|ρ|越接近0,说明接触线张力与标准偏差间的相关程度越弱。当ρ>0时,接触线张力与标准偏差正相关,即标准偏差随着接触线张力的增大而增大;当ρ<0时,接触线张力与接触压力标准偏差负相关,即标准偏差随着接触线张力的增大而降低;The size of |ρ| indicates the degree of correlation between the tension of the contact line and the standard deviation. The closer |ρ| is to 1, the stronger the correlation between the tension of the contact line and the standard deviation is; the closer |ρ| is to 0, the relationship between the tension of the contact line and the standard deviation is stronger. The weaker the correlation between. When ρ>0, the contact line tension is positively correlated with the standard deviation, that is, the standard deviation increases with the increase of the contact line tension; when ρ<0, the contact line tension is negatively correlated with the standard deviation of the contact pressure, that is, the standard deviation Decreases with increasing contact line tension;

以上是接触线张力与接触压力标准偏差的计算过程。用同样的方法,可以计算接触线张力与接触压力平均值及最大值间的相关系数。进而计算承力索张力、接触线线密度和承力索线密度分别与接触压力标准偏差、平均值及最大值间的相关系数。The above is the calculation process of the standard deviation of the contact line tension and contact pressure. In the same way, the correlation coefficient between the contact line tension and the average and maximum value of the contact pressure can be calculated. Furthermore, the correlation coefficients between the catenary cable tension, the linear density of the contact line and the linear density of the catenary cable and the standard deviation, average value and maximum value of the contact pressure were calculated.

步骤4:采用Sobol法,计算接触网参数对接触压力的敏感度系数,并根据敏感度系数的大小判定该参数对接触压力的影响程度,从而确定进行接触网参数优化时的参数的优化顺序;Step 4: Using the Sobol method, calculate the sensitivity coefficient of the catenary parameters to the contact pressure, and determine the degree of influence of the parameter on the contact pressure according to the size of the sensitivity coefficient, so as to determine the optimization order of the parameters when optimizing the catenary parameters;

基于Sobol法的接触网各设计参数与接触压力间的函数关系,用式(6)表示;The functional relationship between the design parameters of the catenary and the contact pressure based on the Sobol method is expressed by formula (6);

f(X)=f(x1,x2,…,xn),i=1,2,…,n (6)f(X)=f(x 1 , x 2 , . . . , x n ), i=1, 2, . . . , n (6)

式中,xi表示接触网各设计参数,n=4;f(X)表示接触压力平均值、标准偏差或最大值。接触网各设计参数与接触压力各指标间有明显的线性关系;在两两参数的影响下,各参数与接触压力各指标间的相关程度不同;所以,用一阶回归形式表示单一接触网参数与接触压力间的线性关系,用两两参数的乘积表示两参数交互作用与接触压力间的关系,将f(X)预测为如式(6)所示的二阶交互非线性模型的形式;In the formula, x i represents each design parameter of catenary, n=4; f(X) represents the average value, standard deviation or maximum value of contact pressure. There is an obvious linear relationship between each design parameter of catenary and each index of contact pressure; under the influence of two parameters, the degree of correlation between each parameter and each index of contact pressure is different; therefore, a single catenary parameter is expressed in the form of first-order regression The linear relationship between the contact pressure and the product of two parameters is used to represent the relationship between the two-parameter interaction and the contact pressure, and f(X) is predicted to be in the form of a second-order interactive nonlinear model as shown in formula (6);

f(x)=F0+a1x1+a2x2+a3x3+a4x4+b1x1x2+b2x1x3+b3x1x4+c1x2x3+c2x2x4+d1x3x4(7)f(x)=F 0 +a 1 x 1 +a 2 x 2 +a 3 x 3 +a 4 x 4 +b 1 x 1 x 2 +b 2 x 1 x 3 +b 3 x 1 x 4 +c 1 x 2 x 3 +c 2 x 2 x 4 +d 1 x 3 x 4 (7)

其中,f(x)表示平均值、标准偏差或最大值;x1表示承力索张力,x2表示接触线张力,x3表示承力索线密度,x4表示接触线线密度;F0表示方程的截距;a1、a2、a3…c2、d1表示方程的回归系数;回归方程的截距及回归系数,可以表2的参数水平值,在Design-Expert软件中计算得到;Among them, f(x) represents the average value, standard deviation or maximum value; x 1 represents the catenary tension, x 2 represents the contact line tension, x 3 represents the catenary line density, x 4 represents the contact line line density; F 0 Indicates the intercept of the equation; a 1 , a 2 , a 3 ...c 2 , d 1 represent the regression coefficient of the equation; the intercept and regression coefficient of the regression equation can be calculated in the Design-Expert software by the parameter level values in Table 2 get;

Sobol敏感系数的计算公式,如下所示:The calculation formula of Sobol sensitivity coefficient is as follows:

S1,2…n=D1,2…s/D(8)S 1,2...n = D 1,2...s /D(8)

各阶敏感度系数均满足的关系,偏方差Di=∫fi 2(xi)dxi总方差Si是一阶敏感度系数,表示单一接触网参数对接触压力的影响程度;敏感度系数越大,表示该参数对接触压力的影响程度越大;Sij为二阶敏感度系数,表示接触网参数的两两交互作用对接触压力的影响程度;The sensitivity coefficients of each order satisfy the The relation of partial variance D i =∫f i 2 ( xi )dx i , total variance S i is the first-order sensitivity coefficient, indicating the degree of influence of a single catenary parameter on the contact pressure; the larger the sensitivity coefficient, the greater the influence of the parameter on the contact pressure; S ij is the second-order sensitivity coefficient, indicating the contact pressure The influence degree of the pairwise interaction of network parameters on the contact pressure;

fi(xi)及fij(xi,xj)等是f(x1,x2,…,xn)的子项,各子项均满足f i (x i ) and f ij (x i , x j ) are sub-items of f(x 1 , x 2 ,…, x n ), and each sub-item satisfies

各子项可以通过以下方法计算;Each sub-item can be calculated by the following method;

f0=∫f(x1,x2,…xn)dx1dx2…dxn (10)f 0 =∫f(x 1 ,x 2 ,…x n )dx 1 dx 2 …dx n (10)

fi(xi)=∫f(x1,x2,…xn)dx1…dxi-1dxi+1-f0 (11)f i (x i )=∫f(x 1 ,x 2 ,…x n )dx 1 …dx i-1 dx i+1 -f 0 (11)

fij(xi,xj)=∫f(x1,x2,…xn)dx1…dxi-1dxi+1…dxj-1dxj+1-f0-fi(xi)-fj(xj) (12)f ij (x i ,x j )=∫f(x 1 ,x 2 ,…x n )dx 1 …dx i-1 dx i+1 …dx j - 1 dx j+1 -f 0 -f i ( x i )-f j (x j ) (12)

步骤5:针对步骤1中出现的问题,结合步骤3和4,改变弓网参数值;Step 5: For the problems in step 1, combine steps 3 and 4 to change the pantograph-catenary parameter value;

步骤6:根据步骤5中调整的接触网,在仿真软件MSC.Marc中,进行计算,并得出弓网接触压力;Step 6: According to the catenary adjusted in step 5, calculate in the simulation software MSC.Marc, and obtain the pantograph-catenary contact pressure;

步骤7:根据接触压力值,统计接触压力标准偏差值、平均值、最大值及离线率,并与相应标准中的规定进行对比,当计算值在标准规定范围内时,则停止优化,并输出接触网和受电弓的参数值;否则进行步骤8;Step 7: According to the contact pressure value, count the standard deviation value, average value, maximum value and offline rate of the contact pressure, and compare it with the regulations in the corresponding standards. When the calculated value is within the range specified by the standard, stop the optimization and output Parameter values of catenary and pantograph; otherwise, go to step 8;

标准规定:standard regulation:

