CN106569150B - 一种用于三轴磁传感器简易校正的两步校正方法 - Google Patents

一种用于三轴磁传感器简易校正的两步校正方法 Download PDF

Info

Publication number
CN106569150B
CN106569150B CN201610945745.4A CN201610945745A CN106569150B CN 106569150 B CN106569150 B CN 106569150B CN 201610945745 A CN201610945745 A CN 201610945745A CN 106569150 B CN106569150 B CN 106569150B
Authority
CN
China
Prior art keywords
axis
coordinate system
magnetic sensor
square
tooling carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610945745.4A
Other languages
English (en)
Other versions
CN106569150A (zh
Inventor
吴志强
项建梁
姜磊
朱欣华
王宇
苏岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610945745.4A priority Critical patent/CN106569150B/zh
Publication of CN106569150A publication Critical patent/CN106569150A/zh
Application granted granted Critical
Publication of CN106569150B publication Critical patent/CN106569150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0035Calibration of single magnetic sensors, e.g. integrated calibration

Abstract

本发明公开了一种用于三轴磁传感器简易校正的两步校正方法,将方型工装载体做任意角度的旋转,得到一系列地磁场强度三轴分量的测量值。利用基于椭球拟合的三轴磁传感器误差补偿方法,对上述的地磁场强度三轴分量的测量值进行校正,求得误差校正系数矩阵和综合零偏误差。然后将方型工装载体置于水平大理石平台上,令方型工装载体坐标系的X、Y、Z轴分别朝上,让方型工装载体绕朝上的坐标轴缓慢旋转至少一周得到测量数据,利用最小二乘的原理求得正交坐标系转换矩阵。本发明对三轴磁传感器自身坐标系与载体坐标系不重合导致的安装误差进行了有效的校正,同时整个校正过程简捷、省时、精度高,不依赖于精密仪器提供准确的方向基准、水平基准等。

Description

一种用于三轴磁传感器简易校正的两步校正方法
技术领域
本发明属于传感器技术,具体涉及一种用于三轴磁传感器简易校正的两步校正方法。
背景技术
李勇,刘文怡,李杰,张晓明,蒋窍在《基于椭球拟合的三轴磁传感器误差补偿方法》(传感技术学报,2012,25(7):917-920)一文中,提出在分析磁传感器误差产生机理的基础上,建立了磁传感器的误差模型,推导了误差系数的解算公式,并利用椭球拟合的方法对三轴磁传感器进行了测试标定和误差补偿,有效地标定了三轴磁传感器的不正交误差、灵敏度误差和零偏误差。但是该标定方法并没有考虑三轴磁传感器在实际应用中普遍存在的安装误差问题。
王萌夏,吴益飞,于斌在《基于迭代算法的三轴磁传感器标定与误差补偿技术研究》(兵工自动,2015,34(2):81-85)一文中,简要分析了三轴磁传感器测量过程中的误差来源,给出了磁传感器标定与测量误差的参数化数学模型,分析了如何应用迭代算法来确定相关的误差参数,有效地校正了三轴磁传感器的制造误差和环境误差,但同样该方法并没有将磁传感器的安装误差考虑在内。
发明内容
本发明的目的在于提供了一种用于三轴磁传感器简易校正的两步校正方法,解决了现有的磁传感器校正过程中普遍未考虑的安装误差问题,对磁传感器的安装误差进行了有效的校正。
实现本发明目的的技术解决方案为:一种用于三轴磁传感器简易校正的两步校正方法,方法步骤如下:
步骤1、基于椭球拟合对三轴磁传感器进行标定:
步骤1-1、将方型工装载体做任意角度的旋转,从而得到一系列做任意角度旋转时的地磁场强度三轴分量的测量值;
步骤1-2、利用基于椭球拟合的三轴磁传感器误差补偿方法,对上述的地磁场强度三轴分量的测量值进行校正,求得误差校正系数矩阵C1和综合零偏误差
步骤2、基于水平面内三轴旋转对三轴磁传感器的安装误差进行校正:
步骤2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,求得向量[c11 c12 c13]Τ
步骤2-2、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,求得向量[c21 c22 c23]Τ
步骤2-3、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,求得向量[c31 c32 c33]Τ
步骤3、磁传感器测量结果的综合校正模型为:
式(11)中是地磁场矢量在磁传感器自身坐标系下的实际测量结果。
本发明与现有技术相比,其显著优点在于:对三轴磁传感器自身坐标系与载体坐标系不重合导致的安装误差进行了有效的校正,同时整个校正过程简捷、省时、精度高,不依赖于精密仪器提供准确的方向基准、水平基准等。
附图说明
图1为本发明三轴磁传感器的数据采集系统的示意图。
图2为本发明安装误差校正过程的操作示意图。
图3为本发明的方型工装载体做任意角度旋转所得的测量数据所构成的图形。
图4为将图3中的测量数据经过基于椭球拟合误差补偿后所构成的图形。
图5为将方型工装载体置于水平大理石平台上,使其分别绕方型工装载体坐标系的X、Y、Z轴旋转所得的测量数据经步骤1校正后所构成的波形图。
图6为将图5中的数据经过安装误差校正后所构成的波形图。
图7为本发明用于三轴磁传感器简易校正的两步校正方法的流程图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
结合图7,一种用于三轴磁传感器简易校正的两步校正方法,方法步骤如下:
步骤1、基于椭球拟合对三轴磁传感器进行标定:
步骤1-1、将方型工装载体做任意角度的旋转,从而得到一系列做任意角度旋转时的地磁场强度三轴分量的测量值(如图1所示,测量电路板安装在方型工装载体内)。
步骤1-2、利用基于椭球拟合的三轴磁传感器误差补偿方法,对上述的地磁场强度三轴分量的测量值进行校正,求得误差校正系数矩阵C1和综合零偏误差从而消除三轴磁传感器的制造误差和环境误差。
步骤2、基于水平面内三轴旋转对三轴磁传感器的安装误差进行校正:
步骤2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,求得向量[c11 c12 c13]Τ
步骤2-1-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,得到一系列绕X轴旋转时的地磁场强度三轴分量的测量值(如图2所示)。
步骤2-1-2、规定方型工装载体坐标系与三轴磁传感器自身坐标系并不完全重合,即存在安装误差,因此,存在一个正交的坐标系转换矩阵C2
使得以下式成立:
在式(1)中,表示地磁场在方型工装载体坐标系中的真实值,分别是沿载体坐标系X、Y、Z轴方向的分量值,表示经过步骤1校正后地磁场在磁传感器自身坐标系中的真实值,角度ψ、θ、是三个欧拉误差角,cij是正交坐标系转换矩阵C2中的第i行、第j列元素,i=1,2,3,j=1,2,3。
步骤2-1-3、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-1-1中得到的绕X轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(2)中表示将绕X轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值。
式(2)中取的原因是:当方型工装载体坐标系某一固定轴(X轴、Y轴或Z轴)朝上,方型工装载体绕该轴旋转的过程中,可以认为地磁场矢量沿方型工装载体坐标系旋转轴方向的分量值应该是固定不变的。在导航中,我们只关心地磁场三轴分量的比值,因此可以假设垂直于水平面方向的地磁场分量的模为1。又由于除赤道外,其他地区的地磁场应该是斜向下指向地面的,所以取其为-1。
步骤2-1-4、根据式(2),将步骤2-1-3中得到的Nx展开为方程组如下:
步骤2-1-5、由式(3)利用最小二乘拟合,求得向量[c11 c12 c13]Τ
其中矩阵
步骤2-2、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,求得向量[c21 c22 c23]Τ
步骤2-2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,得到一系列绕Y轴旋转时的地磁场强度三轴分量的测量值(如图2所示,将图2中的方型工装载体翻转,令其Y轴朝上);
步骤2-2-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-2-1中得到的绕Y轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(5)中表示将绕Y轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-2-3、根据式(5),将步骤2-2-2中得到的Ny展开为方程组如下:
步骤2-2-4、由式(6)利用最小二乘拟合,求得向量[c21 c22 c23]Τ
其中矩阵
步骤2-3、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,求得向量[c31 c32 c33]Τ
步骤2-3-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,得到一系列绕Z轴旋转时的地磁场强度三轴分量的测量值(如图2所示,将图2中的方型工装载体翻转,令其Z轴朝上);
步骤2-3-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-3-1中得到的绕Z轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(8)中表示将绕Z轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-3-3、根据式(8),将步骤2-3-2中得到的Nz展开为方程组如下:
步骤2-3-4、由式(9)利用最小二乘拟合,求得向量[c31 c32 c33]Τ
其中矩阵
步骤3、磁传感器测量结果的综合校正模型为:
式(11)中是地磁场矢量在磁传感器自身坐标系下的实际测量结果。
上述步骤2-1、步骤2-2和步骤2-3顺序可调。
实施例1
结合图7,一种用于三轴磁传感器简易校正的两步校正方法,方法步骤如下:
步骤1、基于椭球拟合对三轴磁传感器进行标定:
步骤1-1、将方型工装载体做任意角度的旋转,从而得到一系列做任意角度旋转时的地磁场强度三轴分量的测量值。
部分测量值如下表1所示,将这些测量值画在三维坐标系下,如图3所示,由于磁传感器误差的存在,图形为一椭球曲面。
表1
步骤1-2、利用基于椭球拟合的三轴磁传感器误差补偿方法,对上述的地磁场强度三轴分量的测量值进行校正,求得误差校正系数矩阵C1和综合零偏误差从而消除三轴磁传感器的制造误差和环境误差。
将经过步骤1校正后的测量数据画在三维坐标系下,如图4所示,将磁传感器的制造误差和环境误差补偿后,图形为一球面。
步骤2、基于水平面内三轴旋转对三轴磁传感器的安装误差进行校正:
步骤2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,求得向量[c11 c12 c13]Τ
步骤2-1-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,得到一系列绕X轴旋转时的地磁场强度三轴分量的测量值,部分测量值如下表2所示;
表2
步骤2-1-2、规定方型工装载体坐标系与三轴磁传感器自身坐标系并不完全重合,即存在安装误差,因此,存在一个正交的坐标系转换矩阵C2
使得以下式成立:
在式(1)中,表示地磁场在方型工装载体坐标系中的真实值,分别是沿载体坐标系X、Y、Z轴方向的分量值,表示经过步骤1校正后地磁场在磁传感器自身坐标系中的真实值,角度ψ、θ、是三个欧拉误差角,cij是正交坐标系转换矩阵C2中的第i行、第j列元素,i=1,2,3,j=1,2,3;
步骤2-1-3、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-1-1中得到的绕X轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(2)中表示将绕X轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-1-4、根据式(2),将步骤2-1-3中得到的Nx展开为方程组如下:
步骤2-1-5、由式(3)利用最小二乘拟合,求得向量[c11 c12 c13]Τ
其中矩阵
向量[c11 c12 c13]T=[0.0113 0.0104 1.0040]T
步骤2-2、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,求得向量[c21 c22 c23]Τ
步骤2-2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,得到一系列绕Y轴旋转时的地磁场强度三轴分量的测量值,部分测量值如下表3所示;
表3
步骤2-2-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-2-1中得到的绕Y轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(5)中表示将绕Y轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-2-3、根据式(5),将步骤2-2-2中得到的Ny展开为方程组如下:
步骤2-2-4、由式(6)利用最小二乘拟合,求得向量[c21 c22 c23]Τ
其中矩阵
向量[c21 c22 c23]T=[-0.9216 0.0132 -0.0077]T
步骤2-3、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,求得向量[c31 c32 c33]Τ
步骤2-3-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,得到一系列绕Z轴旋转时的地磁场强度三轴分量的测量值,部分测量值如下表4所示;
表4
步骤2-3-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-3-1中得到的绕Z轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(8)中表示将绕Z轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-3-3、根据式(8),将步骤2-3-2中得到的Nz展开为方程组如下:
步骤2-3-4、由式(9)利用最小二乘拟合,求得向量[c31 c32 c33]Τ
其中矩阵
向量[c31 c32 c33]T=[0.0115 0.8988 -0.0212]T
步骤3、磁传感器测量结果的综合校正模型为:
式(11)中是地磁场矢量在磁传感器自身坐标系下的实际测量结果,校正前后的效果比较如图5和图6所示。
上述步骤2-1、步骤2-2和步骤2-3顺序可调。
采用本发明所述的用于三轴磁传感器简易校正的两步校正方法对实验测量数据进行校正,结果说明如下:如图3所示,原始测量数据由于存在磁传感器误差,理论上的球面畸变成了椭球面。如图4所示,经过第一步基于椭球拟合误差补偿后,数据所构成的曲面接近于理论上的球面,说明该步的确能够校正磁传感器的制造误差和环境误差。如图5所示是载体置于水平大理石平台上,将载体分别绕X、Y、Z轴旋转所得的测量数据经第一步校正后所构成的波形图。可以看出,在未进行安装误差校正前,当载体绕Z轴旋转时,X轴方向、Y轴方向的地磁场分由于旋转做明显的正弦变化,Z轴方向的分量值由于安装误差的存在做小幅度的波动。同样可以看出当载体分别绕X轴、Y轴旋转时,旋转轴方向上的地磁场分量值由于安装误差的存在做小幅度的波动,而另外两个方向上的地磁场分量值由于旋转做明显的正弦变化。将图5中的数据经过第二步安装误差校正后的波形图如图6所示。可以看出,当载体绕Z轴旋转时,Z轴方向的地磁场分量值几乎保持平稳不变,只有X轴方向和Y轴方向的分量值做明显的正弦变化。同理,当载体分别绕X轴、Y轴旋转时,只有旋转轴方向上的地磁场分量值保持不变,而另外两个方向上的地磁场分量值做明显的正弦变化。这说明第二步校正过程的确能够校正磁传感器的安装误差。

Claims (2)

1.一种用于三轴磁传感器简易校正的两步校正方法,其特征在于,方法步骤如下:
步骤1、基于椭球拟合对三轴磁传感器进行标定:
步骤1-1、将方型工装载体做任意角度的旋转,从而得到一系列做任意角度旋转时的地磁场强度三轴分量的测量值;
步骤1-2、利用基于椭球拟合的三轴磁传感器误差补偿方法,对上述的地磁场强度三轴分量的测量值进行校正,求得误差校正系数矩阵C1和综合零偏误差
步骤2、基于水平面内三轴旋转对三轴磁传感器的安装误差进行校正:
步骤2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,求得向量[c11 c12 c13]T
步骤2-1-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的X轴朝上,让方型工装载体绕X轴缓慢旋转至少1周,得到一系列绕X轴旋转时的地磁场强度三轴分量的测量值;
步骤2-1-2、规定方型工装载体坐标系与三轴磁传感器自身坐标系并不完全重合,即存在安装误差,因此,存在一个正交的坐标系转换矩阵C2
使得以下式成立:
在式(1)中,表示地磁场在方型工装载体坐标系中的真实值,分别是沿方型工装载体坐标系X、Y、Z轴方向的分量值,表示经过步骤1校正后地磁场在磁传感器自身坐标系中的真实值,角度ψ、θ、是三个欧拉误差角,cij是正交坐标系转换矩阵C2中的第i行、第j列元素,i=1,2,3,j=1,2,3;
步骤2-1-3、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-1-1中得到的绕X轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(2)中表示将绕X轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-1-4、根据式(2),将步骤2-1-3中得到的Nx展开为方程组如下:
步骤2-1-5、由式(3)利用最小二乘拟合,求得向量[c11 c12 c13]T
其中矩阵
步骤2-2、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,求得向量[c21 c22 c23]T,具体步骤如下:
步骤2-2-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Y轴朝上,让方型工装载体绕Y轴缓慢旋转至少1周,得到一系列绕Y轴旋转时的地磁场强度三轴分量的测量值;
步骤2-2-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-2-1中得到的绕Y轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(5)中表示将绕Y轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-2-3、根据式(5),将步骤2-2-2中得到的Ny展开为方程组如下:
步骤2-2-4、由式(6)利用最小二乘拟合,求得向量[c21 c22 c23]T
其中矩阵
步骤2-3、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,求得向量[c31 c32 c33]T;具体步骤如下:
步骤2-3-1、将方型工装载体置于水平大理石平台上,并将方型工装载体坐标系的Z轴朝上,让方型工装载体绕Z轴缓慢旋转至少1周,得到一系列绕Z轴旋转时的地磁场强度三轴分量的测量值;
步骤2-3-2、利用步骤1-2中得到的误差校正系数矩阵C1和综合零偏误差对步骤2-3-1中得到的绕Z轴旋转时的地磁场强度三轴分量的测量值进行校正,得到则有以下关系式成立:
式(8)中表示将绕Z轴旋转时得到的测量值进过步骤1校正后,地磁场在磁传感器自身坐标系中的真实值,分别表示沿磁传感器自身坐标系X、Y、Z轴方向上的分量值;
步骤2-3-3、根据式(8),将步骤2-3-2中得到的Nz展开为方程组如下:
步骤2-3-4、由式(9)利用最小二乘拟合,求得向量[c31 c32 c33]T
其中矩阵
步骤3、磁传感器测量结果的综合校正模型为:
式(11)中是地磁场矢量在磁传感器自身坐标系下的实际测量结果。
2.根据权利要求1所述的用于三轴磁传感器简易校正的两步校正方法,其特征在于:上述步骤2-1、步骤2-2和步骤2-3顺序可调。
CN201610945745.4A 2016-11-02 2016-11-02 一种用于三轴磁传感器简易校正的两步校正方法 Active CN106569150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610945745.4A CN106569150B (zh) 2016-11-02 2016-11-02 一种用于三轴磁传感器简易校正的两步校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610945745.4A CN106569150B (zh) 2016-11-02 2016-11-02 一种用于三轴磁传感器简易校正的两步校正方法

Publications (2)

Publication Number Publication Date
CN106569150A CN106569150A (zh) 2017-04-19
CN106569150B true CN106569150B (zh) 2019-03-05

Family

ID=58536577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610945745.4A Active CN106569150B (zh) 2016-11-02 2016-11-02 一种用于三轴磁传感器简易校正的两步校正方法

Country Status (1)

Country Link
CN (1) CN106569150B (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121707B (zh) * 2017-05-09 2018-12-25 深圳清华大学研究院 一种三轴磁传感器测量基准与结构基准的误差校正方法
CN107290801B (zh) * 2017-06-14 2019-07-16 哈尔滨工程大学 基于函数链接型神经网络和场模平方差的捷联三轴磁强计误差一步校正方法
CN108507553A (zh) * 2018-04-26 2018-09-07 西南应用磁学研究所 电子罗盘的校正方法
CN109298365B (zh) * 2018-11-13 2023-09-19 中国船舶重工集团公司第七0四研究所 三轴磁传感器正交度及增益一致性校准装置及方法
CN109541708B (zh) * 2018-11-21 2020-01-31 桂林电子科技大学 一种采用双轴传感器测量三维矢量场的方法
CN109541704B (zh) * 2018-12-05 2021-06-04 加泰科(深圳)科技有限公司 一种三轴磁通门航磁测量系统及矫正补偿方法
CN109931956B (zh) * 2019-03-18 2021-09-28 吉林大学 捷联式三分量磁测系统中三轴磁力仪与惯导安装误差校正方法
CN110579730A (zh) * 2019-09-02 2019-12-17 杭州电子科技大学 一种三轴磁传感器的转向差校正方法
CN112305473B (zh) * 2020-10-23 2023-08-11 哈尔滨工程大学 三轴tmr传感器的校准方法
CN112698258B (zh) * 2021-01-20 2022-04-12 中国人民解放军海军工程大学 一种三轴磁强计的一体化误差校正方法
CN113514789B (zh) * 2021-04-23 2022-06-07 北京大学 一种磁传感器阵列校准方法
CN113866688B (zh) * 2021-09-22 2022-10-04 西北工业大学 一种小姿态角条件下的三轴磁传感器误差校准方法
CN114487968A (zh) * 2022-01-28 2022-05-13 上海安翰医疗技术有限公司 一种磁球校准方法和磁球校准装置
CN114468945A (zh) * 2022-01-28 2022-05-13 上海安翰医疗技术有限公司 一种磁球校准方法和磁球校准装置
CN115420305B (zh) * 2022-09-30 2023-06-20 南京理工大学 基于采样点权重自适应分配的三轴磁传感器误差补偿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276307A (ja) * 2008-05-19 2009-11-26 Shimadzu Corp 磁気計測装置
CN103808331A (zh) * 2014-03-05 2014-05-21 北京理工大学 一种mems三轴陀螺仪误差标定方法
CN104237958A (zh) * 2014-09-29 2014-12-24 陕西宝成航空仪表有限责任公司 基于轨迹约束的地磁场矢量测量误差修正方法
CN104897172A (zh) * 2015-06-18 2015-09-09 南京航空航天大学 基于运动捕捉系统的旋转mems惯导磁航向角误差补偿方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276307A (ja) * 2008-05-19 2009-11-26 Shimadzu Corp 磁気計測装置
CN103808331A (zh) * 2014-03-05 2014-05-21 北京理工大学 一种mems三轴陀螺仪误差标定方法
CN104237958A (zh) * 2014-09-29 2014-12-24 陕西宝成航空仪表有限责任公司 基于轨迹约束的地磁场矢量测量误差修正方法
CN104897172A (zh) * 2015-06-18 2015-09-09 南京航空航天大学 基于运动捕捉系统的旋转mems惯导磁航向角误差补偿方法

Also Published As

Publication number Publication date
CN106569150A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106569150B (zh) 一种用于三轴磁传感器简易校正的两步校正方法
CN103885002B (zh) 磁传感器阵列测量中的平行度误差补偿方法和系统
CN107024674B (zh) 一种基于递推最小二乘法的磁强计现场快速标定方法
CN105486289B (zh) 一种激光摄影测量系统及相机标定方法
CN107121707B (zh) 一种三轴磁传感器测量基准与结构基准的误差校正方法
CN104359492B (zh) 惯性导航和轮速计组成的航迹推算定位系统误差估算算法
CN102207371B (zh) 一种三维点坐标测量方法及测量装置
CN106291512A (zh) 一种阵列推扫式激光雷达测距非均匀性校正的方法
CN110146839A (zh) 一种移动平台磁梯度张量系统校正方法
CN205333067U (zh) 一种激光摄影测量系统
Huterer et al. No evidence for bulk velocity from type Ia supernovae
CN108344361B (zh) 一种基于激光跟踪仪的平面法向量测量方法
CN106813596A (zh) 一种自标定阴影莫尔三维轮廓测量方法
CN104697508B (zh) 一种磁场传感器与使用该磁场传感器的电子罗盘
CN106525079A (zh) 一种三轴磁传感器标定方法及装置
CN105043381A (zh) 一种基于磁钉的定位方法
CN104316037A (zh) 一种电子罗盘的校正方法及装置
CN109712157A (zh) 一种基于单目视觉的重力场法加速度计校准方法
CN108088431B (zh) 一种自校正电子罗盘及其校正方法
CN109084734A (zh) 基于单目显微视觉的微球姿态测量装置及测量方法
CN105260610B (zh) 一种多探测器坐标系转化及误差纠正方法
CN105716594A (zh) 一种罗盘的平面六点校准方法
CN106248000B (zh) 零件孔轴线的测量方法
CN103148779B (zh) 位置测量设备中光源的调整装置
CN107991049A (zh) 基于加速度传感器的六自由度振动测试方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant