CN106525752A - Method for infrared spectroscopy through nano-optics antenna - Google Patents
Method for infrared spectroscopy through nano-optics antenna Download PDFInfo
- Publication number
- CN106525752A CN106525752A CN201611113832.XA CN201611113832A CN106525752A CN 106525752 A CN106525752 A CN 106525752A CN 201611113832 A CN201611113832 A CN 201611113832A CN 106525752 A CN106525752 A CN 106525752A
- Authority
- CN
- China
- Prior art keywords
- nano
- optical antenna
- infrared
- infrared spectroscopy
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004566 IR spectroscopy Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 15
- 230000010287 polarization Effects 0.000 claims abstract description 25
- 238000002834 transmittance Methods 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000001228 spectrum Methods 0.000 claims abstract description 6
- 238000004088 simulation Methods 0.000 claims abstract description 5
- 230000003287 optical effect Effects 0.000 claims description 13
- 238000005259 measurement Methods 0.000 abstract description 8
- 238000004364 calculation method Methods 0.000 abstract description 5
- 238000005094 computer simulation Methods 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域technical field
本发明涉及的技术领域为纳米光学,具体涉及一种应用纳米光学天线进行红外分光的方法,是一种光路结构简单,抗震性好,稳定性高的红外分光方法。The technical field of the invention is nano-optics, in particular to a method for infrared spectroscopy using a nano-optical antenna, which is an infrared spectroscopy method with simple optical path structure, good shock resistance and high stability.
背景技术Background technique
纳米光学天线是近年来纳米光学方向新兴的前沿课题, 广泛应用于新型光源、高密度数据存储、光刻、太阳能电池、光学显微镜及拉曼散射等领域,然而,有关纳米光学天线在红外光谱范围进行分光的应用尚未见报道。Nano-optical antennas are emerging frontier topics in the direction of nano-optics in recent years, and are widely used in new light sources, high-density data storage, lithography, solar cells, optical microscopes, and Raman scattering. Spectroscopic applications have not been reported yet.
现阶段,国内外关于红外分光技术的应用主要是傅立叶变换红外分光光度计,其原理是根据光的相干性得到光的干涉图,再利用计策机进行快速傅里叶变换将其变为光谱图,其实现分光性能的关键部件是迈克尔逊干涉仪,但是由于其要求入射光与反射光时刻保持平行,且准直光路很难调节,往往由于一些震动等外在因素而不稳定。At this stage, the application of infrared spectroscopy technology at home and abroad is mainly the Fourier transform infrared spectrophotometer. The principle is to obtain the interferogram of light according to the coherence of light, and then use the computer to perform fast Fourier transform to convert it into a spectrogram. , the key component to achieve spectroscopic performance is the Michelson interferometer, but because it requires the incident light and reflected light to be kept parallel at all times, and the collimation optical path is difficult to adjust, it is often unstable due to external factors such as vibration.
发明内容Contents of the invention
本发明针对以上现状及问题,提出了一种新的红外分光方法,用纳米光学天线作为单色原件,通过实验测量、计算机模拟和矩阵运算得到红外光谱,该方法光路结构简单,抗震性好,稳定性高,且为纳米光学天线在红外分光技术的应用提出了新的思想。Aiming at the above present situation and problems, the present invention proposes a new infrared spectroscopic method, using a nano-optical antenna as a monochrome element, and obtaining the infrared spectrum through experimental measurement, computer simulation and matrix operation. The method has a simple optical path structure and good shock resistance. The stability is high, and a new idea is proposed for the application of nano-optical antennas in infrared spectroscopy.
为解决上述技术问题,本发明的技术方案为:In order to solve the problems of the technologies described above, the technical solution of the present invention is:
一种应用纳米光学天线进行红外分光的装置,包括测量光路和计算机;测量光路由红外光源、偏振片、纳米光学天线、运动控制器、红外探测器和数据采集器组成,计算机用于纳米光学天线透射率的模拟、运动控制器和数据采集器的设置以及数据的处理运算。A device for infrared spectroscopy using a nano-optical antenna, including a measuring optical path and a computer; the measuring optical path is composed of an infrared light source, a polarizer, a nano-optical antenna, a motion controller, an infrared detector, and a data collector, and the computer is used for the nano-optical antenna Simulation of transmittance, setting of motion controller and data collector, and data processing and calculation.
红外光源、偏振片、纳米光学天线、红外探测器在同一光轴上依次放置,其中纳米光学天线固定在运动控制器上,偏振片相对纳米光学天线的偏振方向初始值是0°,通过运动控制器控制纳米光学天线相对偏振片旋转,使入射到纳米光学天线上的红外光的偏振角在0°~180°之间。The infrared light source, polarizer, nano-optical antenna, and infrared detector are placed sequentially on the same optical axis, wherein the nano-optical antenna is fixed on the motion controller, and the initial value of the polarization direction of the polarizer relative to the nano-optical antenna is 0°. The device controls the rotation of the nano-optical antenna relative to the polarizer, so that the polarization angle of the infrared light incident on the nano-optical antenna is between 0° and 180°.
一种应用纳米光学天线进行红外分光的方法,按照以下步骤进行:A method for infrared spectroscopy using a nano-optical antenna, which is carried out in accordance with the following steps:
a、通过RSOFT-Fullwave对纳米光学天线模型进行模拟,得到不同偏振角下各个波长的透射率,得到系数矩阵B:a. The nano-optical antenna model is simulated by RSOFT-Fullwave, and the transmittance of each wavelength under different polarization angles is obtained, and the coefficient matrix B is obtained:
b、通过测量得到不同偏振角下的光强A:b. Obtain the light intensity A under different polarization angles by measurement:
c、由得到待测光源光谱,其中X是偏振片各个波长透过率系数矩阵,可表示为:c. by Obtain the spectrum of the light source to be measured, where X is the transmittance coefficient matrix of each wavelength of the polarizer, which can be expressed as:
Y是探测器各个波长响应度系数矩阵, 可以通过定标得到,表示为:Y is the responsivity coefficient matrix of each wavelength of the detector, which can be obtained through calibration, expressed as:
本发明的突出特点在于,对于一个纳米光学天线只进行一次模拟得到不同偏振角下各个波长的透射率,即得到系数矩阵,在实际测量中只需采集不同偏振角度的光强,通过计算机处理数据可更方便的得到待测光源光谱,并且依次串联的测量光路结构更简单、稳定,抗震效果更好。The outstanding feature of the present invention is that a nano-optical antenna is only simulated once to obtain the transmittance of each wavelength under different polarization angles, that is, the coefficient matrix is obtained. In actual measurement, only the light intensities of different polarization angles need to be collected, and the data is processed by a computer. It is more convenient to obtain the spectrum of the light source to be measured, and the structure of the measurement light path in series is simpler and more stable, and the anti-seismic effect is better.
附图说明Description of drawings
下面通过附图对本发明的具体实施方式作进一步详细的说明。The specific implementation manners of the present invention will be described in further detail below with reference to the accompanying drawings.
图1为应用纳米光学天线进行红外分光的装置;Fig. 1 is the device that applies nano-optical antenna to carry out infrared spectroscopy;
图2为纳米光学天线模型图;Fig. 2 is a nanometer optical antenna model diagram;
图3为模拟纳米光学天线在0°、45°和90°偏振角下不同波长的红外光透过率光谱图;Fig. 3 is the infrared light transmittance spectrogram of different wavelengths under 0 °, 45 ° and 90 ° polarization angles of simulated nano-optical antenna;
图中1为红外光源、2为偏振片、3为纳米光学天线、4为运动控制器、5为红外探测器、6为数据采集器、7为计算机、8为水平轴、9为纳米光学天线模型、10为天线的长轴方向、11为天线的短轴方向、12为天线的竖直轴方向、13为天线的基底。In the figure, 1 is an infrared light source, 2 is a polarizer, 3 is a nano-optical antenna, 4 is a motion controller, 5 is an infrared detector, 6 is a data collector, 7 is a computer, 8 is a horizontal axis, and 9 is a nano-optical antenna Model, 10 is the direction of the long axis of the antenna, 11 is the direction of the short axis of the antenna, 12 is the direction of the vertical axis of the antenna, and 13 is the base of the antenna.
具体实施方式detailed description
下面实施例结合附图对本发明作进一步的描述。The following embodiments will further describe the present invention in conjunction with the accompanying drawings.
如图1所示,一种应用纳米光学天线进行红外分光的装置,红外光源1依次通过偏振片2、纳米光学天线3、探测器5和数据采集器6,其中纳米光学天线固定在运动控制器4上,由红外光源1、偏振片2、纳米光学天线3、运动控制器4、探测器5和数据采集器6构成测量光路;计算机用于纳米光学天线透射率的模拟、运动控制器和数据采集器的设置以及数据的处理运算。其中所述纳米光学天线与模拟纳米光学天线模型相同。As shown in Figure 1, a device that uses nano-optical antennas for infrared spectroscopy, an infrared light source 1 sequentially passes through a polarizer 2, a nano-optical antenna 3, a detector 5, and a data collector 6, wherein the nano-optical antenna is fixed on the motion controller On 4, the measurement optical path is composed of infrared light source 1, polarizer 2, nano-optical antenna 3, motion controller 4, detector 5 and data collector 6; the computer is used for the simulation of the transmittance of the nano-optical antenna, motion controller and data Collector settings and data processing operations. Wherein the nano-optical antenna is the same as the simulated nano-optical antenna model.
具体如下:details as follows:
红外光源1发出红外光,通过偏振片2后变成偏振光,偏振光照射到纳米光学天线3上后到达探测器4,探测器连接数据采集器5采集红外光光强。其中红外光源1、偏振片2、纳米光学天线3及探测器4在同一水平轴8上;其中所说的偏振方向,如图2所示,是定位在光学天线的长轴方向11上的。The infrared light source 1 emits infrared light, which becomes polarized light after passing through the polarizer 2, and the polarized light is irradiated on the nano-optical antenna 3 and reaches the detector 4, and the detector is connected to the data collector 5 to collect the intensity of infrared light. Wherein the infrared light source 1, the polarizer 2, the nano-optical antenna 3 and the detector 4 are on the same horizontal axis 8; wherein said polarization direction, as shown in Figure 2, is positioned on the long axis direction 11 of the optical antenna.
开始时通过调节偏振片2或者纳米光学天线3,使入射光的偏振角度为0°(与光学天线的长轴方向11平行)时采集一次数据;通过运动控制器4使纳米光学天线3旋转5°,即使入射到光学天线上的光的偏振方向变为5°,再次采集数据;依次增大偏振角度,每间隔5°采集一次数据,一直到180°,得到的不同偏振角度的光强度矩阵为:At the beginning, by adjusting the polarizer 2 or the nano-optical antenna 3, the polarization angle of the incident light is 0° (parallel to the long-axis direction 11 of the optical antenna) to collect data once; the nano-optical antenna 3 is rotated 5 by the motion controller 4 °, even if the polarization direction of the light incident on the optical antenna becomes 5°, collect data again; increase the polarization angle in turn, collect data every 5°, until 180°, and obtain the light intensity matrix of different polarization angles for:
对纳米光学天线3进行模拟时采用的方法是时域有限差分方法(FDTD),采用的模块是基于FDTD算法的RSOFT软件中的Fullwave模块,模型为Drude模型。入射光源设置为平面波,边界条件为完全匹配层(PML)。The method used to simulate the nano-optical antenna 3 is the finite difference time domain method (FDTD), the module used is the Fullwave module in the RSOFT software based on the FDTD algorithm, and the model is the Drude model. The incident light source is set as a plane wave, and the boundary condition is a perfectly matched layer (PML).
如图2为长方体条形纳米光学天线结构示意图,纳米光学天线10的材料是金,其长轴为2.10μm,短轴为0.20μm,垂直轴为0.10μm。纳米光学天线10制备在基底13上,所述基底材料是氟化钙。光源发出平面波,从天线下方沿垂直轴向上入射,平面波偏振的方向与天线长轴平行。边界条件设置为PML(完全匹配层,Perfectly matched layer),计算区域大小为长轴方向3000nm、短轴方向1000nm、垂直轴方向1200nm,为了兼顾计算效率和准确性,计算的网格大小为10nm*10nm*10nm,金纳米线及其附近的网格大小为5nm*5nm*5nm。FIG. 2 is a schematic structural diagram of a cuboid strip-shaped nano-optical antenna. The material of the nano-optical antenna 10 is gold, and its long axis is 2.10 μm, its short axis is 0.20 μm, and its vertical axis is 0.10 μm. The nano-optical antenna 10 is prepared on a substrate 13, and the substrate material is calcium fluoride. The light source emits a plane wave, incident from below the antenna along the vertical axis, and the polarization direction of the plane wave is parallel to the long axis of the antenna. The boundary condition is set to PML (Perfectly matched layer), the calculation area size is 3000nm in the long axis direction, 1000nm in the short axis direction, and 1200nm in the vertical axis direction. In order to take into account the calculation efficiency and accuracy, the calculation grid size is 10nm* 10nm*10nm, the grid size of the gold nanowire and its vicinity is 5nm*5nm*5nm.
由于选择的纳米光学天线3是对称结构,偏振角0°和180°时各个波长透射率相同,5°和175°时各个波长透过率相同,以此类推。所以选择从0°到90°每间隔5°模拟计算一次各个波长的透射率;由于模拟纳米光学天线对3um到10um的红外光透射效果更好,所以选择红外波段为3um~10um;如图3所示列举了偏振角是0°、45°和90°时各个波长的透射率光谱图;通过对以上各个角度的模拟可以得到系数矩阵B为:Since the selected nano-optical antenna 3 has a symmetrical structure, the transmittance of each wavelength is the same when the polarization angle is 0° and 180°, the transmittance of each wavelength is the same when the polarization angle is 5° and 175°, and so on. Therefore, choose to simulate and calculate the transmittance of each wavelength at intervals of 5° from 0° to 90°; since the simulated nano-optical antenna has a better transmission effect on infrared light from 3um to 10um, the infrared band is selected to be 3um~10um; as shown in Figure 3 The transmittance spectrum diagram of each wavelength when the polarization angle is 0°, 45° and 90° is listed as shown; through the simulation of the above angles, the coefficient matrix B can be obtained as:
由于because
将上述公式变为矩阵形式可表示为:Putting the above formula into matrix form can be expressed as:
由上述公式可得被测光谱矩阵为:From the above formula, the measured spectral matrix can be obtained as:
即 which is
最后通过光谱辐射定标得到被测光光谱。Finally, the measured light spectrum is obtained through spectral radiation calibration.
可以通过拟合插值的方法在模拟得到的不同偏振角下各个波长的透射率光谱图上插入更多的偏振角下各个波长的透射率数值,而使偏振角间隔缩小,在实际测量时也使偏振角的间隔对应缩小,可以得到更加准确的被测光光谱图。More transmittance values of each wavelength under different polarization angles can be inserted into the simulated transmittance spectra of each wavelength under different polarization angles by fitting interpolation method, so that the interval of polarization angles can be reduced, and the actual measurement can also make The interval of the polarization angle is correspondingly reduced, and a more accurate spectral diagram of the measured light can be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611113832.XA CN106525752A (en) | 2016-12-07 | 2016-12-07 | Method for infrared spectroscopy through nano-optics antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611113832.XA CN106525752A (en) | 2016-12-07 | 2016-12-07 | Method for infrared spectroscopy through nano-optics antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106525752A true CN106525752A (en) | 2017-03-22 |
Family
ID=58342519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611113832.XA Pending CN106525752A (en) | 2016-12-07 | 2016-12-07 | Method for infrared spectroscopy through nano-optics antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106525752A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108037078A (en) * | 2017-12-01 | 2018-05-15 | 中国计量科学研究院 | A kind of method and system of the measurement device for Optical Properties of Materials based on matrixing |
CN110274889A (en) * | 2018-03-15 | 2019-09-24 | 南京大学 | Multi-channel terahertz spectrographic detection unit based on surface plasma body resonant vibration antenna |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040174521A1 (en) * | 2003-03-07 | 2004-09-09 | Drachev Vladimir P. | Raman imaging and sensing apparatus employing nanoantennas |
EP2133688A1 (en) * | 2008-06-11 | 2009-12-16 | Koninklijke Philips Electronics N.V. | Nanoantenna and uses thereof |
CN103776790A (en) * | 2014-02-25 | 2014-05-07 | 重庆大学 | Infrared spectrum enhancement and detection method and infrared spectrum enhancement and detection device based on graphene nano antenna |
CN104034657A (en) * | 2013-03-07 | 2014-09-10 | 精工爱普生株式会社 | Analysis device, analysis method, optical element, method of designing optical element, and electronic apparatus |
CN105092035A (en) * | 2014-05-09 | 2015-11-25 | 三星电子株式会社 | Spectro-sensor, spectro-sensor module, spectrometer and spectral analysis method |
-
2016
- 2016-12-07 CN CN201611113832.XA patent/CN106525752A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040174521A1 (en) * | 2003-03-07 | 2004-09-09 | Drachev Vladimir P. | Raman imaging and sensing apparatus employing nanoantennas |
EP2133688A1 (en) * | 2008-06-11 | 2009-12-16 | Koninklijke Philips Electronics N.V. | Nanoantenna and uses thereof |
CN104034657A (en) * | 2013-03-07 | 2014-09-10 | 精工爱普生株式会社 | Analysis device, analysis method, optical element, method of designing optical element, and electronic apparatus |
CN103776790A (en) * | 2014-02-25 | 2014-05-07 | 重庆大学 | Infrared spectrum enhancement and detection method and infrared spectrum enhancement and detection device based on graphene nano antenna |
CN105092035A (en) * | 2014-05-09 | 2015-11-25 | 三星电子株式会社 | Spectro-sensor, spectro-sensor module, spectrometer and spectral analysis method |
Non-Patent Citations (1)
Title |
---|
黄彩进等: "纳米光学天线性能研究进展", 《激光与光电子学进展》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108037078A (en) * | 2017-12-01 | 2018-05-15 | 中国计量科学研究院 | A kind of method and system of the measurement device for Optical Properties of Materials based on matrixing |
CN108037078B (en) * | 2017-12-01 | 2020-12-25 | 中国计量科学研究院 | Method and system for measuring optical performance of material based on matrix transformation |
CN110274889A (en) * | 2018-03-15 | 2019-09-24 | 南京大学 | Multi-channel terahertz spectrographic detection unit based on surface plasma body resonant vibration antenna |
CN110274889B (en) * | 2018-03-15 | 2021-05-28 | 南京大学 | Multi-channel terahertz spectroscopy detection unit based on surface plasmon resonance antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fulghum | Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry | |
Xu et al. | Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography | |
CN102082108B (en) | A method and device for rapid measurement of sidewall morphology of micro-nano deep trench structure | |
CN103063304B (en) | Image plane interference Hyper spectral Imaging device and method is sheared in dispersion | |
CN105115956B (en) | The method that wurtzite crystal Eulerian angles are measured with Raman spectrometer | |
CN107367329A (en) | A kind of image, spectrum, polarization state integration acquisition device and detection method | |
CN104568765A (en) | Miniature spectroscopic ellipsometer device and measuring method | |
CN105511066A (en) | Microscopic polarization imaging device based on microwave sheet array and implement method thereof | |
CN103913226B (en) | Spectral measurement device and measurement method | |
CN104819935A (en) | Micro-cantilever heat vibration signal measuring device | |
CN108120371A (en) | Sub-wavelength dimensions microelectronic structure optical critical dimension method for testing and analyzing and device | |
CN106525752A (en) | Method for infrared spectroscopy through nano-optics antenna | |
Xu et al. | Calibration of imaging spectrometer based on acousto-optic tunable filter (AOTF) | |
Li et al. | Laser-induced periodic surface structures with ultrashort laser pulse | |
CN103196557A (en) | Spectrograph | |
CN203719771U (en) | Spectral measurement apparatus based on elasto-optical effect | |
CN105136299A (en) | Novel infrared spectrum inversion method based on PEM and device thereof | |
CN106404675A (en) | Method for measuring out-of-plane polarization bidirectional reflective function of rough surface | |
CN104964929B (en) | A kind of method for obtaining material thermo-optic coefficients by measuring spot radius change | |
CN103398666A (en) | Interlayer dislocation testing method for double-layer periodic microstructure | |
CN203772426U (en) | Device for measuring topological charge value of fractional-order optical vortices | |
Gorbaty et al. | Comparison of the sensitivities of IR absorption and raman scattering spectra to hydrogen bonding in methanol | |
CN103398989A (en) | Chip type surface plasma spectrometer | |
CN103759829A (en) | Spectral measuring device based on magneto-optic modulation and spectral measuring method | |
CN105572042B (en) | Fourier transform spectrometer and its test method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170322 |
|
WD01 | Invention patent application deemed withdrawn after publication |