CN106541063A - 一种高强度球墨铸铁锻造方法 - Google Patents

一种高强度球墨铸铁锻造方法 Download PDF

Info

Publication number
CN106541063A
CN106541063A CN201611054172.2A CN201611054172A CN106541063A CN 106541063 A CN106541063 A CN 106541063A CN 201611054172 A CN201611054172 A CN 201611054172A CN 106541063 A CN106541063 A CN 106541063A
Authority
CN
China
Prior art keywords
forging
iron
spheroidal graphite
graphite cast
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611054172.2A
Other languages
English (en)
Other versions
CN106541063B (zh
Inventor
孙有平
何江美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201611054172.2A priority Critical patent/CN106541063B/zh
Publication of CN106541063A publication Critical patent/CN106541063A/zh
Application granted granted Critical
Publication of CN106541063B publication Critical patent/CN106541063B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K29/00Arrangements for heating or cooling during processing

Abstract

本发明公开一种高强度球墨铸铁锻造方法,包括以下步骤:将球墨铸铁试样在550‑750℃保温30min以上,然后锻造成型,始锻温度550‑750℃,终锻温度不低于500℃,锻后在空气中在空气中自然冷却或水冷;球墨铸铁试样为圆柱体或方形体,其保温时间随试样尺寸增大而增加;控制试样的锻造总变形量在60‑70%;并对一定尺寸的试样采用双面交替锻造;锻造成型的应变速率控制在0.0001‑0.1/s。本发明对球墨铸铁的锻造方法可进一步细化球墨铸铁内部晶粒,消除其内部缺陷,增加其强度、韧性和耐磨性,提高产品质量和力学性能,并且可以节约金属材料和切削加工工时,减少资源消耗,降低生产成本。

Description

一种高强度球墨铸铁锻造方法
技术领域
本发明涉及合金加工领域,具体涉及一种高强度球墨铸铁锻造方法。
背景技术
球墨铸铁是20世纪五十年代发展起来的一种高强度铸铁材料,它通过球化和孕育处理得到球状石墨,有效地提高了铸铁的机械性能,特别是提高了塑性和韧性,从而得到比碳钢还高的强度,具有良好的耐磨性、减磨性、耐蚀性以及抗氧化性,广泛应用于铸造受力复杂,强度、韧性、耐磨性要求较高的零件,如发动机曲轴等,在某些领域甚至可取代钢材。。
目前铸造厂生产的球墨铸铁产品出现球化不良、缩松和缩孔、夹渣等铸造缺陷,废品损失率高,不仅降低球墨铸铁产品的质量和使用质量,并且造成了资源浪费,降低经济效益。目前这些铸造问题没有很好地得到解决。
锻造工艺是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,可消除金属材料内部缺陷,细化晶粒,改善其综合力学性能,应用广泛于碳钢的强化与成型。使用锻造工艺制造出来的产品力学性能好,可节约金属材料和切削加工工时,大大降低生产成本。若使用锻造工艺对球墨铸铁进行加工,可有效解决用铸造工艺加工球墨铸铁产生的缺陷。
发明内容
本发明旨在提供一种高强度球墨铸铁锻造方法,本发明的锻造方法可加工出高性能的球墨铸铁产品,并有效避免使用铸造法出现的球化不良、缩松和缩孔、夹渣等铸造缺陷,提高产品质量。
为实现上述发明目的,本发明的技术方案如下:
本发明的高强度球墨铸铁锻造方法,将球墨铸铁试样在550-750℃保温30min以上,然后锻造成型,始锻温度550-750℃,终锻温度不低于500℃,锻后在空气中自然冷却或水冷。
所述的球墨铸铁试样为圆柱体、方形体,球墨铸铁试样在550-750℃保温,其保温时间随试样尺寸增大而增加,从基础直径或者厚度10mm起算,球墨铸铁试样的厚度或者直径每增加3-10mm,保温时间增加0.5-3min。
所述的锻造之前,圆柱体球墨铸铁试样的直径不超过300mm,方形体球墨铸铁试样的厚度不超过150mm;球墨铸铁试样锻造成型总变形量控制在60-70%。
所述的球墨铸铁棒,其锻造成型包括以下步骤:
所述的尺寸在φ10×15mm-φ50×75mm的圆柱体球墨铸铁试样或者尺寸小于30×30×70mm的方形体球墨铸铁试样单次锻造变形量为30-70%;尺寸在φ50×75mm-φ100×150mm的圆柱体球墨铸铁试样或者尺寸在30×30×70mm-80×80×200mm的方形体球墨铸铁试样单次锻造变形量为20-40%;尺寸在φ100×150mm-φ200×300mm的圆柱体球墨铸铁试样或者尺寸在80×80×200mm-150×150×400mm的方形体球墨铸铁试样单次锻造变形量为5-20%。
所述的尺寸范围在φ100×150mm-φ200×300mm的圆柱体球墨铸铁试样或者厚度在80-150mm的方形体球墨铸铁试样锻造成型的时候采用双面交替锻造的方式进行。
所述的550-750℃保温之前的升温控制过程包括如下步骤:0-300℃区间内10-30℃/min,300-500℃区间内10-20℃/min,500℃-锻造温度区间内5-15℃/min。
所述的尺寸大于φ50×75mm的圆柱体试样或者厚度大于30mm的方形体试样进行水冷。
所述锻造成型的应变速率控制在0.0001-0.1/s。
本发明的有益效果为:
(1)本发明对球墨铸铁使用的锻造方法与传统的铸造工艺相比,具有很大的优越性,可有效避免因使用铸造法出现的球化不良、缩松和缩孔、夹渣等铸造缺陷,提高产品质量和力学性能;
(2)本发明通过锻造工艺对球墨铸铁试样进行加工,可进一步细化球墨铸铁内部晶粒,消除其内部缺陷,增加其强度、韧性和耐磨性,相对现有牌号的球墨铸铁,本发明加工的球墨铸铁大大提高了其力学性能,可广泛应用于对金属材料性能要求高的领域,具有良好的应用前景;
(3)本发明通过不同的锻造加工方法,对不同尺寸、不同使用目的的球墨铸铁试样进行锻造成型,对一定尺寸的试样进行双面锻造,可以保证试样变形均匀一致,满足加工要求,生产出高质量的产品;
(4)本发明利用锻造方法对球墨铸铁进行加工成型,可节约金属材料和切削加工工时,减少资源消耗,降低生产成本,提高经济效益和社会效益。
附图说明
图1为使用本发明的锻造方法,在不同变形温度下球墨铸铁显微组织。
图2为不同变形温度下球墨铸铁显微组织。
具体实施方式
下面通过实施例进一步说明本发明。应该理解的是,本发明的实施例是用于说明本发明而不是对本发明的限制。根据本发明的实质对本发明进行的简单改进都属于本发明要求保护的范围。
实施例1
取一圆柱体球墨铸铁试样,尺寸为φ10×15mm,将其在550℃下保温30min,在保温之前控制其在0-500℃区间内每分钟升温10℃,500-550℃区间内每分钟升温5℃;然后锻造成型,始锻温度为550℃,终锻温度为500℃,锻造时控制其单次锻造变形量为70%,应变速率为0.0001/s,并一次锻造成型,锻后在空气中自然冷却。
实施例2
取一圆柱体球墨铸铁试样,尺寸为φ50×75mm,将其在590℃下保温54min,在保温之前控制其在0-300℃区间内每分钟升温14℃,300-500℃区间内每分钟升温12℃,500-590℃区间内每分钟升温7℃;然后锻造成型,始锻温度为586℃,终锻温度为540℃,锻造时控制其单次锻造变形量为30%,锻造总变形量为60%,应变速率为0.005/s,锻后在空气中自然冷却。
实施例3
取一圆柱体球墨铸铁试样,尺寸为φ100×150mm,将其在635℃下保温60min,在保温之前控制其在0-300℃区间内每分钟升温18℃,300-500℃区间内每分钟升温15℃,500-635℃区间内每分钟升温9℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为630℃,终锻温度为600℃,锻造时控制其单次锻造变形量为40%,锻造总变形量为65%,应变速率为0.008/s,锻后进行水冷。
实施例4
取一圆柱体球墨铸铁试样,尺寸为φ200×300mm,将其在700℃下保温87min,在保温之前控制其在0-300℃区间内每分钟升温26℃,300-500℃区间内每分钟升温18℃,500-700℃区间内每分钟升温14℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为695℃,终锻温度为628℃,锻造时控制其单次锻造变形量为5%,锻造总变形量为62%,应变速率为0.007/s,锻后进行水冷。
实施例5
取一方形体球墨铸铁试样,尺寸为20×20×60mm,将其在665℃下保温45min,在保温之前控制其在0-300℃区间内每分钟升温23℃,300-500℃区间内每分钟升温16℃,500-665℃区间内每分钟升温12℃;然后锻造成型,始锻温度为629℃,终锻温度为584℃,锻造时控制其单次锻造变形量为30%,锻造总变形量为64%,应变速率为0.05/s,锻后在空气中自然冷却。
实施例6
取一方形体球墨铸铁试样,尺寸为30×30×70mm,将其在750℃下保温45min,在保温之前控制其在0-300℃区间内每分钟升温30℃,300-500℃区间内每分钟升温20℃,500-750℃区间内每分钟升温15℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为750℃,终锻温度为720℃,锻造时控制其单次锻造变形量为40%,锻造总变形量为60%,应变速率为0.04/s,锻后进行水冷。
实施例7
取一方形体球墨铸铁试样,尺寸为80×80×200mm,将其在730℃下保温65min,在保温之前控制其在0-300℃区间内每分钟升温26℃,300-500℃区间内每分钟升温17℃,500-730℃区间内每分钟升温12℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为730℃,终锻温度为714℃,锻造时控制其单次锻造变形量为20%,锻造总变形量为64%,应变速率为0.07/s,锻后进行水冷。
实施例8
取一方形体球墨铸铁试样,尺寸为150×150×400mm,将其在745℃下保温102min,在保温之前控制其在0-300℃区间内每分钟升温24℃,300-500℃区间内每分钟升温19℃,500-745℃区间内每分钟升温8℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为748℃,终锻温度为725℃,锻造时控制其单次锻造变形量为5%,锻造总变形量为65%,应变速率为0.08/s,锻后进行水冷。
实施例9
取一圆柱体球墨铸铁试样,尺寸为φ40×60mm,将其在682℃下保温40min,在保温之前控制其在0-300℃区间内每分钟升温21℃,300-500℃区间内每分钟升温15℃,500-682℃区间内每分钟升温14℃;然后锻造成型,始锻温度为702℃,终锻温度为693℃,锻造时控制其单次锻造变形量为45%,锻造总变形量为68%,应变速率为0.06/s,锻后在空气中自然冷却。
实施例10
取一圆柱体球墨铸铁试样,尺寸为φ70×105mm,将其在579℃下保温60min,在保温之前控制其在0-300℃区间内每分钟升温22℃,300-500℃区间内每分钟升温12℃,500-579℃区间内每分钟升温6℃;然后锻造成型,始锻温度为598℃,终锻温度为586℃,锻造时控制其单次锻造变形量为28%,锻造总变形量为66%,应变速率为0.005/s,锻后进行水冷。
实施例11
取一圆柱体球墨铸铁试样,尺寸为φ150×225mm,将其在619℃下保温132min,在保温之前控制其在0-300℃区间内每分钟升温20℃,300-500℃区间内每分钟升温16℃,500-619℃区间内每分钟升温11℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为623℃,终锻温度为604℃,锻造时控制其单次锻造变形量为14%,锻造总变形量为60%,应变速率为0.009/s,锻后进行水冷。
实施例12
取一方形体球墨铸铁试样,尺寸为40×40×100mm,将其在600℃下保温50min,在保温之前控制其在0-300℃区间内每分钟升温23℃,300-500℃区间内每分钟升温15℃,500-600℃区间内每分钟升温10℃;然后锻造成型,始锻温度为664℃,终锻温度为628℃,锻造时控制其单次锻造变形量为32%,锻造总变形量为70%,应变速率为0.003/s,锻后进行水冷。
实施例13
取一方形体球墨铸铁试样,尺寸为100×100×250mm ,将其在579℃下保温84min,在保温之前控制其在0-300℃区间内每分钟升温27℃,300-500℃区间内每分钟升温17℃,500-579℃区间内每分钟升温8℃;然后采用双面交替锻造的方法进行锻造成型,始锻温度为595℃,终锻温度为578℃,锻造时控制其单次锻造变形量为9%,锻造总变形量为63%,应变速率为0.06/s,锻后进行水冷。
球墨铸铁性能分析
1 力学性能分析
表1为不同牌号的球墨铸铁的硬度力学性能
图1 为使用本发明锻造方法的球墨铸铁的硬度曲线
牌号 硬度/HBS
QT400-18 130-180
QT400-15 130-180
QT450-10 160-210
QT500-7 170-230
QT600-3 190-270
QT700-2 225-305
QT800-2 245-335
QT900-2 280-360
表1 不同牌号的球墨铸铁的硬度力学性能。
由图1可知,使用本发明提供的球墨铸铁锻造方法,在不同应变速率条件时,在600℃的锻造温度下,球墨铸铁硬度为54.7-57.8 HRC;在650℃的锻造温度下,球墨铸铁硬度为52-56.5 HRC;在700℃的锻造温度下,球墨铸铁硬度为50.5-53.0 HRC;在750℃的锻造温度下,球墨铸铁硬度为45.5-54.6HRC;经过换算,使用本发明加工工艺的球墨铸铁硬度相当于:600℃:530-—HBS;650℃:503-—HBS;700℃:486-515HBS;750℃:430-530HBS;与表1中不同牌号的球墨铸铁硬度相比,本发明的球墨铸铁硬度远远大于中国标准牌号球墨铸铁的硬度,说明本发明的球墨铸铁锻造工艺可大大提高球墨铸铁的硬度。同时使用本发明工艺进行加工的球墨铸铁的其余力学性能,如抗拉强度、屈服强度、伸长率等均有不同程度的提高。
2 金相组织分析
图2为使用本发明的锻造方法,在不同变形温度下球墨铸铁显微组织。
如图2所示,(a)的球墨铸铁的变形温度为600℃,球墨呈片状、团状、团絮状,球化率较低;(b)的球墨铸铁的变形温度为650℃,球墨呈分散分布的蠕虫状、片状及球状、团状、团絮状,球化率稍高于(a);(c)的球墨铸铁的变形温度为700℃,球墨呈大部分絮状或团状,余为球状、少量蠕虫状,球化率稍高于(b);(d)的变形温度为750℃,球墨大部分呈团状,余为团絮状,有极少量蠕虫状,球化率高。由图2可知,在本发明的球墨铸铁锻造工艺中,变形温度越大,球化率越高,有利于提高材质的抗拉强度、塑性、耐磨性能。

Claims (8)

1.一种高强度球墨铸铁锻造方法,其特征在于包括以下步骤:
将球墨铸铁试样在550-750℃保温30min以上,然后锻造成型,始锻温度550-750℃,终锻温度不低于500℃,锻后在空气中自然冷却或水冷。
2.如权利要求1所述的高强度球墨铸铁锻造方法,其特征在于:
所述的球墨铸铁试样为圆柱体、方形体,球墨铸铁试样在550-750℃保温,其保温时间随试样尺寸增大而增加,从基础直径或者厚度10mm起算,球墨铸铁试样的厚度或者直径每增加3-10mm,保温时间增加0.5-3min。
3.如权利要求1或2所述的高强度球墨铸铁锻造方法,其特征在于:
所述的锻造之前,圆柱体球墨铸铁试样的直径不超过300mm,方形体球墨铸铁试样的厚度不超过150mm;球墨铸铁试样锻造成型总变形量控制在60-70%。
4.如权利要求3所述的高强度球墨铸铁锻造方法,其特征在于:
所述的球墨铸铁棒,其锻造成型包括以下步骤:
所述的尺寸在φ10×15mm-φ50×75mm的圆柱体球墨铸铁试样或者尺寸小于30×30×70mm的方形体球墨铸铁试样单次锻造变形量为30-70%;尺寸在φ50×75mm-φ100×150mm的圆柱体球墨铸铁试样或者尺寸在30×30×70mm-80×80×200mm的方形体球墨铸铁试样单次锻造变形量为20-40%;尺寸在φ100×150mm-φ200×300mm的圆柱体球墨铸铁试样或者尺寸在80×80×200mm-150×150×400mm的方形体球墨铸铁试样单次锻造变形量为5-20%。
5.如权利要求3所述的高强度球墨铸铁锻造方法,其特征在于:所述的尺寸范围在φ100×150mm-φ200×300mm的圆柱体球墨铸铁试样或者厚度在80-150mm的方形体球墨铸铁试样锻造成型的时候采用双面交替锻造的方式进行。
6.如权利要求1或2所述的高强度球墨铸铁锻造方法,其特征在于:
所述的550-750℃保温之前的升温控制过程包括如下步骤:0-300℃区间内10-30℃/min,300-500℃区间内10-20℃/min,500℃-锻造温度区间内5-15℃/min。
7.如权利要求1所述的高强度球墨铸铁锻造方法,其特征在于:
所述的尺寸大于φ50×75mm的圆柱体试样或者厚度大于30mm的方形体试样进行水冷。
8.如权利要求1或4所述的高强度球墨铸铁锻造方法,其特征在于:所述锻造成型的应变速率控制在0.0001-0.1/s。
CN201611054172.2A 2016-11-25 2016-11-25 一种高强度球墨铸铁锻造方法 Expired - Fee Related CN106541063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611054172.2A CN106541063B (zh) 2016-11-25 2016-11-25 一种高强度球墨铸铁锻造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611054172.2A CN106541063B (zh) 2016-11-25 2016-11-25 一种高强度球墨铸铁锻造方法

Publications (2)

Publication Number Publication Date
CN106541063A true CN106541063A (zh) 2017-03-29
CN106541063B CN106541063B (zh) 2018-10-12

Family

ID=58395146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611054172.2A Expired - Fee Related CN106541063B (zh) 2016-11-25 2016-11-25 一种高强度球墨铸铁锻造方法

Country Status (1)

Country Link
CN (1) CN106541063B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125328A (ja) * 1982-01-20 1983-07-26 Nissan Motor Co Ltd 鍛造品の製造方法
JPH09310123A (ja) * 1996-05-16 1997-12-02 Daihatsu Motor Co Ltd 低コスト歯車の製造方法
JP2000263217A (ja) * 1999-03-10 2000-09-26 Toshiba Mach Co Ltd 機能部材およびその製造方法
US20020174740A1 (en) * 2001-05-23 2002-11-28 Bell Dale K. Cast integral ring gear and differential case
CN201057216Y (zh) * 2007-06-12 2008-05-07 天润曲轴股份有限公司 发动机球墨铸铁曲轴
CN101658914A (zh) * 2009-09-21 2010-03-03 芜湖新兴铸管有限责任公司 离心法球墨铸铁管生产用模具的表面锻打维修工艺
CN105414908A (zh) * 2015-11-19 2016-03-23 徐州海拓机械制造有限公司 一种球墨铸铁曲轴铸造技术

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58125328A (ja) * 1982-01-20 1983-07-26 Nissan Motor Co Ltd 鍛造品の製造方法
JPH09310123A (ja) * 1996-05-16 1997-12-02 Daihatsu Motor Co Ltd 低コスト歯車の製造方法
JP2000263217A (ja) * 1999-03-10 2000-09-26 Toshiba Mach Co Ltd 機能部材およびその製造方法
US20020174740A1 (en) * 2001-05-23 2002-11-28 Bell Dale K. Cast integral ring gear and differential case
CN201057216Y (zh) * 2007-06-12 2008-05-07 天润曲轴股份有限公司 发动机球墨铸铁曲轴
CN101658914A (zh) * 2009-09-21 2010-03-03 芜湖新兴铸管有限责任公司 离心法球墨铸铁管生产用模具的表面锻打维修工艺
CN105414908A (zh) * 2015-11-19 2016-03-23 徐州海拓机械制造有限公司 一种球墨铸铁曲轴铸造技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙爱学等: "球墨铸铁铸锻联合成形新工艺", 《锻压技术》 *

Also Published As

Publication number Publication date
CN106541063B (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
CN101629476B (zh) 耐-40~-80℃低温的高强高韧性石油套管
CN103409696B (zh) 轧制有色金属的热轧辊及其制造方法
CN108453202A (zh) 一种大型船用轴系锻件制造的制造工艺
CN103866095B (zh) 一种针对具有片状微观组织的Cr、Mo钢的球化退火方法
CN106399860B (zh) 一种1Cr17Ni2活塞杆锻件的生产制造方法
CN104745780A (zh) 一种Cr12MoV钢锻造及热处理的生产方法
CN106811580B (zh) 一种h13热作模具钢的球化退火工艺
CN104498834B (zh) 一种高韧性超高强度钢的成分及其制备工艺
CN102899449B (zh) 一种特厚超探伤标准钢板生产工艺
CN102380565A (zh) 一种大锻件的锻造方法
WO2022227891A1 (zh) 一种大规格直接切削用非调质钢的制备方法
CN110935827A (zh) 一种较大规格细晶奥氏体气阀钢SNCrW的锻造方法
CN103212950A (zh) 一种改善车用ahss热冲压结构件强韧化和成形性的工艺方法
CN104511726A (zh) 全纤维整体模锻五缸压裂泵曲轴制造方法
CN109735767A (zh) 一种珠光体耐热钢盘条及其生产方法
CN114015847A (zh) 采用控轧控冷工艺生产一种直接切削用45钢的方法
CN105925889A (zh) 一种特厚规格1.2311模具钢板及其制备方法
CN109371335B (zh) 一种超高强度海洋软管用钢及其制备方法
CN103436789A (zh) 轧制铝材用的热轧辊及其制造方法
CN105369132A (zh) 大断面海洋平台用钢的生产方法
CN105063480B (zh) 一种高强度含硼冷镦钢的生产方法
WO2022174530A1 (zh) 易切削非调质钢及其制备方法
CN103643116B (zh) 一种焊接气瓶及其热轧钢板的制造工艺
CN114134402A (zh) 一种海上、岩石用大规格高强度风电紧固件钢及其制造方法
CN112090981A (zh) S690q材料强化升级的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Sun Youping

Inventor after: Zhou Shan

Inventor after: He Jiangmei

Inventor before: Sun Youping

Inventor before: He Jiangmei

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181012

Termination date: 20191125