CN106547998A - 一种燃气灶具优化设计评价方法及其测试系统 - Google Patents

一种燃气灶具优化设计评价方法及其测试系统 Download PDF

Info

Publication number
CN106547998A
CN106547998A CN201611120312.1A CN201611120312A CN106547998A CN 106547998 A CN106547998 A CN 106547998A CN 201611120312 A CN201611120312 A CN 201611120312A CN 106547998 A CN106547998 A CN 106547998A
Authority
CN
China
Prior art keywords
gas
burner
meter
sample
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611120312.1A
Other languages
English (en)
Inventor
高文学
王启
李昊民
刘彤
张建海
潘翠景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Public Works North China Design Studies Zong Yuan Co Ltd
North China Municipal Engineering Design and Research Institute Co Ltd
Original Assignee
China Public Works North China Design Studies Zong Yuan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Public Works North China Design Studies Zong Yuan Co Ltd filed Critical China Public Works North China Design Studies Zong Yuan Co Ltd
Priority to CN201611120312.1A priority Critical patent/CN106547998A/zh
Publication of CN106547998A publication Critical patent/CN106547998A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

一种燃气灶具的优化设计评价技术方法,包括如下步骤:①典型样本选取;②建立样品三维几何模型;③样品实验测试研究:包括a.建立实验系统进行测试、b.基于实验测试数据作为边界条件,进行本样品的仿真模拟;④依据实测数据,对仿真结果进行判断和修正;⑤将已经验证的燃气流动与燃烧模型应用到所有实验样品,进行验证测试和模拟;⑥运用仿真模拟指导设计。该方法所用的测试实验系统由燃气供应部分、燃气具性能测试部分和带有信号转换模块的控制主机组成。本发明无需生产加工出燃气灶具实体就可以快速评价燃气灶具的燃烧工况、热工性能及烟气排放指标,以此提高灶具的设计效率和技术水平。

