CN106544666A - 一种原位制备NiO纳米片薄膜材料的方法 - Google Patents

一种原位制备NiO纳米片薄膜材料的方法 Download PDF

Info

Publication number
CN106544666A
CN106544666A CN201610953379.7A CN201610953379A CN106544666A CN 106544666 A CN106544666 A CN 106544666A CN 201610953379 A CN201610953379 A CN 201610953379A CN 106544666 A CN106544666 A CN 106544666A
Authority
CN
China
Prior art keywords
film materials
nio
nano sheet
reactor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610953379.7A
Other languages
English (en)
Other versions
CN106544666B (zh
Inventor
樊玉欠
王慧娟
蒋天航
马志鹏
李子轩
余文婷
梁丹阳
刘宇
邵光杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201610953379.7A priority Critical patent/CN106544666B/zh
Publication of CN106544666A publication Critical patent/CN106544666A/zh
Application granted granted Critical
Publication of CN106544666B publication Critical patent/CN106544666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种基于原位生长在镍基体上制备NiO纳米片薄膜材料的方法,其主要步骤包括:首先,将金属镍基体清洗除尘、除锈、除油以获得清洁的镍表面;其次,配制水性电解液,原料为碳酸盐,其浓度为10‑300g/L;然后,将电解液放入反应釜中,同时将干净的镍基体浸入电解液中,并密封反应釜,再将反应釜置于马弗炉中在150‑250℃进行水热反应10‑96小时,使得金属镍表面发生氧化反应生成前驱体薄膜;最后,将水热后的电极取出、清净、干燥,并置于加热炉中在250‑500℃下进行脱水热处理,即获得原位生长的NiO纳米片薄膜材料。本发明原材料廉价、工艺简单、易于操作、生产成本低,所制备的NiO薄膜材料分布均匀、厚度可控,适合工业化大生产。

Description

一种原位制备NiO纳米片薄膜材料的方法
技术领域
本发明属于材料技术领域,特别涉及一种NiO纳米片薄膜的制备方法。
背景技术
在过渡金属氧化物中,NiO因其独特的物化特性,良好的化学稳定性,因此在许多领域有重要的应用价值。尤其是在电化学领域中,得益于NiO的优异的电化学氧化还原活性,使得该材料在在电化学储能(如锂离子电池,超级电容器)、电化学催化(如电化学析氧或析氢)、电化学传感器等方面具有重要的应用价值。随着科学技术的不断发展,社会对NiO产品的开发有不断增长的数量和质量要求,因此近几年NiO相关产品的开发性能研究备受国内外科学家的关注。其中,开发成本廉价,工艺简单,易于操作,生产价格低的材料制备新方法成为关键问题,在社会生产及应用领域具有重大意义。
目前国内外在NiO产品开发方面向着两个方向发展:其一是开发NiO粉体材料;其二是开发直接生长在电极基体上的NiO薄膜材料。粉体产品的缺点在于:在电极制备时往往需要加入导电剂(石墨,乙炔黑等)和粘结剂(聚四氟乙烯等)以提高NiO产品与基体的电子导电性和结合力,使得电极制备工艺复杂化。与之相对应,直接生长在电极基体上的NiO薄膜材料则能够很好地克服上述缺点,使NiO产品与基体有天然的导电性和结合力,从而能更好地发挥产品的活性。然而目前所报道的直接生长在电极基体上的NiO薄膜材料的方法工艺复杂,制备成本高,产品种类单一等,限制了该产品的应用和发展。
发明内容
本发明的目的在于提供一种原材料廉价、工艺简单、易于操作、生产成本低的适合工业化大生产的原位制备NiO纳米片薄膜材料的方法。
本发明的技术方案如下:
(1)将金属镍基体清洗除尘、除锈、除油以获得清洁的镍表面;所述金属镍基体是指由纯镍组成的或者是表面沉积一层金属镍的基体,基体可以是平面或多孔结构;
(2)配制水性电解液,原料为碳酸盐,其浓度为10-300g/L;所述碳酸盐是指碳酸锂、碳酸钠、碳酸钾、碳酸镁中的一种或两种,两种时,其质量比为1-10:1;
(3)将步骤(2)的电解液放入反应釜中,同时将步骤(1)的镍基体浸入电解液中,并密封反应釜;
(4)将反应釜置于马弗炉中在150-250℃进行水热反应10-96小时,使得金属镍表面发生氧化反应生成前驱体薄膜;
(5)将步骤(4)的前驱体薄膜取出、清净、干燥,并置于加热炉中在250-500℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。所得到的薄膜是由多边形NiO纳米片结构组成,纳米片均匀地生长在基体表面。
本发明与现有技术相比具有如下优点:
1、能够有效克服传统粉体材料制备电极时的复杂工艺,并有益于发挥材料的电化学活性。
2、原材料廉价,工艺简单,易于操作,生产成本低,适合工业化大生产。
3、所制备的薄膜材料厚度可控。
附图说明
图1为本发明实施例1制备的NiO薄膜的实物图。
图2为本发明实施例1制备的NiO薄膜的扫描电镜图。
图3为本发明实施例1制备的NiO薄膜的XRD图。
具体实施方式
实施例1
将金属泡沫镍基体清洗除尘、除锈、除油以获得清洁的镍表面;配制水性电解液,原料为碳酸钠,其浓度为100g/L;将电解液放入反应釜中,同时将干净的镍基体浸入电解液中,并密封反应釜;将反应釜置于马弗炉中在180℃进行水热反应48小时,使得金属镍表面发生氧化反应生成前驱体薄膜;将水热后的电极取出、清净、干燥,并置于加热炉中在300℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。如图1所示,可以看出,在基体原位获得均匀的NiO纳米片薄膜。如图2所示,可以看出,基于原位生长制备的薄膜由多边形NiO纳米片结构组成,纳米片均匀地生长在基体表面。如图3所示,可以证明原位生长所制备的产品为NiO纳米片薄膜。
实施例2
将金属平面镍板基体清洗除尘、除锈、除油以获得清洁的镍表面;配制水性电解液,原料为碳酸钠200g/L,碳酸钾浓100g/L;将电解液放入反应釜中,同时将干净的镍基体浸入电解液中,并密封反应釜;将反应釜置于马弗炉中在150℃进行水热反应10小时,使得金属镍表面发生氧化反应生成前驱体薄膜;将水热后的电极取出、清净、干燥,并置于加热炉中在250℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。
实施例3
将金属镍基体清洗除尘、除锈、除油以获得清洁的镍表面;配制水性电解液,原料为碳酸钠5g/L,碳酸钾浓5g/L;将电解液放入反应釜中,同时将干净的镍基体浸入电解液中,并密封反应釜;将反应釜置于马弗炉中在200℃进行水热反应96小时,使得金属镍表面发生氧化反应生成前驱体薄膜;将水热后的电极取出、清净、干燥,并置于加热炉中在500℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。
实施例4
将金属镍基体清洗除尘、除锈、除油以获得清洁的镍表面;配制水性电解液,原料为碳酸锂50g/L,碳酸镁浓5g/L;;将电解液放入反应釜中,同时将干净的镍基体浸入电解液中,并密封反应釜;将反应釜置于马弗炉中在250℃进行水热反应30小时,使得金属镍表面发生氧化反应生成前驱体薄膜;将水热后的电极取出、清净、干燥,并置于加热炉中在400℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。

Claims (4)

1.一种原位制备NiO纳米片薄膜材料的方法,其特征在于:它包括以下步骤:
(1)将金属镍基体清洗除尘、除锈、除油以获得清洁的镍表面;
(2)配制水性电解液,原料为碳酸盐,其浓度为10-300g/L;
(3)将步骤(2)的水性电解液放入反应釜中,同时将步骤(1)的镍基体浸入电解液中,并密封反应釜;
(4)将反应釜置于马弗炉中在150-250℃进行水热反应10-96小时,使得金属镍表面发生氧化反应生成前驱体薄膜;
(5)将步骤(4)的前驱体薄膜取出、清净、干燥,并置于加热炉中在250-500℃下进行脱水热处理,即可获得原位生长的NiO纳米片薄膜材料。
2.根据权利要求1所述的原位制备NiO纳米片薄膜材料的方法,其特征在于:所述金属镍基体是指由纯镍组成的或者是表面沉积一层金属镍的基体,基体是平面或多孔结构。
3.根据权利要求1所述的原位制备NiO纳米片薄膜材料的方法,其特征在于:所述电解液所用碳酸盐是指碳酸锂、碳酸钠、碳酸钾、碳酸镁中的一种或两种,两种时,其质量比为1-10:1。
4.根据权利要求1所述的原位制备NiO纳米片薄膜材料的方法,其特征在于:所得到的NiO纳米片薄膜是由多边形NiO纳米片结构组成,纳米片均匀地生长在基体表面。
CN201610953379.7A 2016-11-03 2016-11-03 一种原位制备NiO纳米片薄膜材料的方法 Active CN106544666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953379.7A CN106544666B (zh) 2016-11-03 2016-11-03 一种原位制备NiO纳米片薄膜材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953379.7A CN106544666B (zh) 2016-11-03 2016-11-03 一种原位制备NiO纳米片薄膜材料的方法

Publications (2)

Publication Number Publication Date
CN106544666A true CN106544666A (zh) 2017-03-29
CN106544666B CN106544666B (zh) 2019-04-09

Family

ID=58393637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953379.7A Active CN106544666B (zh) 2016-11-03 2016-11-03 一种原位制备NiO纳米片薄膜材料的方法

Country Status (1)

Country Link
CN (1) CN106544666B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905904A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 莲藕状纳米片组成的氧化镍微球的制备方法
CN102603016A (zh) * 2012-03-08 2012-07-25 中国科学院苏州纳米技术与纳米仿生研究所 纳米氧化镍的制备方法及其应用
CN102677129A (zh) * 2012-06-13 2012-09-19 西北有色金属研究院 一种Ni基NiO纳米片阵列薄膜电极及其制备方法
CN102800488A (zh) * 2012-08-11 2012-11-28 西北有色金属研究院 一种Ni基NiO纳米片阵列薄膜电极的制备方法
CN103043731A (zh) * 2013-02-04 2013-04-17 苏州纳格光电科技有限公司 氧化镍纳米片阵列的制备方法及甲醛传感器
CN103943374A (zh) * 2014-04-30 2014-07-23 东华大学 一种NiO纳米片/超细纳米线超级电容器材料的制备方法
CN104779079A (zh) * 2015-04-28 2015-07-15 浙江大学 用于超级电容器电极材料的NiO@MnO2纳米片及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905904A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 莲藕状纳米片组成的氧化镍微球的制备方法
CN102603016A (zh) * 2012-03-08 2012-07-25 中国科学院苏州纳米技术与纳米仿生研究所 纳米氧化镍的制备方法及其应用
CN102677129A (zh) * 2012-06-13 2012-09-19 西北有色金属研究院 一种Ni基NiO纳米片阵列薄膜电极及其制备方法
CN102800488A (zh) * 2012-08-11 2012-11-28 西北有色金属研究院 一种Ni基NiO纳米片阵列薄膜电极的制备方法
CN103043731A (zh) * 2013-02-04 2013-04-17 苏州纳格光电科技有限公司 氧化镍纳米片阵列的制备方法及甲醛传感器
CN103943374A (zh) * 2014-04-30 2014-07-23 东华大学 一种NiO纳米片/超细纳米线超级电容器材料的制备方法
CN104779079A (zh) * 2015-04-28 2015-07-15 浙江大学 用于超级电容器电极材料的NiO@MnO2纳米片及其制备方法

Also Published As

Publication number Publication date
CN106544666B (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
Yuan et al. A review on non-noble metal based electrocatalysis for the oxygen evolution reaction
Senthilkumar et al. PEDOT/NiFe 2 O 4 nanocomposites on biochar as a free-standing anode for high-performance and durable microbial fuel cells
Chen et al. Superior capacitive performances of binary nickel–cobalt hydroxide nanonetwork prepared by cathodic deposition
Wu et al. Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques
CN105826572B (zh) 一种N,S双掺杂碳纳米管包覆FexC催化剂、制备方法及其应用
Zhu et al. Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction
Xia et al. Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors
Huang et al. Synthesis of high-performance titanium sub-oxides for electrochemical applications using combination of sol–gel and vacuum-carbothermic processes
CN106229485A (zh) 一种由二维层状过渡金属碳化物MXene原位制备过渡金属氧化物/碳复合材料的方法
Ponce-de-León et al. The oxidation of borohydride ion at titanate nanotube supported gold electrodes
CN105469901B (zh) 一种基于原位生长制备氢氧化镍‑氧化镍薄膜电极的方法
CN108435157B (zh) 一种基于秸秆芯制备的片状金属氧化物纳米材料
Wu et al. Hollow mesoporous nickel dendrites grown on porous nickel foam for electrochemical oxidation of urea
Zhu et al. Modification of stainless steel fiber felt via in situ self-growth by electrochemical induction as a robust catalysis electrode for oxygen evolution reaction
CN105498773A (zh) 一种掺杂氧化铁纳米棒催化剂的制备方法
Zong et al. Flower-petal-like Nb2C MXene combined with MoS2 as bifunctional catalysts towards enhanced lithium-sulfur batteries and hydrogen evolution
CN106582721A (zh) 取代贵金属Pt片析氢的MoS2/TiO2NTs异质结光电催化剂及其制备方法
Wan et al. Rational design of Co nano-dots embedded three-dimensional graphene gel as multifunctional sulfur cathode for fast sulfur conversion kinetics
Gomez Vidales et al. Nickel oxide on directly grown carbon nanofibers for energy storage applications
CN106531989B (zh) 钛基底上四氧化三铁@二氧化钛纳米棒阵列电极及其制备方法
Xu et al. Preparation of an electrochemically modified graphite electrode and its electrochemical performance for pseudo-capacitors in a sulfuric acid electrolyte
Ho et al. Thermally assisted conversion of biowaste into environment-friendly energy storage materials for lithium-ion batteries
Jiang et al. Fungi-derived, functionalized, and wettability-improved porous carbon materials: an excellent electrocatalyst toward VO2+/VO2+ redox reaction for vanadium redox flow battery
Jinlong et al. The effects of urea concentration on microstructures of ZnCo2O4 and its supercapacitor performance
Attarzadeh et al. Nature-inspired design of nano-architecture-aligned Ni5P4-Ni2P/NiS arrays for enhanced electrocatalytic activity of hydrogen evolution reaction (HER)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant