CN106521461B - 一种羟基氧化铁薄膜的制备方法 - Google Patents

一种羟基氧化铁薄膜的制备方法 Download PDF

Info

Publication number
CN106521461B
CN106521461B CN201611092957.9A CN201611092957A CN106521461B CN 106521461 B CN106521461 B CN 106521461B CN 201611092957 A CN201611092957 A CN 201611092957A CN 106521461 B CN106521461 B CN 106521461B
Authority
CN
China
Prior art keywords
preparation
feooh
reagent
matrix
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611092957.9A
Other languages
English (en)
Other versions
CN106521461A (zh
Inventor
岳衡
杨园铃
祝怀凤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611092957.9A priority Critical patent/CN106521461B/zh
Publication of CN106521461A publication Critical patent/CN106521461A/zh
Application granted granted Critical
Publication of CN106521461B publication Critical patent/CN106521461B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1287Process of deposition of the inorganic material with flow inducing means, e.g. ultrasonic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种羟基氧化铁薄膜的制备方法,属于无机非金属材料领域。本发明的制备方法,将基体置于试剂中,对试剂进行超声处理;所述试剂为FeCl3或/和Fe2(SO4)3与尿素的水溶液。本发明的制备方法是直接在基体表面反应生成FeOOH薄膜,无须加入酸或碱调节溶液的PH值,所生成的FeOOH均为γ‑FeOOH,晶相结构均一无掺杂;FeOOH薄膜与基体表面结合牢固;FeOOH薄膜厚度均匀。本发明的制备方法,制备FeOOH薄膜所需要的时间短,仅需要20s‑5min即可获得厚度为0.5‑5μm的薄膜。本发明的制备方法可在不锈钢、陶瓷、玻璃和普通结构钢上进行沉积,由于所需时间短,即使对于碳钢,也不会造成明显腐蚀,并能获得满意的膜层;本发明的制备方法绿色环保,使用常见的化学药品配制普通的化学试剂。

Description

一种羟基氧化铁薄膜的制备方法
技术领域
本发明属于无机非金属材料领域,具体涉及一种羟基氧化铁薄膜的制备方法。
背景技术
羟基氧化铁FeOOH,也叫做氧化氢氧化铁(包括α、β、γ、δ型),是一种较好的吸附剂、光催化剂、颜料、磁记录介质、磁性涂料、离子交换器材料,广泛应用于污水处理等领域。其涂层或薄膜的制备一直是人们研究的热点。
目前,制备氧化铁薄膜的方法包括离子溅射法、化学气相沉积法、溶胶-凝胶法和水热法。其中,离子溅射法、化学气相沉积法成本较高;溶胶-凝胶法依赖于前驱体的配制;水热法可在不锈钢、玻璃或陶瓷表面进行氧化物沉积,但时间长达数小时,且不能在普通碳钢或低合金钢表面进行沉积,因其试剂会对碳钢或低合金钢造成腐蚀。另外,氧化铁薄膜的上述现有制备方法均存在以下技术问题:难以获得均匀附着于钢铁件、结合牢固、晶相结构均一的薄膜。
发明内容
本发明的目的在于提供一种羟基氧化铁薄膜的绿色、快速制备方法;且所制备的羟基氧化铁薄膜晶相结构均一、均匀附着于基体、与基体结合牢固。
本发明利用简单的化学试剂,不需要借助于超声雾化或电化学,利用超声沉积法制备γ-FeOOH薄膜。
技术方案
一种羟基氧化铁薄膜的制备方法,将基体置于试剂中,对试剂进行超声处理;
所述试剂为FeCl3或/和Fe2(SO4)3与尿素的水溶液,其中,铁离子的浓度为1×10-3-0.2mol/L,尿素的浓度为1×10-3-0.3mol/L。
原理说明:
尿素溶于水后发生水解反应,其水解反应的产物为NH3·H2O和CO2,并存在以下可逆反应:
溶液中的Fe3+与OH ̄在超声波能量的促进下,在基体表面生成FeOOH:
Fe3++3OH→Fe(OH)3
Fe(OH)3→FeOOH+H2O。
本发明的制备方法是直接在基体表面反应生成FeOOH薄膜,无须加入酸或碱调节溶液的PH值,所生成的FeOOH均为γ-FeOOH,晶相结构均一无掺杂;FeOOH薄膜与基体表面结合牢固;FeOOH薄膜厚度均匀。实验证明,如果不进行上述超声处理,使用上述溶液,在加热条件下,经过数小时以上也可在逐渐惰性材料表面进行氧化铁沉积,不仅时间长,且对于在溶液中会发生腐蚀的材料如碳钢、低合金钢等金属表面无法获得膜层;且获得的氧化膜晶型随溶液温度、溶液PH值变化,或形成混合晶型的氧化铁。由此可见,上述超声处理在本发明中起到了至关重要的作用。其可能的原因:超声波在液体中可产生超声空化,加速界面间的传质和传热过程。空化泡周围可产生极高的温度和高压,及强烈冲击波和射流,这些作用在一定程度上改变了物理化学反应的环境,提高反应速度,促进γ-FeOOH晶核的形成和生长。另外,本发明的制备方法,铁离子只能由FeCl3或/和Fe2(SO4)3提供,否则可能无法制备出γ-FeOOH薄膜;虽然目前原因还不清楚,但是说明铁离子的来源,也是能获得γ-FeOOH薄膜的重要条件,不能随意替换。
本发明的制备方法,制备FeOOH薄膜所需要的时间短,仅需要20s-5min即可获得厚度为0.5-5μm的薄膜。
上述制备方法,优选的,铁离子的浓度为0.05-0.1mol/L,尿素的浓度为0.1-0.15mol/L。
上述制备方法,温度高时沉积速度略快,但温度对氧化物的相结构无显著影响;试剂温度优选为20-95℃。
上述制备方法,溶液浓度过低时,沉积的氧化膜厚度薄;浓度过高时,沉积速度过快,沉积层表面粗糙,且可能在溶液中形成沉淀。尿素与铁离子的摩尔浓度比在1-3倍之间为宜。
上述制备方法,超声波频率对所制备的产品无明显影响。
上述制备方法,所述基体可以为不锈钢、陶瓷、玻璃和普通结构钢;为了进一步使所生成的γ-FeOOH与基体之间结合的更加牢固,优选的,在“将基体置于试剂中”之前,对试样或工件进行表面预处理;一般地,钢铁件的表面预处理包括除油、除锈等清洁过程;对于已经预处理的工件,可以清洗后凉干,也可直接进行薄膜的沉积。
上述制备方法,所用设备可以是超声波发生器;此时,操作步骤为,将试剂及基体放入超声波发生器的超声波发生槽内,打开超声波发生器,沉积结束后,将基体取出即可;对小工件或试样进行沉积时,也可将基体悬挂放入洁净的玻璃或塑料容器中,再将容器放入超声波发生槽内进行沉积。将基体取出后用清水冲洗,然后凉干、吹干或烘干;吹干或烘干时不得超过FeOOH的分解温度。
与现有技术相比,本发明的有益效果是:
1、速度快,只需要几十秒到数分钟时间,即可得到所需的氧化膜;
2、适用性广,可在不锈钢、陶瓷、玻璃和普通结构钢上进行沉积,由于所需时间短,即使对于碳钢,也不会造成明显腐蚀,并能获得满意的膜层;
3、绿色环保,利用现有的技术,使用常见的化学药品配制普通的化学试剂,即可得到FeOOH膜层;
4、所获得的FeOOH薄膜的成分为单一γ-FeOOH,晶相结构均一、无掺杂;
5、所获得的FeOOH薄膜与基体之间结合牢固,即使采用超声波清洗,也不会使薄膜脱落;
6、所获得的FeOOH薄膜厚度均匀。
附图说明
图1为本发明的制备方法制备的FeOOH薄膜厚的XRD图。
具体实施方式
下面结合实施例对本申请所述的技术方案作进一步地描述说明。
实施例1
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.025mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,将试剂的温度升至60℃,将超声波发生器调整至额定功率的70%,打开超声波发生器超声沉淀1.5min,关闭超声波发生器,将基体取出;获得附着于基体、厚度均匀、厚度为1.5μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
实施例2
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.05mol/L、尿素的浓度为0.15mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,将试剂的温度升至50℃,将超声波发生器调整至额定功率的80%,打开超声波发生器超声沉淀3min,关闭超声波发生器,将基体取出;获得附着于基体、厚度均匀、厚度为2.5μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
实施例3
配制FeCl3-尿素溶液作为试剂,其中,FeCl3的浓度为0.05mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,试剂温度为25℃,将超声波发生器调整至额定功率的60%,打开超声波发生器超声沉淀2min,关闭超声波发生器,将基体取出;获得附着于基体、厚度均匀、厚度为1.8μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
实施例4
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.025mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,将试剂的温度升至60℃,将超声波发生器调整至额定功率的20%,打开超声波发生器超声沉淀1.5min,关闭超声波发生器,将基体取出;获得附着于基体、厚度均匀、厚度为1.2μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
实施例5
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.025mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,将试剂的温度升至60℃,将超声波发生器调整至额定功率的90%,打开超声波发生器超声沉淀1.5min,关闭超声波发生器,将基体取出;获得附着于基体、厚度均匀、厚度为1.6μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
实施例6
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.025mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,将试剂的温度升至90℃,将超声波发生器调整至定功率的70%,打开超声波发生器超声沉淀1.5min,关闭超声波发生器,将基体取出将基体取出;获得附着于基体、厚度均匀、厚度为1.6μm的薄膜。对附有薄膜的基体用去离子水进行超声清洗1分钟,薄膜无脱落。对获得的薄膜自然凉干后进行X射线衍射(XRD)分析,成分为γ-FeOOH。
对比例1
配制Fe2(SO4)3-尿素溶液作为试剂,其中,Fe2(SO4)3的浓度为0.025mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将低碳钢置于试剂中,将试剂的温度升至60℃,沉淀1.5min,将基体取出;用去离子水冲洗后,基体表面无涂层沉积,自然凉干后表面有轻微锈蚀痕迹,进行X射线衍射(XRD)分析,未检测到γ-FeOOH。
对比例2(与实施例1相比,用Fe(NO3)3代替硫酸铁)
配制Fe(NO3)3-尿素溶液作为试剂,其中,Fe(NO3)3的浓度为0.05mol/L、尿素的浓度为0.1mol/L;采用低碳钢作为基体。将试剂和低碳钢置于超声波发生器(额定功率为500W)的超声发生槽中,试剂温度为60℃,将超声波发生器调整至额定功率的70%,打开超声波发生器超声沉淀1.5min,关闭超声波发生器,将基体取出;没有获得附着于基体的薄膜。

Claims (7)

1.一种羟基氧化铁薄膜的制备方法,其特征在于,将基体置于试剂中,对试剂进行超声处理;
所述试剂为FeCl3或/和Fe2(SO4)3与尿素的水溶液,其中,铁离子的浓度为1×10-3-0.2mol/L,尿素的浓度为1×10-3-0.3mol/L。
2.根据权利要求1所述的制备方法,其特征在于,铁离子的浓度为0.05-0.1mol/L,尿素的浓度为0.1-0.15mol/L。
3.根据权利要求1或2所述的制备方法,其特征在于,超声处理时间为20s-5min。
4.根据权利要求3所述的制备方法,其特征在于,试剂温度为20-95℃。
5.根据权利要求4所述的制备方法,其特征在于,尿素与铁离子的摩尔浓度比在1-3倍之间。
6.根据权利要求5所述的制备方法,其特征在于,所述基体为不锈钢、陶瓷、玻璃或普通结构钢。
7.根据权利要求6所述的制备方法,其特征在于,所用设备是超声波发生器;此时,操作步骤为:将试剂及基体放入超声波发生器的超声波发生槽内,打开超声波发生器,沉积结束后,将基体取出即可;对小工件或试样进行沉积时,将基体悬挂放入洁净的玻璃或塑料容器中,再将容器放入超声波发生槽内进行沉积。
CN201611092957.9A 2016-12-02 2016-12-02 一种羟基氧化铁薄膜的制备方法 Expired - Fee Related CN106521461B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611092957.9A CN106521461B (zh) 2016-12-02 2016-12-02 一种羟基氧化铁薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611092957.9A CN106521461B (zh) 2016-12-02 2016-12-02 一种羟基氧化铁薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106521461A CN106521461A (zh) 2017-03-22
CN106521461B true CN106521461B (zh) 2018-08-14

Family

ID=58354671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611092957.9A Expired - Fee Related CN106521461B (zh) 2016-12-02 2016-12-02 一种羟基氧化铁薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106521461B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220601A (zh) * 2011-06-10 2011-10-19 哈尔滨工程大学 含有FeOOH的析氧电极材料及其制备方法
CN103143318A (zh) * 2012-12-06 2013-06-12 中国科学院合肥物质科学研究院 一种具有微纳结构的硅藻土/羟基氧化铁复合材料的制备方法
CN103204548A (zh) * 2013-04-12 2013-07-17 陕西科技大学 一种窄粒径分布亚微米级α-FeOOH 的可控制备方法
CN105251490A (zh) * 2015-11-06 2016-01-20 国家电网公司 基于水热法制备α-Fe2O3纳米管阵列的方法
CN105800693A (zh) * 2016-05-19 2016-07-27 青岛大学 一种α-FeOOH三维多级微球的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680272B2 (ja) * 2008-02-04 2011-05-11 トヨタ自動車株式会社 異方性磁性材料の製造方法および異方性磁性材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220601A (zh) * 2011-06-10 2011-10-19 哈尔滨工程大学 含有FeOOH的析氧电极材料及其制备方法
CN103143318A (zh) * 2012-12-06 2013-06-12 中国科学院合肥物质科学研究院 一种具有微纳结构的硅藻土/羟基氧化铁复合材料的制备方法
CN103204548A (zh) * 2013-04-12 2013-07-17 陕西科技大学 一种窄粒径分布亚微米级α-FeOOH 的可控制备方法
CN105251490A (zh) * 2015-11-06 2016-01-20 国家电网公司 基于水热法制备α-Fe2O3纳米管阵列的方法
CN105800693A (zh) * 2016-05-19 2016-07-27 青岛大学 一种α-FeOOH三维多级微球的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Large-scale synthesis of hierarchical alpha-FeOOH flowers by ultrasonic-assisted hydrothermal route;H.F.Chen, et al.;《J Mater Sci: Mater Electron》;20100507;第22卷;第252-259页 *
Sonocatalytic decolorization of textile wastewater using synthesized γ-FeOOH nanoparticles;Mohsen Sheydaei, et al.;《Ultrasonics Sonochemistry》;20150424;第27卷;第616-622页 *

Also Published As

Publication number Publication date
CN106521461A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
Mead et al. The effect of ultrasound on water in the presence of dissolved gases
Zhang et al. Electrochemical corrosion of X65 pipe steel in oil/water emulsion
Naji et al. Direct contact ultrasound for fouling control and flux enhancement in air-gap membrane distillation
Mason Some neglected or rejected paths in sonochemistry–a very personal view
CN106242014A (zh) 一种用于废水处理的过硫酸盐活化方法
Wang et al. Large-scale prepared superhydrophobic HDTMS-modified diatomite/epoxy resin composite coatings for high-performance corrosion protection of magnesium alloys
Yan et al. Ultrasound assisted synthesis of size-controlled aqueous colloids for the fabrication of nanoporous zirconia membrane
Hardcastle et al. The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media
CN106521461B (zh) 一种羟基氧化铁薄膜的制备方法
Wang et al. Effect of bionic hydrophobic structures on the corrosion performance of Fe-based amorphous metallic coatings
Moutarlier et al. Use of ultrasound irradiation during acid etching of the 2024 aluminum alloy: Effect on corrosion resistance after anodization
CN109536964A (zh) 一种金属氧化物电极钛基体的酸蚀处理方法
JP2011007179A (ja) 発電施設の始動時における再循環経路洗浄のための分散剤活用法
Zhang et al. Ultrasonic assisted rapid preparation of superhydrophobic stainless steel surface and its application in oil/water separation
Vilarroig et al. Design and optimization of a semi‐industrial cavitation device for a pretreatment of an anaerobic digestion treatment of excess sludge and pig slurry
CN107827201A (zh) 一种具有自清洁功能的船舶压载水紫外杀菌装置
CN101693234A (zh) 微孔超声波封堵方法
Yoshimura et al. Nanolevel surface processing of fine particles by waterjet cavitation and multifunction cavitation to improve the photocatalytic properties of titanium oxide
CN105755453A (zh) 一种抗地热水腐蚀的纳米化学复合镀层制备方法
CN104451628A (zh) 一种镁合金化学转化处理液及其处理镁合金表面的方法
CN103614757A (zh) 铝合金表面多孔膜稀土的一种封闭方法
AU674514B2 (en) A method and an apparatus for precipitation coating of internal surfaces in tanks and pipe systems
CN117535651A (zh) 一种α型羟基氧化铁膜层的制备方法
CN105439193B (zh) 一种超声辅助制备氧化锌纳米棒的方法
Fengbin et al. Generation mechanism of Fe-base nanostructures induced by cavitation erosion

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180814

Termination date: 20191202