CN106589161A - 改性海藻酸或其盐及制备方法、生物修复材料及支架 - Google Patents

改性海藻酸或其盐及制备方法、生物修复材料及支架 Download PDF

Info

Publication number
CN106589161A
CN106589161A CN201611195154.6A CN201611195154A CN106589161A CN 106589161 A CN106589161 A CN 106589161A CN 201611195154 A CN201611195154 A CN 201611195154A CN 106589161 A CN106589161 A CN 106589161A
Authority
CN
China
Prior art keywords
alginic acid
salt
polypeptide
modified
alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611195154.6A
Other languages
English (en)
Inventor
阮长顺
罗桂林
吴明明
潘浩波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201611195154.6A priority Critical patent/CN106589161A/zh
Publication of CN106589161A publication Critical patent/CN106589161A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0084Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种改性海藻酸或其盐及制备方法、生物修复材料及支架,属于生物医学领域。改性海藻酸或其盐包括多肽接枝的海藻酸或海藻酸盐,其中,多肽的氨基酸序列中含有RGD。本发明提供的改性海藻酸或其盐提高了海藻酸及其盐与生物组织细胞之间的相容性,细胞更易于在其表面进行铺展,同时还可以促进细胞的分化、增殖。

Description

改性海藻酸或其盐及制备方法、生物修复材料及支架
技术领域
本发明涉及生物医学领域,具体而言,涉及一种改性海藻酸或其盐及制备方法、生物修复材料及支架。
背景技术
海藻酸是由褐藻中提取的天然多糖,其与金属离子成盐可得到具有胶体特性以及增稠、稳定、乳化、粘性等作用的海藻酸盐。海藻酸钠是海藻酸盐中使用和研究较多的一种钠盐,其具有浓缩溶液、形成凝胶以及成膜等功能,因而在医药、食品、印染、酶工程等领域具有广泛的应用。目前,已有一些研究将海藻酸钠用于医药了领域,但是,其普遍表现出生物相容性差等问题,从而限制了在医药方面的进一步应用。
发明内容
本发明的目的在于提供一种改性海藻酸或其盐,可提高改善细胞在其表面的铺展性,有利于细胞、组织的粘附。
本发明的另一目的在于提供一种改性海藻酸或其盐的制备方法,其具有操作简单、工艺简易,能够降低生产成本并提高了生产效率。
本发明的另一目的在于提供一种生物修复材料,可以提高生物相容性、亲和性,并且提高化学稳定性。
本发明的另一目的在于提供一种生物修复支架,其具有生物相容性好的优点,能够为细胞成长和新组织的形成提供稳定和适宜的环境。
本发明是这样实现的:
一种改性海藻酸或其盐,其包括多肽接枝的海藻酸或海藻酸盐,其中,多肽的氨基酸序列中含有RGD。改性海藻酸或其盐的制备方法包括:将多肽接枝到海藻酸或海藻酸盐,多肽的氨基酸序列中含有RGD。一种由上述改性海藻酸或其盐制作而成的生物修复材料以及由该生物修复材料制作而成的生物修复支架。
本发明实施例的有益效果:
发明人经过研究发现,通过利用多肽接枝到海藻酸或其盐的形式,对海藻酸或其盐进行修饰改性,同时利用氨基酸序列中含有RGD的多肽与人体组织、细胞之间的相容性好的优点,降低了现有海藻酸或其盐对细胞的毒性,同时提高细胞、组织在其表面的铺展性,从而使其与人体细胞、组织之间具有较好的粘附性,可以促进细胞、组织的稳定和快速生长和增殖。此外,改性海藻酸或其盐的溶解性,也使得易于对其采取进一步的加工和改造,从而也有利于进行利用。改性海藻酸或其盐的制备方法工艺流程简单、易操作且生产成本低,易于制备出品质优良且价格低廉的改性海藻酸或其盐。由于改性海藻酸或其盐的制备方法工艺流程简单、易操作,制备的改性海藻酸或其盐的质量的一致性好,从而有利于提高生产效率,降低成本,为进行大规模生产以及对其进行利用提供了便利。通过在改性海藻酸或其盐中添加生物陶瓷制作的生物修复材料,结合了两者的优势,通过两者协同作用提高生物相容性,有利于细胞间的粘附,同时能够更好地促进细胞、组织的分化生长和增殖,并且提高其在生物体内的稳定性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了实施例5中制备的生物修复支架的外观形貌;
图2示出了试验例1中骨间充质干细胞的生长状况;
图3为图2中Ⅲ部的局部放大图;
图4示出了试验例2中骨间充质干细胞的生长状况;
图5为图4中Ⅴ部的局部放大图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下针对本发明实施例的改性海藻酸或其盐及制备方法、生物修复材料及支架进行具体说明:
一种改性海藻酸或其盐,其包括多肽接枝的海藻酸或海藻酸盐,其中,多肽的氨基酸序列中含有RGD。
海藻酸是一种天然的多聚糖醛酸线性高分子,因提取于藻类而得名。海藻酸类似于细胞外基质中的糖肢聚糖,可以与金属离子成盐,海藻酸盐具有胶体特性和增稠性、稳定性、乳化性、溶解性和粘性等优良特性。
本发明人经过研究发现,细胞在现有海藻酸或其盐表面的铺展、粘附性差,且现有海藻酸或其盐对细胞具有一定的毒性。发明人通过对海藻酸或其盐进行修饰改性,从而提高了其与细胞、组织之间的生物相容性,实现了较好的细胞铺展和粘附特性,同时还可以降低现有海藻酸或其盐对细胞的毒性。
本发明实施例中,提供了一种氨基酸序列中含有RGD的多肽接枝到海藻酸或海藻酸盐的改性海藻酸或其盐。其中,多肽可以对海藻酸或海藻酸盐表面基团进行掩蔽或替换,从而减小基团如羟基对细胞的影响,同时RGD短肽序列能够较好地与人体相容,利于细胞的铺展、粘附以及分化生长。对氨基酸序列中含RGD的多肽进行改进,例如在其残基上进行修饰还课题改进其对细胞的结合能力。通过多肽修饰海藻酸或海藻酸盐,两者协同作用,优势互补,获得了生物活性相对更高的改性海藻酸或其盐。改性海藻酸或其盐的分子结构能够为细胞的铺展提供众多的物理、化学反应位点,从而更易于细胞粘附。
将多肽接枝到海藻酸或海藻酸盐的方法可以有多种选择,例如,本发明实施例中,改性海藻酸或其盐的β-D-甘露糖醛酸(M)或/和α-L-古洛糖醛酸(G)单元中的两个相邻羟基转化为两个醛基,其中两个醛基中的至少之一的=O被多肽的氨基端=N取代。或者,改性海藻酸或其盐是通过多肽的氨基端接枝到氧化后的海藻酸或海藻酸盐。或者,改性海藻酸或其盐的β-D-甘露糖醛酸(M)或/和α-L-古洛糖醛酸(G)单元中的羧基中的至少之一的=O基被多肽的氨基端=N取代。
本发明提供的改性海藻酸或其盐的结构可以多种,可根据海藻酸或海藻酸盐的结构、多肽的结构以及多肽的接枝方式进行选择性地控制,例如,本发明实施例中,多肽接枝的海藻酸盐具有以下通式结构:
其中,M表示碱金属离子,碱土金属离子或铵离子,碱金属离子和碱土金属离子优选锂离子、钠离子、钾离子、铷离子、铯离子、钫离子、铍离子、镁离子、钙离子、锶离子、钡离子或其组合,m≥1的正整数,N-R1为多肽的氨基酸残基,且多肽的氨基酸序列中含有RGD。其中,在本发明的其他实施例中,M也可以是氢,即形成由多肽接枝于海藻酸形成的改性海藻酸。
进一步地,多肽接枝的海藻酸盐中的成盐离子,优选为金属钠离子,即,多肽接枝的海藻酸盐具有以下通式结构:
其中,m≥1的正整数,N-R1为多肽的氨基酸残基,且多肽的氨基酸序列中含有RGD。
如上述改性海藻酸盐中,海藻酸盐为药学上可接受的盐,优选碱金属盐或碱土金属盐或铵盐,优选海藻酸盐选自海藻酸锂、海藻酸钠、海藻酸钾、海藻酸铷、海藻酸铯、海藻酸钫、海藻酸铍、海藻酸镁、海藻酸钙、海藻酸锶、海藻酸钡或其组合,优选海藻酸钠。多肽的氨基酸序列优选为CGGGRGDS,本发明实施例中,以CG3-RGDS表示氨基酸序列为CGGGRGDS的多肽。
本发明实施例中,上述改性海藻酸或其钠的制备方法包括:将多肽接枝到海藻酸或其盐(海藻酸盐),其中,多肽的氨基酸序列中含有RGD。
例如,改性海藻酸或其盐的β-D-甘露糖醛酸(M)或/和α-L-古洛糖醛酸(G)单元中的两个相邻羟基转化为两个醛基,且其中所述的两个醛基中的至少之一的=O被多肽的氨基端=N取代。通过将海藻酸或其盐中的醛基转换为醛,可以使得海藻酸或其盐的细胞毒性被大大减弱,利于细胞铺展、粘附。
将羟基转化为醛基的方式有多种,例如,本发明实施例中,是在将多肽接枝到海藻酸或其盐之前先氧化海藻酸或其盐,形成氧化海藻酸或其盐,再将多肽接枝到氧化海藻酸或其盐。即,通过氧化海藻酸或其盐,海藻酸或海藻酸盐中的羟基可选地被全部或部分氧化为醛基,醛基再与多肽中的氨基通过席夫碱反应,从而将多肽接枝到海藻酸或其盐。
例如,改性海藻钠是按式(Ⅰ)的方式通过接枝聚合反应而成:
其中,H2N-CG3RGDS指示的是本发明实施例中,氨基酸序列为CGGGRGDS的多肽;CG3-RGDS-OSA指示的是本发明实施例中,由氨基酸序列为CGGGRGDS的多肽接枝于氧化海藻酸钠后形成的改性海藻酸钠。海藻酸钠经过氧化,在分子内形成有两个相邻的醛基,其中,n和m均是正整数,且可以相等或不等。上述方法中,接枝反应过程中,是在常温、常压的条件下反应,且不需要引发剂,从而没有改变多肽、海藻酸及其盐的溶解性及生物相容性等性质。此外,制备方法简单、易操作、效率高,有利于降低成本。
氧化海藻酸或其盐可以采用各种方式进行,例如,利用氧化剂氧化海藻酸或其盐,海藻酸或其盐与氧化剂的摩尔比优选为1:1~2。氧化剂例如可以是高碘酸钠或高锰酸钾。
利用多肽接枝到氧化海藻酸或其盐的制备过程中,多肽与氧化海藻酸或其盐的物料比优选为22~50μmol:0.1g,进一步为25~45μmol:0.1g,再进一步为30~40μmol:0.1g,更进一步为35~50μmol:0.1g。
一种生物修复材料,其包括生物陶瓷以及如上述的改性海藻酸或其盐。生物陶瓷是具有特定的生物或生理功能的一类陶瓷材料,其可以直接用于生物体如人体,并且在生物、医用、生物化学等领域具有广泛的应用。生物陶瓷材料还具有优异的生物相容性、亲和性以及灭菌性,且抗血栓,物理、化学稳定性,强度高、耐腐蚀。
改性海藻酸或其盐在线性分子上形成接枝的结构使得生物陶瓷可与其更易复合并相互协同作用,从而使生物修复材料也更易与细胞、组织结合。生物陶瓷有多种选择,例如包括纳米羟基磷灰石、磷酸三钙、骨水泥、纳米含氟磷灰石、纳米碳酸羟基磷灰石及生物活性玻璃中的一种或多种。生物陶瓷可优选用粉体,其粒径范围为50~400nm,进一步为60~360nm,更进一步为100~330nm,再进一步为240~300nm。
此外,生物修复材料中还可根据需要添加海藻酸或其盐、聚乙烯醇中的一种或两种。聚乙烯醇具有粘结作用,可提高改性海藻酸或其盐与生物陶瓷之间的结合力。更进一步地,生物修复材料包括改性海藻酸或其盐、生物陶瓷、海藻酸或其盐以及聚乙烯醇,且生物陶瓷与海藻酸或其盐的质量比为1:2~5,改性海藻酸或其盐与聚乙烯醇的体积比为1:4~6。
其中,随着海藻酸盐,如海藻酸钠添加量的适当地增加,对生物修复材料的粘稠度有促进作用;随着生物陶瓷的添加量的适当增加,可改善生物修复材料的修复效果。
可选地,生物修复材料还可以添加透明质酸、磷酸丝氨酸等具有促进生物细胞、组织生长的活性物质。
上述生物修复材料可以具有各种不同的存在形式,通过不同的方法制作为如固体、流体、胶体等等。生物修复材料可用于治疗骨折,例如,将生物修复材料制作为流体浆料,再将流体浆料注射到骨骼断裂或者破碎处,利用生物修复材料对其进行修复和固定。
一种生物修复支架主要由上述生物修复材料制成。例如,利用3D打印方法打印上述生物修复材料制成生物修复支架。通过3D打印可控地调节生物修复支架的孔径和孔隙率,以进一步改善细胞、组织诱导生长能力,同时还易于根据需要制作为各种具体的形状。另外,还可以将骨修复材料通过3D打印的方式制作为用于骨骼固定的生物相容性好的螺钉。生物修复支架还可用于治疗骨折,例如采用生物修复支架对骨折的骨骼进行固定。
需要说明的是,如本文所使用的术语如“海藻酸盐”是指广泛分布于褐藻细胞壁中的阴离子多糖。海藻酸盐与碱金属(如钠、钾、锂、镁、铵)和来源于低级胺(如甲胺、乙醇胺、二乙醇胺和三乙醇胺)的取代的铵阳离子形成水溶性盐。
如本文所使用的术语“海藻酸盐”涵盖了本领域技术人员所知的所有海藻酸盐形式,包括但不限于海藻酸钙、海藻酸盐、海藻酸丙二醇酯和海藻酸钾。另外,如本文所使用的术语“海藻酸盐”涵盖了本领域技术人员用于描述海藻酸盐的所有术语,例如,褐藻胶。
“药学上可接受的”指的是在可靠的医学判断范围内,适合用于与人类或动物的组织接触而没有过度毒性、刺激或其他问题或并发症,与合理的收益/风险比相应的那些化合物、材料、组合物以及剂型。
以下结合实施例对本发明的改性海藻酸钠及制备方法、生物修复材料及支架作进一步的详细描述。
实施例1
一种改性海藻酸钠,通过以下方法制作而成:取5g从褐藻提取的海藻酸钠(SA),溶于250mL蒸馏水中,浓度为2wt%,通过磁力搅拌1h使海藻酸钠充分溶解,形成海藻酸钠水溶液。向海藻酸钠水溶液中加入高碘酸钠(NaIO4),SA/NaIO4摩尔比为1:1,在常温、常压条件下避光磁力搅拌12h后,将反应液倒入乙醇溶液(海藻酸钠不溶试剂)中,反复抽滤、洗涤3次后通过冷冻干燥,获得氧化海藻酸钠(OSA)。取0.01gOSA溶于10mL蒸馏水中形成OSA水溶液。先向OSA水溶液加入10μL冰醋酸调节pH值,再加入适量的CG3-RGDS(35μmol),在室温条件下,避光反应36h得到CG3-RGDS-OSA溶液。
实施例2
一种改性海藻酸钠,通过以下方法制作而成:取7g海藻酸钠,溶于250mL蒸馏水中,磁力搅拌2h使其充分溶解,形成海藻酸钠浓度为2wt%的海藻酸钠溶液。向海藻酸钠溶液加入高碘酸钠,SA/NaIO4摩尔比为1:2,在常温常压条件下避光磁力搅拌12h后,将反应液倒入乙醇溶液中,反复抽滤、洗涤3次、透析3天后冷冻干燥获得氧化海藻酸钠(OSA)。取0.01gOSA溶于20mL蒸馏水中,先加入6μL冰醋酸,再加入适量的CG3-RGDS(35μmol),在室温条件下,避光反应40h得到CG3-RGDS-OSA溶液。
实施例3
一种改性海藻酸钾,通过以下方法制作而成:取5g海藻酸钾(PA),溶于250mL蒸馏水中,超声波搅拌1h使其充分溶解,形成海藻酸钾浓度为2wt%的海藻酸钾溶液。向海藻酸钾溶液加入高锰酸钾,PA/NaIO4摩尔比为1:2,在常温、常压条件下避光磁力搅拌12h后,将反应液倒入乙醇溶液中,反复抽滤、洗涤3次、透析3天后冷冻干燥获得氧化海藻酸钾(OPA)。取0.1克的氧化海藻酸钾溶于10mL蒸馏水中,加入适量的CG3-RGDS(22μmol),在室温条件下,避光反应36h得到CG3-RGDS-OPA溶液。
实施例4
一种改性海藻酸铵,通过以下方法制作而成:取8g海藻酸铵(AA),溶于250mL蒸馏水中,磁力搅拌1h使其充分溶解,形成海藻酸铵浓度为2wt%的海藻酸铵溶液。向海藻酸铵溶液加入高碘酸钠,AA/NaIO4摩尔比为1:2,在常温、常压条件下避光磁力搅拌12h后,将反应液倒入乙醇溶液中,反复抽滤、洗涤5次、透析2天后冷冻干燥获得氧化海藻酸铵(OAA)。取0.1gOAA溶于10mL蒸馏水中,先加入10μL冰醋酸,再加入适量的CG3-RGDS(50μmol),在室温条件下,避光反应36h得到CG3-RGDS-OAA溶液。
实施例5
一种生物修复材料,由生物陶瓷以及上述实施例1中制备的改性海藻酸钠制作而成。
生物修复材料的制备方法如下:取2mLCG3-RGDS-OSA溶液加入到8mL 6wt%PVA溶液(聚乙烯醇溶液)中,另取2g的1393BG(生物活性玻璃)、10克SA的混合物加入CG3-RGDS-OSA/PVA溶液中,混合均匀。
采用3D打印机打印上述生物修复材料,制备三维的CG3-RGDS-OSA/SA/1393BG/PVA生物修复支架,其外形结构如图1所示。
实施例6
一种生物修复材料,由生物陶瓷以及上述实施例2中制备的改性海藻酸钠制作而成。
生物修复材料的制备方法如下:取2mLCG3-RGDS-OSA溶液加入到12mL 6wt%PVA溶液中,另取2g的1393BG(生物活性玻璃)、4克SA的混合物加入CG3-RGDS-OSA/PVA溶液中,混合均匀。
然后采用3D打印机打印生物修复材料制备三维CG3-RGDS-OSA/SA/1393BG/PVA的生物修复支架。
实施例7
一种生物修复材料,由生物陶瓷以及上述实施例3中制备的改性海藻酸钠制作而成。
生物修复材料的制备方法如下:取2mLCG3-RGDS-OPA溶液加入到10mL 6wt%PVA溶液中,另取2g的纳米羟基磷灰石(N-HA)加入CG3-RGDS-OPA/PVA溶液中,混合均匀。
然后采用3D打印机打印生物修复材料制备三维CG3-RGDS-OPA/N-HA/PVA的生物修复支架。
实施例8
一种生物修复材料,由生物陶瓷以及上述实施例4中制备的改性海藻酸钠制作而成。
生物修复材料的制备方法如下:取2mLCG3-RGDS-OAA溶液,另取7克SA加入CG3-RGDS-OAA溶液中,混合均匀。
然后采用3D打印机打印生物修复材料制备三维CG3-RGDS-OAA/SA的生物修复支架。
实施例9
一种生物修复材料,由生物陶瓷以及上述实施例1中制备的改性海藻酸钠制作而成。
生物修复材料的制备方法如下:取2mLCG3-RGDS-OSA溶液加入到8克磷酸三钙(TCP)中,形成CG3-RGDS-OSA/TCP混合均匀。
然后采用3D打印机打印CG3-RGDS-OSA/TCP制备三维CG3-RGDS-OSA/TCP的生物修复支架。
对比例1
利用SA/1393BG/PVA复合材料制备骨修复支架。
具体方法如下:将2g的1393BG、4克SA以及8mL的6wt%PVA溶液混合均匀,形成SA/1393BG/PVA的复合材料利用,然后利用3D打印机打印SA/1393BG/PVA的复合材料制备骨修复支架。
试验例1
将已用荧光标记的大鼠的骨间充质干细胞接种到对比例1所制备的骨修复支架,骨间充质干细胞在骨修复支架上的铺展效果如图2至图3所示。
试验例2
取试验例1中所述的已用荧光标记的大鼠的骨间充质干细胞,并按照与试验例1相同的方法和相同的量接种到由实施例5所制备的生物修复支架,骨间充质干细胞在生物修复支架上的铺展效果如图4至图5所示。
如图2至图5所示可知:
与对比例1中的SA/1393BG/PVA材质的骨修复支架比较,本发明实施例5中所制备的CG3-RGDS-OSA/SA/1393BG/PVA生物修复支架上的细胞铺展及生长情况好。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (10)

1.一种改性海藻酸或其盐,其特征在于,所述改性海藻酸或其盐包括多肽接枝的海藻酸或海藻酸盐,所述多肽的氨基酸序列中含有RGD。
2.根据权利要求1所述的改性海藻酸或其盐,其特征在于,所述改性海藻酸或其盐是所述多肽的氨基端接枝到氧化后的所述海藻酸或海藻酸盐。
3.根据权利要求1所述的改性海藻酸或其盐,其特征在于,所述改性海藻酸或其盐的β-D-甘露糖醛酸(M)或/和α-L-古洛糖醛酸(G)单元中的两个相邻羟基转化为两个醛基,其中所述两个醛基中的至少之一的=O被所述多肽的氨基端=N取代。
4.根据权利要求3所述的改性海藻酸或其盐,其特征在于,所述多肽接枝的海藻酸盐具有以下通式结构:
其中,M表示包括钠离子的碱金属离子,或碱土金属离子,或铵离子,m≥1的正整数,N-R1为所述多肽的氨基酸残基。
5.根据权利要求1至4任一项所述的改性海藻酸或其盐,其特征在于,所述多肽的氨基酸序列是CGGGRGDS。
6.一种改性海藻酸或其盐的制备方法,其特征在于,其包括:将多肽接枝到海藻酸或其盐,所述多肽的氨基酸序列中含有RGD。
7.根据权利要求6所述的制备方法,其特征在于,在将所述多肽接枝到所述海藻酸或其盐之前先氧化所述海藻酸或其盐,形成氧化海藻酸或其盐,再将所述多肽接枝到所述氧化海藻酸或其盐,氧化所述海藻酸或其盐包括利用氧化剂氧化所述海藻酸或其盐,所述海藻酸或其盐与所述氧化剂的摩尔比为1:1~2,所述多肽与所述氧化海藻酸或其盐的物料比为22~50μmol:0.1g。
8.一种生物修复材料,其特征在于,其包括生物陶瓷以及如权利要求1至5中任一项所述的改性海藻酸或其盐。
9.根据权利要求8所述的生物修复材料,其特征在于,所述生物修复材料包括所述改性海藻酸或其盐、所述生物陶瓷、海藻酸或其盐、以及聚乙烯醇,且所述生物陶瓷与所述海藻酸或其盐的质量比为1:2~5,所述改性海藻酸或其盐与所述聚乙烯醇的体积比为1:4~6。
10.一种生物修复支架,其特征在于,其主要由权利要求8或9所述的生物修复材料制成。
CN201611195154.6A 2016-12-21 2016-12-21 改性海藻酸或其盐及制备方法、生物修复材料及支架 Pending CN106589161A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611195154.6A CN106589161A (zh) 2016-12-21 2016-12-21 改性海藻酸或其盐及制备方法、生物修复材料及支架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611195154.6A CN106589161A (zh) 2016-12-21 2016-12-21 改性海藻酸或其盐及制备方法、生物修复材料及支架

Publications (1)

Publication Number Publication Date
CN106589161A true CN106589161A (zh) 2017-04-26

Family

ID=58600673

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611195154.6A Pending CN106589161A (zh) 2016-12-21 2016-12-21 改性海藻酸或其盐及制备方法、生物修复材料及支架

Country Status (1)

Country Link
CN (1) CN106589161A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624581A (zh) * 2018-05-15 2018-10-09 中国科学院苏州生物医学工程技术研究所 一种间充质干细胞结合生物材料的微球及智能喷洒系统
CN109490284A (zh) * 2018-12-03 2019-03-19 青岛大学 一种基于金纳米颗粒和二碳化钛MXenes的双重催化鲁米诺电化学发光生物传感器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691001A (zh) * 2013-12-30 2014-04-02 西南交通大学 一种制备三维多孔支架复合层的方法
CN104046587A (zh) * 2013-03-11 2014-09-17 中国科学院大连化学物理研究所 一种调控干细胞体外三维定向分化的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104046587A (zh) * 2013-03-11 2014-09-17 中国科学院大连化学物理研究所 一种调控干细胞体外三维定向分化的方法
CN103691001A (zh) * 2013-12-30 2014-04-02 西南交通大学 一种制备三维多孔支架复合层的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘霞: ""RGD接枝氧化海藻酸钠/N-琥珀酰壳聚糖复合水凝胶的制备及体外诱导分化研究"", 《中国优秀硕士学位论文全文数据库 医药卫生科技辑2013年》 *
胡杨等: ""海藻酸钙或聚乙烯醇双相陶瓷骨支架与牙胚细胞相容性的研究"", 《中华临床医师杂志(电子版)》 *
顾其胜主编: "《海藻酸盐基生物医用材料与临床医学》", 30 April 2015, 上海科学技术出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108624581A (zh) * 2018-05-15 2018-10-09 中国科学院苏州生物医学工程技术研究所 一种间充质干细胞结合生物材料的微球及智能喷洒系统
CN109490284A (zh) * 2018-12-03 2019-03-19 青岛大学 一种基于金纳米颗粒和二碳化钛MXenes的双重催化鲁米诺电化学发光生物传感器

Similar Documents

Publication Publication Date Title
US10894895B2 (en) Two-component bioink, 3D biomaterial comprising the same and method for preparing the same
Green et al. Biomineralized polysaccharide capsules for encapsulation, organization, and delivery of human cell types and growth factors
CN106474560B (zh) 一种用于3d生物打印的水凝胶材料及其制备方法与应用
CN108149342B (zh) 基于微流控技术的复合空腔微纤维的制备方法
CN111097068B (zh) 一种仿生的羟基磷灰石粉体/明胶/海藻酸钠复合3d打印支架及其制备方法
CN104740682B (zh) 羟基磷灰石/明胶‑羧甲基壳聚糖复合支架
CN107854726A (zh) 一种复合支架及其制备方法和应用
CN102172498A (zh) 一种三维多孔壳聚糖/明胶微球及其制备方法和在肝细胞培养中的应用
TWI673103B (zh) 可注射型自組裝微球凝膠、其用途及可注射型自組裝微球凝膠的製備方法
CN112999418B (zh) 医用水凝胶组合物、医用水凝胶及其制备方法
CN106693050A (zh) 一种基于胶原及胶原纤维的复合支架材料的制备方法
CN102107022B (zh) 天然高分子一羟基磷灰石二级三维网络结构骨组织工程支架材料及其籽晶诱导制备方法
CN103877621A (zh) 一种电纺纤维增强磷酸钙骨水泥复合材料及其应用
CN106589161A (zh) 改性海藻酸或其盐及制备方法、生物修复材料及支架
CN104119479B (zh) 具有细胞膜结构仿生的两亲性接枝聚合物及其制备方法
CN106492271B (zh) 抗菌促骨结合双功能引导骨再生可吸收膜的制备
CN103819694B (zh) 一种具有细胞相容性的丝素蛋白水凝胶及其制备方法
CN102406965A (zh) 一种用于治疗骨缺损的可注射凝胶材料及其制备方法
CN114058011A (zh) 一种ε-聚赖氨酸衍生物生物墨水的制备方法及其应用
CN104548196A (zh) 一种基于乙烯基-巯基交联的组织工程支架材料及其制备方法
CN106046950A (zh) 一种基于杂化胶束的生物纳米涂层制备方法
JP7453334B2 (ja) 核酸-リン酸カルシウムナノ粒子複合体及び生物鉱化におけるその使用
KR20180054439A (ko) 세포 3d 배양 방법
CN101791432B (zh) 一种半乳糖化壳聚糖/聚酯类聚合物复合支架的制备方法
CN105920675A (zh) 一种制备生物功能化壳聚糖水凝胶的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426