Tb10621-2014Tb10621-2014

表3动态接触压力标准Table 3 Dynamic Contact Pressure Standards

设计时速(km/h)Design speed(km/h) 250250 300300 350350 平均接触力Fm(N)Average contact force F m (N) ≤130≤130 ≤150≤150 ≤180≤180 最大接触力Fmax(N)Maximum contact force F max (N) ≤250≤250 ≤250≤250 ≤350≤350 最小接触力Fmin(N)Minimum contact force F min (N) >0>0 >0>0 >0>0 离线率offline rate ≤1%≤1% ≤1%≤1% ≤1%≤1%

EN50318标准EN50318 standard

表4弓网仿真结果统计数据与EN50318标准的规定范围Table 4 The statistical data of pantograph-catenary simulation results and the specified range of EN50318 standard

由于当且阶段尚没有速度大于400km/h时的相关标准,当高速弓网受流质量满足低速要求时,即可以停止优化;Since there is no relevant standard when the speed is greater than 400km/h, when the high-speed pantograph-catenary flow quality meets the low-speed requirements, the optimization can be stopped;

也就是标准TB10621-2014,在350km/h的运行条件下,接触压力平均值不大于180N,最大值不大于350N,离线率不大于1%;欧洲标准EN50318中规定,运行时速300km/h条件下接触压力标准差不超过40N;That is, the standard TB10621-2014, under the operating condition of 350km/h, the average contact pressure is not greater than 180N, the maximum value is not greater than 350N, and the off-line rate is not greater than 1%; European standard EN50318 stipulates that under the condition of operating speed of 300km/h The standard deviation of the contact pressure shall not exceed 40N;

步骤8:继续改变接触网或者受电弓的参数值,如果此时仍在其最大拉断力的范围内,则重复步骤6和7;否则,则进行步骤9;Step 8: Continue to change the parameter value of catenary or pantograph, if it is still within the range of its maximum breaking force, repeat steps 6 and 7; otherwise, proceed to step 9;

步骤9:首先判断参数是否已经改变所有的参数值,如果没有,则继续调整下一个参数值,然后继续进行步骤8;否则进行步骤10;Step 9: First judge whether the parameter has changed all parameter values, if not, continue to adjust the next parameter value, and then proceed to step 8; otherwise, proceed to step 10;

步骤10:在调整所有参数的条件下,如果各指标依然不满足标准的要求,则在最后参数值得基础上,重新添加其他的参数,重新进行试验设计,并重复步骤2-9;Step 10: Under the condition of adjusting all parameters, if each indicator still does not meet the requirements of the standard, add other parameters on the basis of the final parameter value, re-design the experiment, and repeat steps 2-9;

步骤11:重复进行以上所有步骤,各指标满足相关标准要求后,结束优化,并输出所有的弓网参数值。Step 11: Repeat all the above steps. After each index meets the requirements of the relevant standards, the optimization ends and all pantograph-catenary parameter values are output.

试验例Test case

本发明实施例中,结合图3和图4,对接触网和受电弓参数进行优化试验。In the embodiment of the present invention, with reference to Fig. 3 and Fig. 4, an optimization test is carried out on the parameters of the catenary and pantograph.

为了降低运行速度为500km/h时的接触压力标准偏差值、最大值和离线率,首先采用步骤3中的Spearman秩相关系数法判定接触网参数的优化方向,如表5和表6所示;In order to reduce the standard deviation value, maximum value and offline rate of contact pressure when the operating speed is 500 km/h, the Spearman rank correlation coefficient method in step 3 is first used to determine the optimization direction of catenary parameters, as shown in Table 5 and Table 6;

表5实例因素水平表Table 5 Instance factor level table

表6实例的相关系数Table 6 Correlation coefficient of the example

然后,采用步骤4中的Sobol法,判定对于标准偏差和最大值的各参数的优化顺序,Then, use the Sobol method in step 4 to determine the optimization order of each parameter for the standard deviation and maximum value,

如附图5。根据以上可知,对于标准偏差,需要增大接触线张力、减小接触线线密度和承力索张力、增大承力索线密度;对于最大值,需要增大接触线张力、减小承力索张力和接触线线密度、增大承力索线密度,并提出如附表7的优化方案;As shown in Figure 5. According to the above, for the standard deviation, it is necessary to increase the tension of the contact line, decrease the linear density of the contact line and the tension of the catenary cable, and increase the linear density of the catenary cable; for the maximum value, it is necessary to increase the tension of the contact line and reduce the bearing force cable tension and contact line density, increase load-bearing cable line density, and propose an optimization scheme as shown in Attached Table 7;

表7实例的方针方案Table 7 Example policy scheme

优化步骤序号Optimization step number 改变参数change parameters 参数设计parametric design 00 none Tc=21kN,Tj=27kN,mc=1.08kg/m,mj=1.08kg/m.Tc=21kN, Tj=27kN, mc=1.08kg/m, mj=1.08kg/m. 11 TjTj Tc=21kN,Tj=34kN,mc=1.08kg/m,mj=1.08kg/m.Tc=21kN, Tj=34kN, mc=1.08kg/m, mj=1.08kg/m. 22 Tj、mjTj, mj Tc=21kN,Tj=34kN,mc=1.08kg/m,mj=0.758kg/m.Tc=21kN, Tj=34kN, mc=1.08kg/m, mj=0.758kg/m. 33 Tj、mj、TcTj, mj, Tc Tc=14kN,Tj=34kN,mc=1.08kg/m,mj=0.758kg/m.Tc=14kN, Tj=34kN, mc=1.08kg/m, mj=0.758kg/m.

从表7中可以得出如图6和7中的实际效果图,可以看出,通过逐步改变接触网参数后,接触压力的标准偏差降低到40N左右;接触压力的平均值在70~110N范围内;接触压力最大值降低到了250N以下;离线率降低到了1%以下。可以看出,优化以后的接触压力各指标,均在EN50318标准及TB10621-2014标准的规定范围内。From Table 7, the actual effect diagrams shown in Figures 6 and 7 can be obtained. It can be seen that after gradually changing the catenary parameters, the standard deviation of the contact pressure is reduced to about 40N; the average value of the contact pressure is in the range of 70-110N within; the maximum contact pressure is reduced to below 250N; the off-line rate is reduced to below 1%. It can be seen that the optimized contact pressure indicators are all within the specified ranges of the EN50318 standard and the TB10621-2014 standard.

从实例中可以看出,在本发明优化流程的基础上,可以优化出受流质量良好的接触网结构。以上实例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。It can be seen from the examples that on the basis of the optimized process of the present invention, a catenary structure with good flow quality can be optimized. The description of the above example is only used to help understand the method of the present invention and its core idea; meanwhile, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope.

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.

Claims (2)

1. a kind of optimization method of the contact net and pantograph parameters based on sensitivity analysis, it is characterised in that including following step Suddenly:
Step 1:For design or initial bow net model, bow net contact pressure when being run according to bullet train, calculate and connect Touch pressure meansigma methodss, standard deviation, maximum and minima, analyze produced problem;
Contact pressure meansigma methodss:
F &OverBar; = 1 n &Sigma; i = 1 n F i - - - ( 1 )
Contact pressure standard deviation:
F s t d = 1 n &Sigma; i = 1 n ( F i - F &OverBar; ) 2 - - - ( 2 )
Contact pressure maximum:
Fmax=Max (Fi) (3)
Contact pressure minima:
Fmin=Min (Fi) (4)
In formula (1)-(4), FiRepresent the contact pressure value (N) of each sample point;N is sampling number;
Step 2:With current contact net-pantograph structure as initial model, by it is central composite design enter line parameter level Value design, draws the parameter combination of multifactor five level, and each parameter level value set;The contact after standardization is represented respectively Net and pantograph design parameter Zi, i=1,2 ... n, n are bow net number of parameters;
Step 3:The parameter level combination drawn according to more than, contact net is calculated and by electricity using Spearman rank correlation coefficients method Bow parameter and contact pressure between correlation coefficient, and the sign determination parameter according to correlation coefficient to it is related between contact pressure Property,
&rho; = 1 - 6 &Sigma; ( b j - a j ) 2 n ( n 2 - 1 ) - - - ( 5 )
ρ represents rank correlation coefficient, and -1≤ρ≤1;N is the number of times of l-G simulation test;aj、bjBow net parameter and contact pressure are represented respectively The order of the set level value of power index, 1≤j≤n;
Step 4:Using Sobol methods, the sensitivity coefficient of contact net and pantograph parameters to contact pressure is calculated, judge the parameter Influence degree to contact pressure, so that it is determined that the optimization order of parameter when carrying out bow net parameter optimization,
S 12... n = D i 1 i 2 ... i s / D - - - ( 6 )
Each rank sensitivity coefficient is satisfied byRelation;
Wherein, partial variancePopulation varianceSi is single order sensitivity coefficient, represents single contact net and pantograph parameters Influence degree to contact pressure;SijFor second order sensitivity coefficient, the pairwise interaction of contact net and pantograph parameters is represented Influence degree to contact pressure;
Step 5:For produced problem in step 1, with reference to step 3 and 4, change bow net parameter value;
Step 6:According to the contact net and pantograph parameters that adjust in step 5, in simulation software, calculated, and drawn bow Net contact pressure;
Step 7:According to contact pressure value, contact pressure standard deviation value, meansigma methodss, maximum, minima and ratio of contact loss are counted, And contrasted with the regulation in respective standard, when value of calculation is in the range of standard regulation, then stop optimization, and export contact The parameter value of net and pantograph;Otherwise carry out step 8;
Step 8:Continue the parameter value for changing contact net or pantograph, if now still in the range of its maximum pull-off force, Then repeat step 6 and 7;Otherwise, then step 9 is carried out;
Step 9:The whether altered all of parameter value of parameter is first determined whether, if it is not, continuing to adjust next parameter Value, then proceeds by step 8;Otherwise carry out step 10;
Step 10:Under conditions of all parameters are adjusted, if each index is still unsatisfactory for the requirement of standard, in final parameter On the basis of being worth, other parameters are added again, re-start EXPERIMENTAL DESIGN, and repeat step 2-9;
Step 11:Repeat all of above step, each index is met after relevant criterion requirement, terminate optimization, and export all Bow net parameter value.
2. the optimization method of the contact net and pantograph parameters based on sensitivity analysis according to claim 1, its feature It is, in the step (3), as rank correlation coefficient ρ > 0, bow net parameter and contact pressure positive correlation;As rank correlation coefficient ρ During < 0, contact pressure is changing into negative correlation with bow net parameter.
CN201610912875.8A 2016-10-19 2016-10-19 An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis Active CN106599340B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610912875.8A CN106599340B (en) 2016-10-19 2016-10-19 An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610912875.8A CN106599340B (en) 2016-10-19 2016-10-19 An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis

Publications (2)

Publication Number Publication Date
CN106599340A true CN106599340A (en) 2017-04-26
CN106599340B CN106599340B (en) 2019-10-11

Family

ID=58556314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610912875.8A Active CN106599340B (en) 2016-10-19 2016-10-19 An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis

Country Status (1)

Country Link
CN (1) CN106599340B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108229045A (en) * 2018-01-16 2018-06-29 西南交通大学 A kind of high speed pantograph key parameter discrimination method based on sensitivity analysis
CN109472461A (en) * 2018-10-18 2019-03-15 中国铁道科学研究院集团有限公司基础设施检测研究所 Method and device for determining quality of catenary section
WO2019091442A1 (en) * 2017-11-09 2019-05-16 中车株洲电力机车有限公司 Pantograph head balancing structure of pantograph having small rotation angle, pantograph head and design method thereof
CN110118540A (en) * 2018-02-05 2019-08-13 宜达工程设计(天津)有限责任公司 A method of for contact line Abrasion detecting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880759A (en) * 2012-09-27 2013-01-16 西南交通大学 High-speed train large system coupling dynamic simulation platform
CN105631128A (en) * 2015-12-29 2016-06-01 西南交通大学 High-speed railway pantograph-net-train-rail vertical coupling large system dynamic modeling and simulation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102880759A (en) * 2012-09-27 2013-01-16 西南交通大学 High-speed train large system coupling dynamic simulation platform
CN105631128A (en) * 2015-12-29 2016-06-01 西南交通大学 High-speed railway pantograph-net-train-rail vertical coupling large system dynamic modeling and simulation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PRIYA MAHAJAN ET AL.: ""Sensitivity Analysis of Pantograph-Catenary System Model"", 《2012 IEEE 5TH INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONICS(IICPE)》 *
YIFENG BAI ET AL.: ""Study on influence of contact wire design parameters on contact characteristics of Pantograph-Catennary"", 《2013 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT RAIL TRANSPORTATION PROCEEDIGNS》 *
杨会胜 等: ""高速铁路接触网设计参数与受流质量关系的仿真研究"", 《中国铁路》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019091442A1 (en) * 2017-11-09 2019-05-16 中车株洲电力机车有限公司 Pantograph head balancing structure of pantograph having small rotation angle, pantograph head and design method thereof
CN108229045A (en) * 2018-01-16 2018-06-29 西南交通大学 A kind of high speed pantograph key parameter discrimination method based on sensitivity analysis
CN108229045B (en) * 2018-01-16 2021-05-04 西南交通大学 A method for identifying key parameters of high-speed pantograph based on sensitivity analysis
CN110118540A (en) * 2018-02-05 2019-08-13 宜达工程设计(天津)有限责任公司 A method of for contact line Abrasion detecting
CN109472461A (en) * 2018-10-18 2019-03-15 中国铁道科学研究院集团有限公司基础设施检测研究所 Method and device for determining quality of catenary section

Also Published As

Publication number Publication date
CN106599340B (en) 2019-10-11

Similar Documents

Publication Publication Date Title
CN106599340B (en) An Optimization Method of Catenary and Pantograph Parameters Based on Sensitivity Analysis
CN101520652B (en) A method for evaluating the service reliability of NC equipment
CN103926491B (en) A kind of Transformer condition evaluation taking into account DC magnetic biasing impact
CN104166788B (en) Overhead transmission line optimal economic life range assessment method
CN101246569A (en) Comprehensive Evaluation Method of Power Grid Power Quality Based on Analytic Hierarchy Process and Fuzzy Algorithm
CN107103140A (en) A kind of time-dependent fatigue reliability analysis method based on bilinearity accumulated damage
CN106202635A (en) A kind of dynamic axle temperature Forecasting Methodology of bullet train based on multivariate regression models
CN105096037A (en) Failure risk determination method of photovoltaic assembly
CN104102762A (en) Application of cloud model fuzzy analytical hierarchy process in risk analysis of railway signal system
CN107967571A (en) Index system generation method based on entropy assessment
CN106803137A (en) Urban track traffic AFC system enters the station volume of the flow of passengers method for detecting abnormality in real time
CN103020429A (en) Comprehensive decision-making and evaluating method for health condition of tied-arch bridge
Wu et al. Effectiveness assessment of air pollution prevention and control under collaborative supervision in the Beijing-Tianjin-Hebei region based on combination weights and grey fuzzy synthetic evaluation analysis
CN107264569A (en) A kind of track quality state evaluation method and system
CN101969202A (en) Method for recognizing transmission section power limit interval of power system transient stability
CN105117847A (en) Method for evaluating transformer failure importance
CN103020430B (en) Evaluation method for pantograph-catenary matching performance of spectral cross-correlation coefficient
CN106873365A (en) A kind of extrusioning blowing process optimization method of comprehensive quality target and equipment performance
CN103996146A (en) Scheduling system and method for steel making and continuous casting production
CN106203829A (en) A kind of contact net reliability estimation method considering state of weather
CN114812911B (en) Fastener torque evaluation method and system
CN105488572A (en) Health state evaluation method of power distribution equipment
CN106899014A (en) A kind of modeling and forecasting method of the electric railway load decomposed based on waveform
CN113177259B (en) Extreme value theory-based rail irregularity peak value overrun management method
CN106203778A (en) Similarity evaluation method between a kind of highway technical specification cloud model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant