CN106591424A - 一种应用羊角月牙藻测试采油废水生物毒性的方法 - Google Patents

一种应用羊角月牙藻测试采油废水生物毒性的方法 Download PDF

Info

Publication number
CN106591424A
CN106591424A CN201611171166.5A CN201611171166A CN106591424A CN 106591424 A CN106591424 A CN 106591424A CN 201611171166 A CN201611171166 A CN 201611171166A CN 106591424 A CN106591424 A CN 106591424A
Authority
CN
China
Prior art keywords
waste water
toxicity
oil extraction
algae
extraction waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611171166.5A
Other languages
English (en)
Other versions
CN106591424B (zh
Inventor
李艳红
肖楠
张立浩
覃礼堂
解庆林
张鑫
张帆
宋晓红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201611171166.5A priority Critical patent/CN106591424B/zh
Publication of CN106591424A publication Critical patent/CN106591424A/zh
Application granted granted Critical
Publication of CN106591424B publication Critical patent/CN106591424B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/64Geomicrobiological testing, e.g. for petroleum
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Paleontology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

本发明公开了一种应用羊角月牙藻测试采油废水生物毒性的方法。以采油废水为测试废水,以羊角月牙藻为测试生物,以96孔微孔板为载体;通过96孔微孔板加样分析方法,加样96h后采用多功能酶标仪测试681nm处羊角月牙藻的吸光值;利用实验组与对照组的吸光值来计算羊角月牙藻的生长抑制率,使用毒性单位分级评价法,判断采油废水的生物毒性。本发明方法操作简单,方便快捷,重现性好,能够广泛适用于测试采油废水的毒性。

Description

一种应用羊角月牙藻测试采油废水生物毒性的方法
技术领域
本发明属于废水生物毒性检测领域,特别涉及一种应用羊角月牙藻测试采油废水生物毒性的方法。
背景技术
采油废水是油田采油过程中,除作为回注、工艺回掺或其它用途等生产用水以外,需外排的废水。其中含石油类、表面活性剂等高分子难降解有机污染物;具有含盐度高,腐蚀性强,水温高等特点。现存的《污水综合排放标准》(GB 8978-1996),其中规定了废水排放的理化指标限值,不涉及毒性的排放指标。目前废水生物毒性的检测方法有:发光菌毒性试验,藻类毒性试验,溞类毒性试验,鱼类毒性试验,鸟类毒性试验等。其中,藻类作为废水毒性检验的指示生物,具有快速简便,重现性好的优点。
发明内容
本发明的目的是提供一种应用羊角月牙藻测试采油废水生物毒性的方法。
具体步骤为:
(1)将采回的浑浊采油废水用0.45μm滤膜过滤,制得处理后的采油废水,然后置于4℃冰箱保存待用,假设处理后的采油废水的浓度为单位1。
(2)培养羊角月牙藻使其达到对数生长期,得到羊角月牙藻藻液,将其作为工作藻液。
(3)将工作藻液加入到预先设置好采油废水浓度梯度的白色透明96孔微孔板中,制作采油废水和工作藻液的反应体系,每孔总体积为200μL,实验孔每孔含100μL工作藻液和100μL不同浓度的采油废水,空白对照孔每孔含100μL工作藻液和100μL超纯水,为防止产生边缘效应,周边孔每孔含200μL超纯水,相同条件下,每个采油废水浓度进行9次重复实验,并取平均值。
(4)96h后,采用多功能酶标仪测试在波长681nm下羊角月牙藻的吸光值RLU,利用实验组与对照组的吸光值来计算羊角月牙藻的生长抑制率,以采油废水的不同浓度为横坐标,以不同浓度对应的生长抑制率为纵坐标,利用Origin9.0中的Logistic函数对不同浓度采油废水与生长抑制率E进行非线性拟合。
式中:I0为空白对照样的RLU平均值,I为各浓度9次平行样的RLU平均值;最后,利用毒性单位分级评价法,判断采油废水的综合毒性大小。
所述毒性单位分级评价法是指在毒性测试的基础上,将测试结果的EC50转换成TU值以评价废水的毒性大小,具体如下:
则毒性等级和生物毒性分级标准为:当TU<0.4,毒性等级为1,毒性级别为微毒或无毒,污染级别为基本无污染;当0.4≤TU<1,毒性等级为2,毒性级别为低毒,污染级别为轻污染;当1≤TU<10,毒性等级为3,毒性级别为中毒,污染级别为中污染;当10≤TU<100,毒性等级为4,毒性级别为高毒,污染级别为重污染;当TU≥100,毒性等级为5,毒性级别为剧毒,污染级别为严重污染。
本发明方法操作简单,方便快捷,重现性好,能够广泛适用于测试采油废水毒性。
附图说明
图1为本发明实施例中使用的微孔板加样设计图,其中,b为对照组,100μL超纯水+100μL工作藻液;C1~C12依次为采油废水从高到低的12个浓度梯度;周边36个孔用于防止产生边缘效应,每孔为200μL超纯水。
图2为本发明实施例中各工艺段采油废水对羊角月牙藻生长抑制率的浓度-效应曲线及比较。
具体实施方式
实施例:
本实施例中的各待测废水样取自某石油涠洲终端处理厂各处理工艺段,五个取样点分别为:原水、ABR池水、ABR池出水、SBR池水、出水,对各取样点的样品进行如下试验:
(1)以各工艺段采油废水为测试废水并进行前处理:
采油废水中含石油类、表面活性剂等高分子难降解有机污染物;具有含盐度高,腐蚀性强,水温高,处理难度大等特点。为了避免浑浊废水对实验结果的影响,将待测样品用0.45μm滤膜过滤后放入4℃冰箱保存待用,假设处理后的采油废水的浓度为单位1。
(2)培养羊角月牙藻使其达到对数生长期,得到羊角月牙藻液,将其作为工作藻液。
(3)以白色透明96孔微孔板为载体,制作采油废水和藻液的反应体系:
羊角月牙藻购自中国科学院典型培养物保藏委员会淡水藻种库(FACHB),编号FACHB-271。收到藻种后,在已紫外消毒10min的超净工作台中,将藻种按1:1比例转接到培养基中培养。
培养基采用BG11培养基,配方见下表。经灭菌锅121℃、101KPa灭菌20min,冷却后,在超净工作台内无菌接种,然后放入人工恒温光照培养箱进行培养,设定温度22℃,光照度约3000lux,光暗周期12h:12h。
每隔5~7d按1:1比例转接藻种,扩大培养,在藻类细胞代谢最旺盛时期接种(上午10~11时)。毒性试验前,转接处于对数生长期的藻种至新鲜培养基培养,培养2d后进行实验。
将达到对数生长期的羊角月牙藻藻液加入到预先设置好废水浓度梯度的白色透明96孔微孔板中,每孔总体积为200μL(实验孔每孔含100μL工作藻液和100μL不同浓度的采油废水,空白对照孔每孔含100μL工作藻液和100μL超纯水,为防止产生边缘效应,周边孔每孔含200μL超纯水),为减少实验误差,相同条件下,每个采油废水浓度进行9次重复实验,并取平均值。
(4)96h后,采用瑞士Tecan M200PRO多功能酶标仪测试在波长681nm下羊角月牙藻的吸光值RLU,利用实验组与对照组的吸光值来计算羊角月牙藻的生长抑制率,以采油废水的不同浓度为横坐标,以不同浓度对应的生长抑制率为纵坐标,利用Origin9.0中的Logistic函数对不同浓度采油废水与生长抑制率E进行非线性拟合。
式中:I0为空白对照样的RLU平均值,I为各浓度9次平行样的RLU平均值;最后,根据实验结果及毒性单位分级评价法,某石油涠洲终端处理厂各处理工艺段废水毒性分别为:原水(2.17)、ABR出水(3.89)、ABR池(3.19)、SBR池(2.30)、出水(2.30),均为中毒。毒性大小为:ABR出水>ABR池>SBR池≈出水>原水。根据结果分析,该处理工艺为ABR+SBR。废水含油率经处理从原水至出水逐级降低。ABR工艺段将原水中烃类及其他大分子有机物氧化分解为小分子的有机物,故其生物毒性增大。经ABR处理后的废水进入SBR工艺后,是将小分子有机物进一步分解并将其作为能源去除。因此该工艺段废水生物毒性低于ABR工艺段。
本实施例显示出显著的测试效果:运用指示生物—羊角月牙藻测试采油废水毒性,计算不同工艺段废水的生长抑制率,利用毒性单位分级评价法,可以判断废水的综合毒性大小,方便快捷,重现性好。

Claims (1)

1.一种应用羊角月牙藻测试采油废水生物毒性的方法,其特征在于具体步骤为:
(1)将采回的浑浊采油废水用0.45μm滤膜过滤,制得处理后的采油废水,然后置于4℃冰箱保存待用,假设处理后的采油废水的浓度为单位1;
(2)培养羊角月牙藻使其达到对数生长期,得到羊角月牙藻藻液,将其作为工作藻液;
(3)将工作藻液加入到预先设置好采油废水浓度梯度的白色透明96孔微孔板中,制作采油废水和工作藻液的反应体系,每孔总体积为200μL,实验孔每孔含100μL工作藻液和100μL不同浓度的采油废水,空白对照孔每孔含100μL工作藻液和100μL超纯水,为防止产生边缘效应,周边孔每孔含200μL超纯水,相同条件下,每个采油废水浓度进行9次重复实验,并取平均值;
(4)96h后,采用多功能酶标仪测试在波长681nm下羊角月牙藻的吸光值RLU,利用实验组与对照组的吸光值来计算羊角月牙藻的生长抑制率,以采油废水的不同浓度为横坐标,以不同浓度对应的生长抑制率为纵坐标,利用Origin9.0中的Logistic函数对不同浓度采油废水与生长抑制率E进行非线性拟合;
E = ( I 0 I - 1 ) × 100 %
式中:I0为空白对照样的RLU平均值,I为各浓度9次平行样的RLU平均值;最后,利用毒性单位分级评价法,判断采油废水的综合毒性大小;
所述毒性单位分级评价法是指在毒性测试的基础上,将测试结果的EC50转换成TU值以评价废水的毒性大小,具体如下:
T U = ( 1 EC 50 ) × 100 %
则毒性等级和生物毒性分级标准为:当TU<0.4,毒性等级为1,毒性级别为微毒或无毒,污染级别为基本无污染;当0.4≤TU<1,毒性等级为2,毒性级别为低毒,污染级别为轻污染;当1≤TU<10,毒性等级为3,毒性级别为中毒,污染级别为中污染;当10≤TU<100,毒性等级为4,毒性级别为高毒,污染级别为重污染;当TU≥100,毒性等级为5,毒性级别为剧毒,污染级别为严重污染。
CN201611171166.5A 2016-12-17 2016-12-17 一种应用羊角月牙藻测试采油废水生物毒性的方法 Active CN106591424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611171166.5A CN106591424B (zh) 2016-12-17 2016-12-17 一种应用羊角月牙藻测试采油废水生物毒性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611171166.5A CN106591424B (zh) 2016-12-17 2016-12-17 一种应用羊角月牙藻测试采油废水生物毒性的方法

Publications (2)

Publication Number Publication Date
CN106591424A true CN106591424A (zh) 2017-04-26
CN106591424B CN106591424B (zh) 2018-09-14

Family

ID=58599824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611171166.5A Active CN106591424B (zh) 2016-12-17 2016-12-17 一种应用羊角月牙藻测试采油废水生物毒性的方法

Country Status (1)

Country Link
CN (1) CN106591424B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376146A (zh) * 2019-08-25 2019-10-25 桂林理工大学 一种应用斜生栅藻测试磺胺类抗生素生物毒性的方法
CN110628643A (zh) * 2019-09-01 2019-12-31 桂林理工大学 一种筛选最佳绿藻组合混合培养的方法
CN114397418A (zh) * 2022-01-21 2022-04-26 浙江清华长三角研究院 一种基于Logistic拟合的水质综合毒性及疑似毒性物质测试方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220388A (zh) * 2008-01-23 2008-07-16 重庆大学 有毒有害物急性毒性藻红外测试方法
CN103487555A (zh) * 2013-09-27 2014-01-01 桂林理工大学 分析环境污染物对明亮发光杆菌长期微板毒性的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220388A (zh) * 2008-01-23 2008-07-16 重庆大学 有毒有害物急性毒性藻红外测试方法
CN103487555A (zh) * 2013-09-27 2014-01-01 桂林理工大学 分析环境污染物对明亮发光杆菌长期微板毒性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜丽娜等: "羊角月牙藻在制药废水毒性评价中的应用", 《环境科学研究》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110376146A (zh) * 2019-08-25 2019-10-25 桂林理工大学 一种应用斜生栅藻测试磺胺类抗生素生物毒性的方法
CN110628643A (zh) * 2019-09-01 2019-12-31 桂林理工大学 一种筛选最佳绿藻组合混合培养的方法
CN114397418A (zh) * 2022-01-21 2022-04-26 浙江清华长三角研究院 一种基于Logistic拟合的水质综合毒性及疑似毒性物质测试方法
CN114397418B (zh) * 2022-01-21 2023-10-24 浙江清华长三角研究院 一种基于Logistic拟合的水质综合毒性及疑似毒性物质测试方法

Also Published As

Publication number Publication date
CN106591424B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
Schlüter et al. Identification and quantification of phytoplankton groups in lakes using new pigment ratios–a comparison between pigment analysis by HPLC and microscopy
Chuai et al. Phosphorus release from cyanobacterial blooms in Meiliang Bay of Lake Taihu, China
Lugoli et al. Application of a new multi-metric phytoplankton index to the assessment of ecological status in marine and transitional waters
Wu et al. Silicate as the limiting nutrient for phytoplankton in a subtropical eutrophic estuary of Taiwan
CN106755286B (zh) 一种利用青海弧菌q67测试采油废水生物毒性的方法
Almomani et al. Monitoring and measurement of microalgae using the first derivative of absorbance and comparison with chlorophyll extraction method
CN106591424B (zh) 一种应用羊角月牙藻测试采油废水生物毒性的方法
Comte et al. Links between resources, C metabolism and the major components of bacterioplankton community structure across a range of freshwater ecosystems
García-Martín et al. Plankton community respiration and bacterial metabolism in a North Atlantic Shelf Sea during spring bloom development (April 2015)
Bochdansky et al. Adenosine triphosphate (ATP) as a metric of microbial biomass in aquatic systems: new simplified protocols, laboratory validation, and a reflection on data from the literature
Muñoz et al. Assessment of anaerobic digestion of food waste at psychrophilic conditions and effluent post-treatment by microalgae cultivation
Zhu et al. Phytoplankton-driven dark plankton respiration in the hypoxic zone off the Changjiang Estuary, revealed by in vitro incubations
Zhou et al. Are nitrous oxide emissions indirectly fueled by input of terrestrial dissolved organic nitrogen in a large eutrophic Lake Taihu, China?
Bao et al. Particle size distribution mathematical models and properties of suspended solids in a typical freshwater pond
Zhong et al. The spatiotemporal variations in microalgae communities in vertical waters of a subtropical reservoir
Sui et al. Effects of different saline-alkaline conditions on the characteristics of phytoplankton communities in the lakes of Songnen Plain, China
KR101974891B1 (ko) 조류를 이용한 생태독성 측정 방법
CN104390920A (zh) 基于蛋白核小球藻的环境污染物时间毒性微板分析方法
Mustaffa et al. Extracellular carbonic anhydrase: Method development and its application to natural seawater
Scordino et al. Delayed luminescence of microalgae as an indicator of metal toxicity
Liu et al. Variations in stable carbon isotopes in different components of aquatic macrophytes from Taihu Lake, China
CN104046677B (zh) 一种微生物厌氧降解染料的高通量检测方法
CN103157381A (zh) 一种反渗透膜微生物污染的判定方法及应用
Mukherjee et al. An ex situ and in vitro approach to delineate pennate diatom species with bioindicator potentials in a well mixed tropical estuarine ecosystem
Armus et al. Plankton abundance between dry and rainy season in Tallo freshwater and Pangkep River

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170426

Assignee: Guangxi Zhongpinzhi Environmental Monitoring Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2022450000032

Denomination of invention: A method for testing the biological toxicity of oil production wastewater by Rhododendron capricola

Granted publication date: 20180914

License type: Common License

Record date: 20221117