CN106519286A - 一种固态荧光探针材料的制备方法 - Google Patents

一种固态荧光探针材料的制备方法 Download PDF

Info

Publication number
CN106519286A
CN106519286A CN201610953320.8A CN201610953320A CN106519286A CN 106519286 A CN106519286 A CN 106519286A CN 201610953320 A CN201610953320 A CN 201610953320A CN 106519286 A CN106519286 A CN 106519286A
Authority
CN
China
Prior art keywords
cellulose
nano
probe material
polymer
fluorescent probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610953320.8A
Other languages
English (en)
Other versions
CN106519286B (zh
Inventor
刘红霞
叶维俊
陈熙衔
蓝荣波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN CHENGTU TECHNOLOGY Co.,Ltd.
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201610953320.8A priority Critical patent/CN106519286B/zh
Publication of CN106519286A publication Critical patent/CN106519286A/zh
Application granted granted Critical
Publication of CN106519286B publication Critical patent/CN106519286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种固态荧光探针材料的制备方法。先通过纳米纤维素稳定的油相中含有荧光试剂和聚合物的Pickering乳液的凝胶化,然后再经冷冻干燥得到基于纳米纤维素/聚合物复合气凝胶的固态荧光探针材料。本发明方法适用于从各种原材料提取制备的不同形貌的纳米纤维素以及各种非水溶性的聚合物和荧光试剂,易于大规模推广,本发明方法中所用试剂都是常见试剂,价格便宜,且制备过程简便、快速、所得材料可设计性强,且本发明方法制得的固态荧光探针材料具有高孔隙率、低密度及高的检测敏感性。

Description

一种固态荧光探针材料的制备方法
技术领域
本发明属于固态荧光探针制备技术领域,特别涉及一种基于Pickering乳液技术的以纳米纤维素和非水溶性聚合物作为基材来制备固态荧光探针材料的方法。
背景技术
荧光探针能与碱土金属、稀土金属、第三主族金属以及碱金属形成配位化合物,且具有大的斯托克位移、发射峰大于500nm、高灵敏度等优点,从而备受人们的关注,用于许多金属离子的测定分析及检测。固态荧光传感器材料凭借其便携性、操作简便性、可重用性及可实现在线检测等优势而成为荧光探针材料的首选制备材料。
纳米纤维素凭借其独特的纳米结构和优异性能可制备成具有高孔隙率、低密度、高强度的气凝胶材料。如果能把荧光探针材料均匀地固定在纳米纤维素形成的气凝胶材料的孔隙内部,将会大大地提高荧光探针的操作简便性以及检测灵敏性。而纳米纤维素和聚合物的复合气凝胶结构则更有利于荧光探针材料在气凝胶孔隙中的固定。借助于Pickering乳液技术,我们可以得到高孔隙率、低密度纳米纤维素/聚合物复合气凝胶。因此,在此基础上,开发一种简便快捷、低成本的、适用范围广、高检测灵敏性的基于纳米纤维素/聚合物复合气凝胶的固态荧光探针材料的制备方法具有一定的可行性,同时也将具有非常重要的现实意义。
发明内容
本发明的目的是提供一种固态荧光探针材料的制备方法。
本发明方法的思路:先通过纳米纤维素稳定的油相中含有荧光试剂和聚合物的Pickering乳液的凝胶化,然后再经冷冻干燥得到基于纳米纤维素/聚合物复合气凝胶的固态荧光探针材料。
具体步骤为:
(1)将荧光试剂和聚合物共同溶解在有机溶剂中,制得有机溶液,其中荧光试剂的质量百分比浓度为0.01%~0.05%,聚合物的质量百分比浓度为0.5~3%。
(2)将质量百分比浓度为0.1~0.5%的纳米纤维素的水分散液与步骤(1)中制得的有机溶液按照体积比为1~8:1混合,制得混合液。
(3)将步骤(2)中制得的混合液在功率为100~1000W的超声波乳化仪中超声30秒~10分钟,即得到凝胶化的纳米纤维素稳定的水包油的Pickering乳液。
(4)将步骤(3)中制得的凝胶化的纳米纤维素稳定的水包油的Pickering乳液在低温-30~-10℃下冷冻24~48小时,然后在温度为-40~-90℃、真空度为6~14Pa的冷冻干燥机中冷冻24~48小时,即制得固态荧光探针材料。
所述荧光试剂为能够与荧光较弱或不显荧光的物质共价或非共价结合形成荧光配合物的物质,如蒽醌、喹啉、黄酮醇、石榴茜素R或桑色素。
所述聚合物为非水溶性聚合物,具体为聚苯乙烯、聚酯、聚乳酸、聚甲基丙烯酸甲酯、聚己内酯、聚乳酸-羟基乙酸共聚物或醋酸纤维素。
所述有机溶剂为与水不相容、但能溶解相应聚合物的有机溶剂,具体为二氯甲烷、1,2-二氯乙烷、氯仿、正己烷或环己烷。
所述纳米纤维素为至少一维的尺度在纳米范围内的纤维素材料,包括从各种原材料提取制备的具有形貌结构的纤维素纳米晶和纤维素纳米纤,其中所述原材料为棉花、木材、竹子或麻类。
所述化学试剂及原料的纯度均为分析纯及以上纯度。
本发明方法的优点:
(1)本发明方法适用于从各种原材料提取制备的不同形貌的纳米纤维素以及各种非水溶性的聚合物和荧光试剂,易于大规模推广。
(2)本发明方法中所用试剂都是常见试剂,价格便宜,且制备过程简便、快速、所得材料可设计性强。
(3)本发明方法制得的固态荧光探针材料具有高孔隙率、低密度及高的检测敏感性。
附图说明
图1为本发明实施例制备的1,4-二羟基蒽醌固态荧光探针材料的数码相机照片(a)和扫描电子显微镜照片(b)。
具体实施方式
下面结合具体实施例对本发明做进一步描述,但本发明不局限于以下实施例,以下实施例中所使用的化学试剂和原料均为分析纯。
实施例:
(1)首先将0.8毫升质量百分比浓度为0.4%的剑麻纤维素纳米纤(由剑麻纤维制备)的水分散液加入离心管中;然后,将0.2 毫升质量百分比浓度为1%的聚乳酸和质量百分比浓度为0.05%的1,4-二羟基蒽醌的二氯甲烷混合有机溶液与上述剑麻纤维素纳米纤的水分散液进行混合,制得混合液。
(2)使用超声波乳化仪将步骤(1)制得的混合液在400W功率下超声5分钟,即得到凝胶化的由剑麻纤维素纳米纤稳定的油相中含有聚乳酸和1,4-二羟基蒽醌的Pickering乳液。
(3)将步骤(2)制得的Pickering乳液在-20℃下冷冻48小时,然后放入冷冻干燥机中,温度设置为-60℃,真空度为10Pa,24小时后即得到基于纳米纤维素/聚乳酸复合气凝胶的1,4-二羟基蒽醌固态荧光探针材料(见附图1a)。
采用扫描电子显微镜观察可知本实施例所制备的1,4-二羟基蒽醌固态荧光探针材料具有明显的孔隙结构(见附图1b)。通过对1,4-二羟基蒽醌固态荧光探针材料和纯的1,4-二羟基蒽醌在不同的铜离子溶液中的荧光光谱测试,发现在1,4-二羟基蒽醌相同用量的情况下,纯的1,4-二羟基蒽醌可检测的铜离子的线性浓度范围为:0.5×10-6 ~5×10-6mol/L;而1,4-二羟基蒽醌固态荧光探针材料可检测的铜离子的线性浓度范围:0.5×10-7~5×10-7 mol/L,比纯的1,4-二羟基蒽醌低了一个数量级,说明1,4-二羟基蒽醌固态荧光探针材料比纯的1,4-二羟基蒽醌对Cu2+具有更优异的检测敏感性。同时,相比纯的1,4-二羟基蒽醌,1,4-二羟基蒽醌固态荧光探针材料具有更好的便携性和回收利用性。

Claims (1)

1.一种固态荧光探针材料的制备方法,其特征在于具体步骤为:
(1)将荧光试剂和聚合物共同溶解在有机溶剂中,制得有机溶液,其中荧光试剂的质量百分比浓度为0.01% ~ 0.05%,聚合物的质量百分比浓度为0.5~3%;
(2)将质量百分比浓度为0.1~0.5%的纳米纤维素的水分散液与步骤(1)中制得的有机溶液按照体积比为1~8:1混合,制得混合液;
(3)将步骤(2)中制得的混合液在功率为100~1000W的超声波乳化仪中超声30秒~10分钟,即得到凝胶化的纳米纤维素稳定的水包油的Pickering乳液;
(4)将步骤(3)中制得的凝胶化的纳米纤维素稳定的水包油的Pickering乳液在低温-30~-10℃下冷冻24~48小时,然后在温度为-40~-90℃、真空度为6~14Pa的冷冻干燥机中冷冻24~48小时,即制得固态荧光探针材料;
所述荧光试剂为能够与荧光较弱或不显荧光的物质共价或非共价结合形成荧光配合物的物质,如蒽醌、喹啉、黄酮醇、石榴茜素R或桑色素;
所述聚合物为非水溶性聚合物,具体为聚苯乙烯、聚酯、聚乳酸、聚甲基丙烯酸甲酯、聚己内酯、聚乳酸-羟基乙酸共聚物或醋酸纤维素;
所述有机溶剂为与水不相容、但能溶解相应聚合物的有机溶剂,具体为二氯甲烷、1,2-二氯乙烷、氯仿、正己烷或环己烷;
所述纳米纤维素为至少一维的尺度在纳米范围内的纤维素材料,包括从各种原材料提取制备的具有形貌结构的纤维素纳米晶和纤维素纳米纤,其中所述原材料为棉花、木材、竹子或麻类;
所述化学试剂及原料的纯度均为分析纯及以上纯度。
CN201610953320.8A 2016-10-26 2016-10-26 一种固态荧光探针材料的制备方法 Active CN106519286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953320.8A CN106519286B (zh) 2016-10-26 2016-10-26 一种固态荧光探针材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953320.8A CN106519286B (zh) 2016-10-26 2016-10-26 一种固态荧光探针材料的制备方法

Publications (2)

Publication Number Publication Date
CN106519286A true CN106519286A (zh) 2017-03-22
CN106519286B CN106519286B (zh) 2019-06-07

Family

ID=58325362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953320.8A Active CN106519286B (zh) 2016-10-26 2016-10-26 一种固态荧光探针材料的制备方法

Country Status (1)

Country Link
CN (1) CN106519286B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852001A (zh) * 2021-01-08 2021-05-28 天津科技大学 纳米纤维素氨气感应气凝胶的制备方法
CN113185550A (zh) * 2021-05-13 2021-07-30 井冈山大学 一种用于Pickering乳液凝胶化程度检测的荧光传感器及其制备和应用
CN113244973A (zh) * 2021-07-15 2021-08-13 成都博奥晶芯生物科技有限公司 凝胶基质点样液及空白点样液、三维凝胶芯片及制备方法
CN115368636A (zh) * 2022-07-07 2022-11-22 齐鲁工业大学 一种负载荧光探针的废旧棉再生纤维素气凝胶复合材料及其制备方法和在甲醛检测中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836745A (zh) * 2012-08-24 2012-12-26 东北林业大学 一种具有气凝胶基体的光催化材料的制备方法
CN105749296A (zh) * 2016-02-26 2016-07-13 西南大学 一种溃疡性结肠炎组织靶向分子及其应用
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102836745A (zh) * 2012-08-24 2012-12-26 东北林业大学 一种具有气凝胶基体的光催化材料的制备方法
CN105749296A (zh) * 2016-02-26 2016-07-13 西南大学 一种溃疡性结肠炎组织靶向分子及其应用
CN106117592A (zh) * 2016-07-21 2016-11-16 桂林理工大学 一种纳米纤维素/聚合物复合气凝胶的制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852001A (zh) * 2021-01-08 2021-05-28 天津科技大学 纳米纤维素氨气感应气凝胶的制备方法
CN113185550A (zh) * 2021-05-13 2021-07-30 井冈山大学 一种用于Pickering乳液凝胶化程度检测的荧光传感器及其制备和应用
CN113185550B (zh) * 2021-05-13 2022-04-19 井冈山大学 一种用于Pickering乳液凝胶化程度检测的荧光传感器及其制备和应用
CN113244973A (zh) * 2021-07-15 2021-08-13 成都博奥晶芯生物科技有限公司 凝胶基质点样液及空白点样液、三维凝胶芯片及制备方法
CN113244973B (zh) * 2021-07-15 2021-10-08 成都博奥晶芯生物科技有限公司 凝胶基质点样液及空白点样液、三维凝胶芯片及制备方法
CN115368636A (zh) * 2022-07-07 2022-11-22 齐鲁工业大学 一种负载荧光探针的废旧棉再生纤维素气凝胶复合材料及其制备方法和在甲醛检测中的应用
CN115368636B (zh) * 2022-07-07 2023-09-15 齐鲁工业大学 一种负载荧光探针的气凝胶复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106519286B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN106117592B (zh) 一种纳米纤维素/聚合物复合气凝胶的制备方法
CN106519286A (zh) 一种固态荧光探针材料的制备方法
He et al. Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting
Tsai et al. A 3D-printable, glucose-sensitive and thermoresponsive hydrogel as sacrificial materials for constructs with vascular-like channels
CN103665398B (zh) 可完全生物降解和生物相容的复合微球的制备方法
CN106750521B (zh) 一种高柔韧性的废弃羊毛基生物塑料及其制备方法
CN104178843B (zh) 一种相变共混纤维及其制造方法
CN104945537B (zh) 一种水溶性壳聚糖基聚集诱导发光荧光探针的制备方法
CN104448108B (zh) 两亲性多色光开关荧光聚合物纳米粒子及其制备方法
CN102674312A (zh) 水溶性富勒烯及其制备方法
JP2009203467A (ja) セルロースを溶解する溶媒及びセルロース溶液からの成形体
Ning et al. Preparation and characterization of black biodegradable mulch films from multiple biomass materials
CN104761648A (zh) 一种纳米纤维素的低能耗制备方法
CN103739846A (zh) 一种量子点荧光印迹聚合物的制备方法
CN105603637A (zh) 高效的静电纺丝油水分离纤维膜
CN110157034A (zh) 一种高疏水气凝胶多孔材料的制备方法
CN108084316A (zh) 一种羧基化多孔交联聚苯乙烯共聚荧光微球的制备方法
CN105780184A (zh) 一种将羧甲基纤维素进行静电纺丝制成纤维的方法
CN105249576A (zh) 一种多功能服装材料的制造方法
Leong et al. Fluorescent magnesium (II) coordination polymeric hydrogel
Faris et al. Effect of rheological properties of (Poly vinyl alcohol/Dextrin/Naproxen) emulsion on the performance of drug encapsulated nanofibers
CN103102512B (zh) 一种壳聚糖-富勒烯复合物及其制备方法
Hurst et al. A facile in situ morphological characterization of smart genipin-crosslinked chitosan–poly (vinyl pyrrolidone) hydrogels
Deng et al. Poly (ethylene glycol)-poly (vinyl alcohol)-adamantanate: synthesis and stimuli-responsive micelle properties
CN106521646B (zh) 一种聚乳酸-羟基乙酸共聚物静电纺丝溶液的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210512

Address after: B606, Zhongdi building, industry university research base, China University of Geosciences, 8 Yuexing Third Road, Nanshan District, Shenzhen, Guangdong 518000

Patentee after: SHENZHEN CHENGTU TECHNOLOGY Co.,Ltd.

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin City Seven Star District Building Road No. 12

Patentee before: GUILIN University OF TECHNOLOGY