CN106589367B - 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法 - Google Patents

一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法 Download PDF

Info

Publication number
CN106589367B
CN106589367B CN201611138697.4A CN201611138697A CN106589367B CN 106589367 B CN106589367 B CN 106589367B CN 201611138697 A CN201611138697 A CN 201611138697A CN 106589367 B CN106589367 B CN 106589367B
Authority
CN
China
Prior art keywords
steel
solution
resistant coating
polypyrrole
erosion resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611138697.4A
Other languages
English (en)
Other versions
CN106589367A (zh
Inventor
蒋永锋
包晔峰
陈秉岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201611138697.4A priority Critical patent/CN106589367B/zh
Publication of CN106589367A publication Critical patent/CN106589367A/zh
Application granted granted Critical
Publication of CN106589367B publication Critical patent/CN106589367B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开一种纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层的溶液及方法,属于表面技术领域,溶液组分含量为:吡咯单体:0.01M‑0.05M,甲基‑吡咯:0.05M‑1M氯化钠:0.05M‑1M,98%浓硫酸:0.05M‑0.1M,其余为去离子水;将钢铁放入配制的溶液中,以钢铁为阳极,石墨为阴极,纳秒脉冲脉宽为200‑400 ns,脉冲电压幅值为400‑700V,即把钢铁置入溶液中,处理1‑3分钟,而在钢铁表面聚合制备纳米聚吡咯防腐层。相对于现有技术,本发明研究的钢铁表面纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层工艺运用纳秒脉冲微弧等离子体,根据钢铁电离能选区聚合分离,效率高,抗氧化性能好,电导率高、柔软、易成膜。本发明处理降低了成本,且其适合几乎所有的钢铁表面聚合制备纳米聚吡咯防腐层。

Description

一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法
技术领域
本发明涉及一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法,特别是一种纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层的方法,属于表面技术领域。
背景技术
聚吡咯具有在钢铁表面合成简便,抗氧化性能好,电导率高、柔软、易成膜优点。电化学方法制备的防腐膜层比较致密,能起到良好的防护作用。通常聚吡咯防腐膜层用动电位扫描法、恒电流聚合法、恒电位法和脉冲极化法等电化学方法聚合。这些方法需要多个工序才能制备出来。文献(王景平,采用脉冲电位制备聚吡咯电极的方法,CN201310529856.3和杨飞,燕群,李传宪,孙广宇,一种聚吡咯/无机纳米复合材料的制备方法,CN105670284A)分别叙述了一种电化学聚合制备聚吡咯防腐膜层的方法。前者用三电极加脉冲电压在工作点击上聚合制备聚吡咯,用掺杂离子实现其性能。后者电化学工作站合成的聚吡咯电复合膜。两者处理过程中都利用不同溶剂实现复合膜层的分布,因而需要多道工序解决复合膜层的抗氧化性能,电导率、柔软、成膜等问题。所以其存在处理时间长,操作条件差,需要后续加工等,成本较高限制。为了降低成本,提高效率,提供一种纳秒脉冲微弧等离子体聚合制备聚吡咯纳米防腐膜层的方法。
发明内容
本发明针对以上的不足,提供一种纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层的溶液及方法。该方法是以钢铁为阳极,惰性材料为阴极,纳秒脉冲脉宽为200-400ns,脉冲电压幅值为400-700V,处理1-3分钟,利用纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐膜层的方法。该处理方法处理效率高,时间短,防腐膜层抗氧化性能好,电导率高、柔软、易成膜。本发明处理降低了成本,且其适合几乎所有的钢铁表面聚合制备纳米聚吡咯防腐层。
为了实现上述发明目的,本发明是通过以下技术方案实现的:
本发明所述钢铁表面纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层溶液组分为:吡咯单体:0.01M-0.05M,甲基-吡咯:0.05M-1M氯化钠: 0.05M-1M, 98wt% 浓硫酸:0.05M-0.1M,溶剂为去离子水。98wt%为质量浓度。0.05M-0.1M指硫酸在溶液中的最终浓度。其余浓度指溶质在整个溶液中的浓度。
使用上述溶液对钢铁表面纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层的方法如下:将钢铁放入配制的溶液中,以钢铁为阳极,石墨为阴极,纳秒脉冲脉宽为200-400ns,脉冲电压幅值为400-700V,即把钢铁置入溶液中,处理1-3分钟,而在钢铁表面聚合制备得到纳米聚吡咯防腐层。
相对于现有技术,本发明研究的钢铁表面纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层工艺运用纳秒脉冲微弧等离子体,根据钢铁电离能选区聚合分离,处理效率高,时间短,抗氧化性能好,电导率高、柔软、易成膜。本发明处理降低了成本,且其适合几乎所有的钢铁表面聚合制备纳米聚吡咯防腐层。处理时间从其他电化学的几十分钟缩短为微弧等离子体仅用几分钟,膜层的厚度从纳米尺度增加到微米尺度,膜层均匀性从复合成膜变为单独成膜。
具体实施方式
下面结合实施例对本发明进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
首先在一个10L槽中取2/3的去离子水,依次溶解300mL 98% 浓硫酸和400g氯化钠,等槽中试剂全部溶解之后,将150mL吡咯单体在快速搅拌下倒入槽液中,直至完全混合均匀,最后加水至10L,得到电解液,将Q235放入配制的溶液中,以Q235为阳极,石墨为阴极,纳秒脉冲脉宽为200 ns,脉冲电压幅值为400V,即把Q235置入溶液中,处理1分钟,而在Q235表面聚合制备纳米聚吡咯防腐层。测得聚吡咯膜层导电率为10 S/cm,中性盐雾试验超过24小时,超过钢铁中性盐雾试验的时间。
实施例2
首先在一个10L槽中取2/3的去离子水,依次溶解的300mL98% 浓硫酸和500g氯化钠,等槽中试剂全部溶解之后,将100mL甲基-吡咯单体在快速搅拌下倒入槽液中,直至完全混合均匀,最后加水至10L得到电解液,将316放入配制的溶液中,以316为阳极,石墨为阴极,纳秒脉冲脉宽为400 ns,脉冲电压幅值为400V,即把316置入溶液中,处理3分钟,而在316表面聚合制备纳米聚吡咯防腐层。测得聚吡咯膜层导电率为8.0 S/cm,中性盐雾试验超过24小时,超过钢铁中性盐雾试验的时间。
实施例3
首先在一个15L槽中取2/3的去离子水,依次溶解350mL 98% 浓硫酸和500g氯化钠,等槽中试剂全部溶解之后,将100mL苯胺单体在快速搅拌下倒入槽液中,直至完全混合均匀,最后加水至10L得到电解液,将16Mn放入配制的溶液中,以16Mn为阳极,石墨为阴极,纳秒脉冲脉宽为200 ns,脉冲电压幅值为400V,即把16Mn置入溶液中,处理2分钟,而在16Mn表面聚合制备纳米聚吡咯防腐层。测得聚吡咯膜层导电率为20 S/cm,中性盐雾试验超过24小时,超过钢铁中性盐雾试验的时间。
测得聚吡咯膜层导电率为5.0-40S/cm,中性盐雾试验超过24小时,超过钢铁中性盐雾试验的时间。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同形式的替换,这些改进和等同替换得到的技术方案也应属于本发明的保护范围。

Claims (4)

1.使用溶液对钢铁表面纳秒脉冲微弧等离子体聚合制备纳米聚吡咯防腐层的方法,其特征在于:溶液的组分含量为:吡咯单体:0.01M-0.05M,甲基-吡咯:0.05M-1M,氯化钠:0.05M-1M, 98% 浓硫酸:0.05M-0.1M,溶剂为去离子水;将钢铁放入所述的溶液中,以钢铁为阳极,石墨为阴极,纳秒脉冲脉宽为200-400 ns,脉冲电压幅值为400-700V,即把钢铁置入溶液中,处理1-3分钟,在钢铁表面聚合制备纳米聚吡咯防腐层。
2.根据权利要求1所述的制备纳米聚吡咯防腐层的方法,其特征在于:聚吡咯膜层导电率为5.0-40S/cm,中性盐雾试验超过24小时。
3.根据权利要求1所述的制备纳米聚吡咯防腐层的方法,其特征在于:把钢铁置入溶液中,处理2分钟。
4.根据权利要求1所述的制备纳米聚吡咯防腐层的方法,其特征在于:脉冲电压幅值为400 V。
CN201611138697.4A 2016-12-12 2016-12-12 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法 Expired - Fee Related CN106589367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611138697.4A CN106589367B (zh) 2016-12-12 2016-12-12 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611138697.4A CN106589367B (zh) 2016-12-12 2016-12-12 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法

Publications (2)

Publication Number Publication Date
CN106589367A CN106589367A (zh) 2017-04-26
CN106589367B true CN106589367B (zh) 2018-10-26

Family

ID=58599405

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611138697.4A Expired - Fee Related CN106589367B (zh) 2016-12-12 2016-12-12 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法

Country Status (1)

Country Link
CN (1) CN106589367B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1962961A (zh) * 2006-10-26 2007-05-16 大连海事大学 一种不锈钢表面聚噻吩复合膜的制备方法
CN101037787B (zh) * 2007-01-25 2010-09-15 西安交通大学 一种高密度聚吡咯膜防腐涂层的制备工艺

Also Published As

Publication number Publication date
CN106589367A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Chen et al. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity
CN105261760B (zh) 锂离子电池水性正极复合集流体、正极片及其制备方法、锂离子电池
Yang et al. Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode
CN104716381A (zh) 一种保护锂硫电池负极的方法
CN105514344B (zh) 通过电泳沉积石墨烯实现锂离子电池阴极表面改性的方法
CN102703945B (zh) 一种新型导电复合防腐涂层的制备方法
Wang et al. BMIMBF4 ionic liquid mixtures electrolyte for Li-ion batteries
CN109004220A (zh) 一种硼酸化合物修饰锂离子电池硅负极及其制备方法
CN106191967A (zh) 一种在聚吡咯涂层中掺杂石墨烯的工艺方法
Ren et al. Dendrite‐free lithium metal battery enabled by dendritic mesoporous silica coated separator
CN109087819A (zh) 一种聚苯胺/氧化钌/二氧化锡复合电极材料的制备方法
CN103400991A (zh) 水性碳纳米管浆料及其制备方法
Mao et al. Breaking intramolecular hydrogen bonds of polymer films to enable dendrite-free and hydrogen-suppressed zinc metal anode
CN103606703A (zh) 一种电流密度均匀且稳定的锂离子电池
Xu et al. Graphene foil as a current collector for NCM material-based cathodes
CN103413917B (zh) 含有石墨烯的锰酸锂正极极片的制备方法
Wang et al. Establishing Ultralow Self‐Discharge Zn‐I2 Battery by Optimizing ZnSO4 Electrolyte Concentration
CN106589367B (zh) 一种纳秒脉冲阳极聚合制备聚吡咯防腐层的溶液及方法
Zhu et al. Ionic transport kinetics of selective electrochemical lithium extraction from brines
CN104211958A (zh) 一种磺化石墨烯与聚苯胺杂化膜及其电化学制备方法
CN108615892A (zh) 一种有效抑制锂金属电池枝晶不可控生长的改性集流体、其制备方法及用途
Yin et al. Lithium recovery from brine by PEG-modified porous LiFePO4/FePO4 electrode system
CN104928713B (zh) 导电聚合物包覆的镍基产氢电极的制备方法及其用途
CN106129349A (zh) 一种锂离子电池正极材料钒酸铵/石墨烯及其制备方法
CN106589361B (zh) 一种纳秒脉冲阳极聚合制备聚苯胺防腐层的溶液和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181026

Termination date: 20211212

CF01 Termination of patent right due to non-payment of annual fee