Description

一种燃气灶具优化设计评价方法及其测试系统
技术领域
本发明涉及燃气灶具领域,更具体而言,涉及一种燃气灶具优化设计评价方法及其测试系统,该方法针对燃气灶具设计水平和效果进行优化评价。
背景技术
近年来,随着人们对环境保护的日渐重视,天然气作为一种清洁能源逐渐受到大家的青睐。而燃气灶具作为燃气具的主要产品,其燃烧器的设计技术和能效水平研究也日益受到广泛重视。
家用燃气灶具一般由进气管、燃烧器、灶面、锅架及框架等部分组成。而燃烧器作为灶具的核心,一般由引射器、喷嘴、调风板、炉头和火盖组成。在灶具的设计中,燃烧器的设计最为重要。虽然目前市面上的灶具有很多种,但对于灶具的燃烧器,尤其是炉头设计,设计时需要调整的参数有很多,而灶具头部的火孔类型、火孔尺寸、火孔排布等因素的不同组合,直接影响着灶具的燃烧工况、能效和烟气排放等指标。
在现有技术中,灶具燃烧器的设计主要是靠经验,工程师们往往都是根据实验结果以及工作经验,并没有统一的设计方法、技术标准或充足的理论指导。这种方法因设计者的经验不同而导致燃烧性能有很大的差异,且需要花费大量的时间和资源去开发模具,进行燃烧性能测试实验,来验证各种设计和设想的可行性,这种方法并不利于燃气灶具燃烧器的研究和开发。同时,开发模具需要大量人力物力投入,造成巨大人力资金浪费。
发明内容
针对现有技术的不足,本发明的目的在于提供一种燃气灶具的优化设计评价技术方法,该方法无需生产加工出燃气灶具实体就可以快速评价燃气灶具的燃烧工况、热工性能及烟气排放指标,以此提高灶具的设计效率和技术水平。
本发明的另一目的是提供上述燃气灶具的优化设计评价技术方法所用的测试系统。
如上构思,本发明的技术方案是:一种燃气灶具的优化设计评价技术方法,其特征在于:包括如下步骤:
①典型样本选取:针对现有灶具样品的燃烧器,选取典型燃气灶具若干台进行样品分类,每类各两台为一组,得出典型样品库分类数据;
②建立样品三维几何模型:
a.选择上述典型灶具样品组中的一台,进行硬件分解并测量灶具各主体部分的外形尺寸,建立其几何模型,划分网格;
b.利用仿真模拟软件进行实体模拟,得出灶具的进气系统、燃烧器、灶面、锅架、框架的三维几何模型;
③样品实验测试研究:依据建立的测试实验系统进行实体样品的试验与测试,得出上述几何模型的初始边界条件;实验验证目标为:灶具燃烧工况、燃烧器附近温度场、灶具燃烧器附近烟气浓度场、灶具的热负荷与热效率;实验变量设置为燃烧器和锅架两部分,包括如下因素:引射器尺寸及其形状、火盖面积、火孔类型、火孔尺寸、火孔排布、火孔间距、锅架高度和锅架位置;
样品实验测试研究分两步:
a.建立实验系统进行测试:
针对选取的典型样品组中的另一台样品进行实验测试,测试项目包括燃烧工况、燃烧区域温度场分布、燃具热负荷和/或热效率、烟气中CO以及NOx浓度场分布;
模拟边界条件的输入须与实验测试的边界条件相符合,因此必须测定和计算出燃气流量、燃气压力、燃气温度、一次空气系数、环境温度、室内空气参数(包括温度,湿度,大气压)、锅的大小尺寸、烟气取样器的尺寸位置这一系列边界条件;
b.基于实验测试数据作为边界条件,进行本样品的仿真模拟:针对上述典型灶具样品作为基准,基于上述实验测试得到的过程数据和结果,作为本仿真研究的初始条件和边界条件,利用仿真模拟软件进行模拟,得到模拟结果,模拟结果包括燃烧工况、燃烧区域温度场分布、烟气的CO以及NOx浓度场分布、燃气具热负荷和热效率;
④依据实测数据,对仿真结果进行判断和修正;
⑤将已经验证的燃气流动与燃烧模型应用到所有实验样品,进行验证测试和模拟:将已经验证的燃气流动与燃烧模型,应用到不同火孔类型、火孔尺寸、火孔排布、火孔间距以及不同进气、进风、锅架高度、锅架位置条件下得到不同实验变量的模拟结果;对于单个因素,在合理范围内进行至少m组(m≥5)模拟;
⑥基于模型和实测结论,构建灶具燃烧器头部结构设计的仿真软件应用程序,形成测试判断技术和设计评价软件;然后,调整燃气灶具燃烧器的三维几何模型的尺寸和其他设计参数,并利用设计评价软件重新获取所述燃烧工况、温度场分布和所述CO以及NOx浓度场分布,得到一个最佳的燃气灶具燃烧器。
上述燃气灶具的优化设计评价技术方法所用的测试实验系统,由燃气供应部分、燃气具性能测试部分和带有信号转换模块的控制主机组成;
所述燃气供应部分包括燃气供应管路、管道切断阀、燃气调压器、燃气流量计、燃气温度显示计、燃气压力显示计、燃气具燃烧器前压力显示计和燃烧器前阀门,燃气供应管路上依次连接燃气供应管道、管道切断阀、燃气调压器、燃气流量计、燃具燃烧器前压力显示计、燃烧器前阀门,该阀门出口通过连接软管与实验用燃气具连接;其中:燃气流量计、燃气流量计上的燃气温度显示计和燃气压力显示计、燃具燃烧器前压力显示计皆通过数据/信号传输线与控制主机的信号转换模块连接,实现气体流量、压力、温度的电压或电流或数字信号的传输;其中管道切断阀和燃气调压器通过数据/信号传输线与控制主机的信号转换模块连接;
所述燃气具性能测试部分包括实验用燃气具、实验专用锅、烟气取样器、烟气分析仪和烟气温度显示计,所述实验用燃气具通过软管与上述燃烧器前阀门连接,所述实验专用锅配有测试温度显示计、搅拌器和烟气取样器,烟气取样器与烟气分析仪连接,烟气温度显示计设置在燃烧区域附近;所述搅拌器、烟气分析仪及烟气温度显示计皆通过数据/信号传输线与控制主机的信号转换模块连接。
上述燃气温度显示计采用热电偶或热电阻或温度变送器。
上述燃气压力显示计采用压力计或压力表或压力变送器。
上述燃具燃烧器前压力显示计采用压力表或压力计或压力变送器。
上述燃气供应部分和燃气具性能测试部分之间装有隔热板。
与现有技术相比,本发明的优点是:
1、本发明可以通过编制的仿真软件应用程序对设计灶具样品进行燃烧性能模拟和优化,不需进行实体灶具的开模加工和实际测试,从而节省了实验时间、材料开支和人力投入。
2、本发明提出了一种全新的燃气灶具设计技术,可以通过建立的评价方法及系统,无需生产制造出燃气灶具实体,就可以快速评价燃气灶具的燃烧工况、热工性能及烟气排放指标,由此提高了燃气灶具的设计效率和技术水平。
附图说明
图1为本发明基于燃气灶具优化设计方法所用实验系统示意图。
图2为本发明燃气灶具优化设计方法工作原理示意图。
其中:1-燃气供应管道;2-管道切断阀;3-燃气调压器;4-燃气温度显示计;5-燃气压力显示计;6-燃气流量计;7-燃具燃烧器前压力显示计;8-燃烧器前阀门;9-软管;10-实验专用锅;11-测试温度显示计;12-搅拌器;13-烟气取样器;14-烟气温度显示计;15-烟气分析仪;16-实验用燃气具;17--数据/信号传输线;18-带有信号转换模块的主机;19-隔热板;20-灶具测试角;21-实验台框架。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。
如图2所示:一种燃气灶具的优化设计评价技术方法,包括如下步骤:
1)步骤S101典型样本选取:
a.建立实验用锅的三维几何模型,根据灶具测试标准GB 16410《家用燃气灶具》确定实验用锅的基本尺寸。如针对某一样品:额定功率为4kW的灶具,锅的直径为300mm,锅壁厚度为0.8mm,高度为190mm,加热水量为5kg。
b.建立该灶具燃烧器的三维几何模型,并将主要的设计尺寸参数化,主要设计参数为引射器尺寸、形状,火盖面积,火孔类型,火孔尺寸,火孔排布,锅架高度,锅架位置。
2)步骤S102样品三维几何模型建立:
模型分为三个计算区。实验专用锅为一个区,采用结构网格;灶具头部火盖为一个区,采用非结构网格;灶具头部火盖与测试用锅之间的燃烧区域为一个区,采用非结构化网格。划分网格主要采用六面体网格组成,在边角以及不规则区域采用四面体网格保证网格的质量。
3)步骤S103样品实验测试研究:
进行实体样品的试验测试,得出上述几何模型的初始边界条件。
实验验证目标:灶具燃烧工况、燃烧器附近温度场;灶具燃烧器附近烟气浓度场,包括CO浓度、NO浓度(通过烟气分析仪测得);灶具的热负荷与热效率。
实验变量设置主要为燃烧器、锅架两部分,主要包括如下因素:引射器尺寸及其形状、火盖面积、火孔类型(圆火孔、条缝火孔)、火孔尺寸(圆火孔的孔径、条缝火孔的缝宽)、火孔排布、火孔间距、锅架高度、锅架位置。样品实验测试研究分两步:
(1)建立实验系统,进行测试:
建立燃气灶具优化评价燃烧测试实验系统,测试典型燃具样品的燃烧工况、能效指标、烟气排放指标参数。
①针对选取的典型样品组中的另一台样品,进行实验测试。测试项目包括火焰的燃烧工况(脱火、回火、黄焰及结碳现象)、燃烧区域温度场分布、燃具热负荷(及热效率)、烟气中CO以及NOx浓度场分布等。
②模拟边界条件的输入须与实验测试的边界条件相符合,因此必须测定和计算出燃气流量、燃气压力、燃气温度、一次空气系数、环境温度、室内空气参数(包括温度,湿度,大气压)、锅的大小尺寸、烟气取样器的尺寸位置这一系列边界条件。
③使用燃气流量计测量燃烧所需的燃气量Q。
④选定温度测试点,温度测试点应分布在燃烧区域最高温度点(因为NOx的生成与高温区域的温度密切相关)。
⑤使用时间采集模块计量燃气燃烧的时间t,测定不同时刻内测温区域的温度Tg,使用温度计测量锅内不同时刻的水温Tw
⑥根据灶具测试标准(GB 16410)选定烟气测试点(此处在做模拟划分网格时,单独将烟气测试点做成一个区域,方便观察模拟结果)。使用烟气取样器测定计算区域内不同时刻烟气中CO以及NOx浓度。
⑦根据灶具测试标准进行热负荷以及热效率测试。
以此类推,做出n组(n≥3)不同模拟结果,并且对这n组灶具进行实验测试(测试方法同上)。
(2)基于测试实验数据,作为边界条件,进行本样品的仿真模拟:
针对上述典型灶具样品作为基准,基于上述实验测试得到的过程数据和结果,作为本仿真研究的初始条件和边界条件,利用仿真模拟软件进行模拟,得到模拟结果,模拟结果包括燃烧工况、燃烧区域温度场分布、烟气的CO以及NOx浓度场分布、燃气具热负荷和热效率。
计算模型——湍流模型选择RNGk-ε湍流模型,辐射模型采用DO辐射模型,燃烧反应模型采用有限速率/涡耗散模型,压力差分格式采用PRESTO,使用非稳态求解器。
边界条件的设置:火孔采用速度入口边界条件,气体流速通过燃气流量计测定的燃气流量Q与灶具设计的一次空气系数α计算可得。
二次空气入口采用速度入口边界条件,二次空气流速取0.1m/s,该速度可以保证空气流量远大于燃料完全燃烧所需的空气量,并且对燃烧器周边气流影响较小。烟气出口边界条件采用压力出口边界条件,出口压力为0Pa。环境温度根据实验测得。锅体材料设为铝,锅内水温根据实验测得。
4)步骤S104依据实测数据,对仿真结果进行判断和修正:
将实验结果与模拟结果进行对比,观察模拟结果的变化规律与实验结果的变化规律。分析偏差的来源,有针对性的对模型进行修改或者对模拟结果进行修正。使用修正后的模型继续计算,得到燃气灶具燃烧工况、燃烧区域及附近计算区域的温度场分布、烟气中CO以及NOx浓度场分布、实验用锅的得热量以及灶具的热负荷和热效率。
5)步骤S105将已经验证的燃气流动与燃烧模型,应用到所有试验样品,进行验证测试和模拟:
将已经验证的燃气流动与燃烧模型,应用到不同火孔类型(圆火孔、条缝火孔)、火孔尺寸(圆火孔的孔径、条缝火孔的缝宽)、火孔排布、火孔间距以及不同进气、进风等条件下,得到不同实验变量的模拟结果。
对于单个因素,在合理范围内进行至少m组(m≥5)模拟。
6)步骤S106运用仿真模拟指导设计:
基于模型和实测结论,构建燃气灶具燃烧器头部结构设计的仿真软件应用程序,形成测试判断技术和设计评价软件。根据仿真模拟的结果,调整引射器尺寸及其形状、锅架高度、锅架位置、头部火盖的火孔类型、火孔尺寸、火孔排布,进一步优化燃气燃烧过程和燃烧后烟气与锅的换热过程。然后重新划分改进区域的网格,使用修正后的模型,得到新的计算结果,最终获得燃气灶具设计的最优结果与测试实验结果一致。
上述方法所使用的测试实验系统如图1所示,由燃气供应部分、燃气具性能测试部分和带有信号转换模块的控制主机组成。上述燃气供应部分和燃气具性能测试部分之间装有隔热板。
所述燃气供应部分包括燃气供应管路、管道切断阀、燃气调压器、燃气流量计、燃气温度显示计、燃气压力显示计、燃气具燃烧器前压力显示计和燃烧器前阀门,燃气供应管路上依次连接燃气供应管道、管道切断阀、燃气调压器、燃气流量计、燃具燃烧器前压力显示计、燃烧器前阀门,该阀门出口通过连接软管与实验用燃气具连接;其中:燃气流量计、燃气流量计上的燃气温度显示计和燃气压力显示计、燃具燃烧器前压力显示计皆通过数据/信号传输线与控制主机的信号转换模块连接,实现气体流量、压力、温度的电压或电流或数字信号的传输;其中管道切断阀和燃气调压器通过数据/信号传输线与控制主机的信号转换模块连接;
所述燃气具性能测试部分包括实验用燃气具、实验专用锅、烟气取样器、烟气分析仪和烟气温度显示计,所述实验用燃气具通过软管与上述燃烧器前阀门连接,所述实验专用锅配有测试温度显示计、搅拌器和烟气取样器,烟气取样器与烟气分析仪连接,烟气温度显示计设置在燃烧区域附近;所述搅拌器、烟气分析仪及烟气温度显示计皆通过数据/信号传输线与控制主机的信号转换模块连接。
上述燃气流量计上的温度显示计可采用热电偶或热电阻或温度变送器,采集到的温度的电压或电流或数字信号通过数据/信号传输线和信号转换模块传输到主机,作为边界条件直接输入到仿真模拟软件。
上述燃气流量计上的压力显示计可采用压力表或压力计或压力变送器,采集到的压力的电压或电流或数字信号通过数据/信号传输线和信号转换模块传输到主机,作为边界条件直接输入到仿真模拟软件。
上述燃具燃烧器前压力显示计可采用压力表或压力计或压力变送器,采集到的压力的电压或电流或数字信号通过数据/信号传输线和信号转换模块传输到主机,作为边界条件直接输入到仿真模拟软件。
本测试实验系统的具体操作步骤如下:
(1)开始前状态,测试系统中管道气全部关闭。按照测试系统要求,将实验用燃气具安放到实验台框架21中的台位上,连接好燃气连接软管9,开启控制主机电源及各相应电源。
(2)开启燃烧器前阀门8,由主机发送动作指令,远程控制打开管道切断阀2,手动点燃燃气具16的燃烧器,调节燃气调压阀3,将供气压力稳定至燃气灶具额定运行压力后,调整燃气具工况至最佳燃烧状况。
(3)安装环状的烟气取样器13,将锅放到灶具上,烟气取样器13距锅底距离为20~100mm。并且在燃烧区域附近设置烟气温度显示计14,作为温度采集点,采集到的烟气组分和温度数据远传到主机上。
(4)燃烧稳定后,进行燃烧性能测试实验。燃气经管道阀门2、燃气调压器3、燃气流量计6、燃具燃烧器前压力显示计7、燃烧器前阀门8进入燃气具;燃气流量计6上采集到的流量、温度和压力的数据信号远传到主机中,作为边界条件。
(5)称量加入实验专用锅内水的质量,作为锅的边界条件输入主机。由烟气分析仪的采集数据,计算得出一次空气系数,作为一次空气边界条件输入主机。
(6)水初温取室温加5℃,水终温取水初温加30℃。水温由初始温度前5℃时,使用搅拌器12开始搅拌,到初温时开始计量燃气消耗。在比初始温度高25K时又开始搅拌,比初始温度高30K时,关掉燃气继续搅拌,所达到的最高温度作为最终温度。根据灶具国家标准规定的公式,进行热负荷以及热效率计算。
(7)选择烟气的组分,燃烧区域采集的温度作为Y轴因变量,时间作为X轴自变量,建立平面直角坐标系,作出烟气的组分、燃烧区域采集的温度随时间的变化规律图,与模拟结果进行对比。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围内。

Claims (6)

1.一种燃气灶具的优化设计评价技术方法,其特征在于:包括如下步骤:
①典型样本选取:针对现有灶具样品的燃烧器,选取典型燃气灶具若干台进行样品分类,每类各两台为一组,得出典型样品库分类数据;
②建立样品三维几何模型:
a.选择上述典型灶具样品组中的一台,进行硬件分解并测量灶具各主体部分的外形尺寸,建立其几何模型,划分网格;
b.利用仿真模拟软件进行实体模拟,得出灶具的进气系统、燃烧器、灶面、锅架、框架的三维几何模型;
③样品实验测试研究:依据建立的测试实验系统进行实体样品的试验与测试,得出上述几何模型的初始边界条件;实验验证目标为:灶具燃烧工况、燃烧器附近温度场、灶具燃烧器附近烟气浓度场、灶具的热负荷与热效率;实验变量设置为燃烧器和锅架两部分,包括如下因素:引射器尺寸及其形状、火盖面积、火孔类型、火孔尺寸、火孔排布、火孔间距、锅架高度和锅架位置;
样品实验测试研究分两步:
a.建立实验系统进行测试:
针对选取的典型样品组中的另一台样品进行实验测试,测试项目包括燃烧工况、燃烧区域温度场分布、燃具热负荷和/或热效率、烟气中CO以及NOx浓度场分布;
模拟边界条件的输入须与实验测试的边界条件相符合,因此必须测定和计算出燃气流量、燃气压力、燃气温度、一次空气系数、环境温度、室内空气参数(包括温度,湿度,大气压)、锅的大小尺寸、烟气取样器的尺寸位置这一系列边界条件;
b.基于实验测试数据作为边界条件,进行本样品的仿真模拟:针对上述典型灶具样品作为基准,基于上述实验测试得到的过程数据和结果,作为本仿真研究的初始条件和边界条件,利用仿真模拟软件进行模拟,得到模拟结果,模拟结果包括燃烧工况、燃烧区域温度场分布、烟气的CO以及NOx浓度场分布、燃气具热负荷和热效率;
④依据实测数据,对仿真结果进行判断和修正;
⑤将已经验证的燃气流动与燃烧模型应用到所有实验样品,进行验证测试和模拟:将已经验证的燃气流动与燃烧模型,应用到不同火孔类型、火孔尺寸、火孔排布、火孔间距以及不同进气、进风、锅架高度、锅架位置条件下得到不同实验变量的模拟结果;对于单个因素,在合理范围内进行至少m组(m≥5)模拟;
⑥基于模型和实测结论,构建灶具燃烧器头部结构设计的仿真软件应用程序,形成测试判断技术和设计评价软件;然后,调整燃气灶具燃烧器的三维几何模型的尺寸和其他设计参数,并利用设计评价软件重新获取所述燃烧工况、温度场分布和所述CO以及NOx浓度场分布,得到一个最佳的燃气灶具燃烧器。
2.一种根据权利要求1所述的燃气灶具的优化设计评价技术方法所用的测试实验系统,其特征在于:由燃气供应部分、燃气具性能测试部分和带有信号转换模块的控制主机组成;
所述燃气供应部分包括燃气供应管路、管道切断阀、燃气调压器、燃气流量计、燃气温度显示计、燃气压力显示计、燃气具燃烧器前压力显示计和燃烧器前阀门,燃气供应管路上依次连接燃气供应管道、管道切断阀、燃气调压器、燃气流量计、燃具燃烧器前压力显示计、燃烧器前阀门,该阀门出口通过连接软管与实验用燃气具连接;其中:燃气流量计、燃气流量计上的燃气温度显示计和燃气压力显示计、燃具燃烧器前压力显示计皆通过数据/信号传输线与控制主机的信号转换模块连接,实现气体流量、压力、温度的电压或电流或数字信号的传输;其中管道切断阀和燃气调压器通过数据/信号传输线与控制主机的信号转换模块连接;
所述燃气具性能测试部分包括实验用燃气具、实验专用锅、烟气取样器、烟气分析仪和烟气温度显示计,所述实验用燃气具通过软管与上述燃烧器前阀门连接,所述实验专用锅配有测试温度显示计、搅拌器和烟气取样器,烟气取样器与烟气分析仪连接,烟气温度显示计设置在燃烧区域附近;所述搅拌器、烟气分析仪及烟气温度显示计皆通过数据/信号传输线与控制主机的信号转换模块连接。
3.根据权利要求2所述的燃气灶具的优化设计评价技术方法所用的测试实验系统,其特征在于:上述燃气温度显示计采用热电偶或热电阻或温度变送器。
4.根据权利要求2所述的燃气灶具的优化设计评价技术方法所用的测试实验系统,其特征在于:上述燃气压力显示计采用压力计或压力表或压力变送器。
5.根据权利要求2所述的燃气灶具的优化设计评价技术方法所用的测试实验系统,其特征在于:上述燃具燃烧器前压力显示计采用压力表或压力计或压力变送器。
6.根据权利要求2所述的燃气灶具的优化设计评价技术方法所用的测试实验系统,其特征在于:上述燃气供应部分和燃气具性能测试部分之间装有隔热板。
CN201611120312.1A 2016-12-08 2016-12-08 一种燃气灶具优化设计评价方法及其测试系统 Pending CN106547998A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611120312.1A CN106547998A (zh) 2016-12-08 2016-12-08 一种燃气灶具优化设计评价方法及其测试系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611120312.1A CN106547998A (zh) 2016-12-08 2016-12-08 一种燃气灶具优化设计评价方法及其测试系统

Publications (1)

Publication Number Publication Date
CN106547998A true CN106547998A (zh) 2017-03-29

Family

ID=58396828

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611120312.1A Pending CN106547998A (zh) 2016-12-08 2016-12-08 一种燃气灶具优化设计评价方法及其测试系统

Country Status (1)

Country Link
CN (1) CN106547998A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319790A (zh) * 2018-02-08 2018-07-24 西安热工研究院有限公司 一种高原地区锅炉炉膛热负荷参数修正新方法
CN108398281A (zh) * 2018-03-12 2018-08-14 中国农业大学 一种针对民用炉具的在线性能测试系统
CN109213013A (zh) * 2018-09-21 2019-01-15 广州发展集团股份有限公司 燃气管道阀门控制系统
CN111241650A (zh) * 2018-11-27 2020-06-05 宁波方太厨具有限公司 基于doe实验的燃烧器性能参数优化方法
CN112963829A (zh) * 2021-04-14 2021-06-15 广东容声电器股份有限公司 一种燃气灶节能燃烧器及仿真设计方法
CN115015487A (zh) * 2022-06-16 2022-09-06 成都市产品质量监督检验研究院 一种基于plc和激光传感器的灶具气体自动检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153353A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 燃焼装置内で発生する有害物質の濃度分布の予測方法および予測方法の記録媒体
CN1966955A (zh) * 2005-11-18 2007-05-23 通用电气公司 燃气涡轮发动机部件品质的以模型为基础的迭代法评价
CN101819606A (zh) * 2010-01-27 2010-09-01 中国电力科学研究院 用于电力系统仿真的常用静态负荷元件模型建模方法
CN102353551A (zh) * 2011-06-27 2012-02-15 中国市政工程华北设计研究总院 一种测定燃气具气质适应域或燃烧工况的方法及所用测试装置
CN103136423A (zh) * 2013-02-21 2013-06-05 奇瑞汽车股份有限公司 一种发动机冷却系统优化设计方法
CN104501859A (zh) * 2014-11-11 2015-04-08 中国市政工程华北设计研究总院有限公司 一种移动一体式燃气灶具综合性能测试实验用测试装置及其测试方法
CN206741486U (zh) * 2016-12-08 2017-12-12 中国市政工程华北设计研究总院有限公司 燃气灶具优化设计评价测试实验系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153353A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 燃焼装置内で発生する有害物質の濃度分布の予測方法および予測方法の記録媒体
CN1966955A (zh) * 2005-11-18 2007-05-23 通用电气公司 燃气涡轮发动机部件品质的以模型为基础的迭代法评价
CN101819606A (zh) * 2010-01-27 2010-09-01 中国电力科学研究院 用于电力系统仿真的常用静态负荷元件模型建模方法
CN102353551A (zh) * 2011-06-27 2012-02-15 中国市政工程华北设计研究总院 一种测定燃气具气质适应域或燃烧工况的方法及所用测试装置
CN103136423A (zh) * 2013-02-21 2013-06-05 奇瑞汽车股份有限公司 一种发动机冷却系统优化设计方法
CN104501859A (zh) * 2014-11-11 2015-04-08 中国市政工程华北设计研究总院有限公司 一种移动一体式燃气灶具综合性能测试实验用测试装置及其测试方法
CN206741486U (zh) * 2016-12-08 2017-12-12 中国市政工程华北设计研究总院有限公司 燃气灶具优化设计评价测试实验系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG YU-JUN: "Research on product configuration based on conditional constraint satisfaction problem", COMPUTER INTEGRATED MANUFACTURING SYSTEMS, vol. 10, no. 11, 1 November 2004 (2004-11-01), pages 1332 - 1337 *
郭甲生;秦朝葵;李伟奇;: "上进风燃气灶引射性能的实验测试及数值模拟", 上海煤气, no. 02, 25 April 2008 (2008-04-25) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108319790A (zh) * 2018-02-08 2018-07-24 西安热工研究院有限公司 一种高原地区锅炉炉膛热负荷参数修正新方法
CN108319790B (zh) * 2018-02-08 2021-06-04 西安热工研究院有限公司 一种高原地区锅炉炉膛热负荷参数修正新方法
CN108398281A (zh) * 2018-03-12 2018-08-14 中国农业大学 一种针对民用炉具的在线性能测试系统
CN108398281B (zh) * 2018-03-12 2019-08-30 中国农业大学 一种针对民用炉具的在线性能测试系统
CN109213013A (zh) * 2018-09-21 2019-01-15 广州发展集团股份有限公司 燃气管道阀门控制系统
CN109213013B (zh) * 2018-09-21 2020-04-14 广州发展集团股份有限公司 燃气管道阀门控制系统
CN111241650A (zh) * 2018-11-27 2020-06-05 宁波方太厨具有限公司 基于doe实验的燃烧器性能参数优化方法
CN111241650B (zh) * 2018-11-27 2023-04-14 宁波方太厨具有限公司 基于doe实验的燃烧器性能参数优化方法
CN112963829A (zh) * 2021-04-14 2021-06-15 广东容声电器股份有限公司 一种燃气灶节能燃烧器及仿真设计方法
CN115015487A (zh) * 2022-06-16 2022-09-06 成都市产品质量监督检验研究院 一种基于plc和激光传感器的灶具气体自动检测系统
CN115015487B (zh) * 2022-06-16 2023-05-16 成都市产品质量监督检验研究院 一种基于plc和激光传感器的灶具气体自动检测系统

Similar Documents

Publication Publication Date Title
CN106547998A (zh) 一种燃气灶具优化设计评价方法及其测试系统
Buchmayr et al. A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging
Gao et al. A study on thermal performance of a novel glazed transpired solar collector with perforating corrugated plate
CN111695249B (zh) 一种燃气锅炉热效率的预测方法
CN109829189B (zh) 一种基于数值模拟的炉膛结渣厚度判断方法
CN101581609A (zh) 一种测量炉膛出口截面温度场的方法及装置系统
CN106548032B (zh) 基于锅炉烟道网格检测烟气co和o2浓度的分布场重建方法
CN102175350A (zh) 一种加热炉在线热平衡测试诊断系统
CN115034138A (zh) 以计算流体力学与深度学习结合的锅炉温度场预测方法
CN204575496U (zh) 可调气象参数的气体扩散测试密闭室
CN103440390B (zh) 工业蒸汽裂解炉辐射段的耦合模拟方法
CN112270109B (zh) 一种高温碳化炉中石墨棒加热性能的模拟方法
CN104376145A (zh) 基于cfd技术的旋流燃烧器燃烧质量评判方法
CN206741486U (zh) 燃气灶具优化设计评价测试实验系统
CN212622469U (zh) 一种改进型的烟气排放连续监测系统
Wang et al. Experimental and numerical research on the performance of an energy-saving elevated kang in rural buildings of northeast China
CN113074459A (zh) 锅炉控制优化方法及系统
CN105004756A (zh) 烧嘴火焰强度测定方法及装置
CN106838979A (zh) 基于锅炉炉膛网格检测co和o2浓度的分布场构建方法
Medina et al. Transport phenomena in a biomass plancha-type cookstove: Experimental performance and numerical simulations
CN203241396U (zh) 一种生物质成型燃料失重燃烧实验台
Pande et al. The effect of inlet area ratio on the performance of multi-pot natural draft biomass cookstove
CN205844234U (zh) 一种生物质打捆燃料燃烧实验台
CN113419025A (zh) 一种焦炉空气过量系数实时监测装置及调节方法
CN211627272U (zh) 一种固体燃料的燃烧质量特性测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination