CN106500967A - A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method - Google Patents

A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method Download PDF

Info

Publication number
CN106500967A
CN106500967A CN201610953657.9A CN201610953657A CN106500967A CN 106500967 A CN106500967 A CN 106500967A CN 201610953657 A CN201610953657 A CN 201610953657A CN 106500967 A CN106500967 A CN 106500967A
Authority
CN
China
Prior art keywords
lens
ultraviolet
adjusting bracket
day
imaging enhancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610953657.9A
Other languages
Chinese (zh)
Other versions
CN106500967B (en
Inventor
韦永林
赛小锋
田进寿
卢裕
王兴
徐向晏
刘虎林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Zhongke atomic precision manufacturing technology Co., Ltd
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN201610953657.9A priority Critical patent/CN106500967B/en
Publication of CN106500967A publication Critical patent/CN106500967A/en
Application granted granted Critical
Publication of CN106500967B publication Critical patent/CN106500967B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

The invention provides a kind of aberration is little, spherical aberration is little, processing is simple, easily debug, compact conformation, day simple to operate blind ultraviolet imaging enhancer spatial resolution test device, solve existing apparatus spherical aberration larger, aspherical mirror is processed, checks relatively difficult, the larger problem of system resetting difficulty.Ultraviolet source that test device includes setting gradually, frosted glass plate, resolution test target, the first collimator, ultraviolet narrow band pass filter, diaphragm, the second collimator, day blind ultraviolet imaging enhancer, microscope, also include tubular shell, bearing, guide rail and multidimensional adjusting bracket;Microscope and day blind ultraviolet imaging enhancer are arranged on multidimensional adjusting bracket, and multidimensional adjusting bracket is arranged on bearing, and bearing is arranged on guide rail, for supporting the bearing of multidimensional adjusting bracket, ultraviolet source to move axially in guide rail.Present invention is mainly used for the spatial resolution test of day blind ultraviolet imaging enhancer, may be simultaneously used for the spatial resolution test of the photoelectric devices such as ultraviolet striped image converter tube.

Description

A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method
Technical field
The present invention relates to photoelectronic imaging device performance field tests, and in particular to a kind of day blind ultraviolet imaging enhancer space point Resolution test device and method.
Background technology
Spatial resolution refers to the least limit of identifiable critical object space geometrical length in image, i.e., to trickle knot The resolution of structure, is one of key parameter index of ultraviolet imaging enhancer, and its performance quality determines the imaging of ultraviolet imaging enhancer Quality.As the test equipment of image intensifier is highly professional, the manufacturer of external image intensifier is all that oneself develops correlation Test equipment test is estimated to the resolution of image intensifier, there is no commercialization test equipment on market.There is correlation the country Unit is studied to the test device of ultraviolet imaging enhancer, has two kinds of test devices at present, a kind of employing completely reflecting mirror Optical system, including spherical reflector and plane mirror etc., another kind of using off-axis parabolic mirror add refraction-reflection into As the optical system of objective lens mode, the test device existing defects of both ultraviolet imaging enhancers are mainly as follows:The first by In spherical reflector is used, it is easy to debug have the advantages that processing, but spherical aberration is larger and difficult correction.Second off-axis due to using Reflex system, with good imaging quality, and without blocking, system optics gain is also readily satisfied, but its non-spherical reflector adds Work, inspection are all relatively difficult, and system resetting difficulty is larger.
Content of the invention
The invention provides a kind of aberration is little, spherical aberration is little, processing is simple, easily debug, compact conformation, day simple to operate are blind Ultraviolet imaging enhancer spatial resolution test device and method of testing, with overcome the test device spherical aberration of optical system of total reflection compared with Greatly, aspherical mirror processing in the test device of aspheric surface reflective optics, check relatively difficult, system resetting difficulty is larger Problem.
Technical proposal that the invention solves the above-mentioned problems is:
A kind of day blind ultraviolet imaging enhancer spatial resolution test device, including set gradually ultraviolet source, clouded glass Piece, resolution test target, the first collimator, ultraviolet narrow band pass filter, clear aperature from the adjustable diaphragms of 0.5mm-10mm and Second collimator, also includes tubular shell, microscope, bearing, guide rail and multidimensional adjusting bracket;The microscope and day are blind ultraviolet Image intensifier is arranged on multidimensional adjusting bracket;The multidimensional adjusting bracket, ultraviolet source and tubular shell are arranged on bearing, institute State bearing to be arranged on guide rail, for supporting the bearing of multidimensional adjusting bracket and ultraviolet source to move axially on guide rail;
First collimator, the second collimator and tubular shell composition optical imaging system, described first Collimator, the second collimator are arranged in tubular shell, in the ultraviolet narrow band pass filter and diaphragm insertion tubular shell, The optical imaging system imaging magnification is 1:1, the first lens that first collimator includes setting gradually, second saturating Mirror, the 3rd lens, the 4th lens, the 5th lens that second collimator includes setting gradually, the 6th lens, the 7th saturating Mirror, the 8th lens, first lens, the second lens, the 4th lens, the 5th lens, the 7th lens, the 8th lens are by CaF2 The plus lens that makes, the 3rd lens and the 6th lens are the concavees lens being made up of quartz.
The ultraviolet source can be made up of deuterium lamp, and radiation wave band scope is 110nm-400nm.
The frosted glass plate can be the frosted glass plate made of JGS1 silica glass materials using saturating ultraviolet light.
The resolution test target can be the USAF1951 resolving power test targets that is made using JGS1 silica glass material photoetching, It is 185nm-2500nm through wavelength band.
Present invention also offers a kind of day blind ultraviolet imaging enhancer spatial resolution method of testing, comprises the following steps:
1) turn on the power, power to ultraviolet source and blind ultraviolet imaging enhancer of tested day, wait 10 minutes, allow ultraviolet source Steady statue is in day blind ultraviolet imaging enhancer;
2) diaphragm is adjusted, makes clear aperature maximum, while movement is loaded with the bearing of ultraviolet source in orbit, is improved and differentiate Rate tests target image brightness;
3) moved between optical imaging system outfan and image intensifier using virgin paper sheet, allow target picture to be presented on blank sheet of paper On piece, target image sharpness situation of change is observed, the position of target image planes is slightly sentenced;
4) movement is loaded with the bearing of day blind ultraviolet imaging enhancer in orbit, makes at the beginning of the cathode plane of day blind ultraviolet imaging enhancer Step is in target image planes;
5) load ultraviolet narrow band pass filter, diaphragm is adjusted to suitably sized;
6) ultraviolet imaging enhancer negative electrode shading protective cover is removed;
7) multidimensional adjusting bracket one is adjusted, moves forward and backward day blind ultraviolet imaging enhancer, while observing image intensifier fluorescent screen On target picture, accurate adjustment day blind ultraviolet imaging enhancer position, until image clearly, the multidimensional adjusting bracket one for carry day blind The multidimensional adjusting bracket of ultraviolet imaging enhancer;
8) movement is loaded with microscopical bearing, the target image sharpness situation of change that is observed on fluorescent screen by eyepiece, slightly Adjust microscopical position;
9) mobile multidimensional adjusting bracket two, moves forward and backward microscope, while the target picture that is observed on fluorescent screen by eyepiece, The microscopical position of accurate adjustment, until image clearly, the multidimensional adjusting bracket two is the microscopical multidimensional adjusting bracket of carrying;
10) adjust multidimensional adjusting bracket one again, move forward and backward ultraviolet imaging enhancer, while multidimensional adjusting bracket two is adjusted, The target that is observed on fluorescent screen by eyepiece is as situation of change;
11) step 10 is repeated several times), until the numerical value corresponding to the minimal graph group that obtained by microscope is image intensifying The spatial resolution of device
The invention has the beneficial effects as follows:Can make test device using the positive and negative lens combination of multi-disc into refractive optics system System, wherein positive minus lenses select different refraction materials, with aberration little, spherical aberration is little, processing is simple, easily debug, structure is tight Gather, simple operation and other advantages.Present invention is mainly used for the spatial resolution test of day blind ultraviolet imaging enhancer, while can also use Test in the spatial resolution of the photoelectric devices such as ultraviolet striped image converter tube.The test device is by changing radiation wave band to visible ray Light source, it may also be used for the spatial resolution of other light electrical resistivity survey devices such as visible ray image intensifying and visible striations image converter tube is surveyed Examination, wide market, thus with extremely strong economic benefit and social benefit.
Description of the drawings
Fig. 1 is the structural representation of day of the invention blind ultraviolet imaging enhancer spatial resolution test device embodiment;
Fig. 2 is resolution test target pattern schematic diagram of the present invention.
Reference:1- ultraviolet sources, 2- frosted glass plates, 3- resolution test targets, the first lens of 4-, the second lens of 5-, The 3rd lens of 6-, the 4th lens of 7-, the ultraviolet narrow band pass filters of 8-, 9- diaphragms, the 5th lens of 10-, the 6th lens of 11-, 12- the 7th Lens, the 8th lens of 13-, 14- days blind ultraviolet imaging enhancer, 15- microscopes, 16- multidimensional adjusting bracket one, 17- bearings, 18- are led Rail, 19- multidimensional adjusting bracket two, 20- tubular shells
Specific embodiment
Present disclosure is described in further detail below in conjunction with the drawings and specific embodiments:
A kind of day as shown in Figure 1 blind ultraviolet imaging enhancer spatial resolution test device, ultraviolet including set gradually Light source 1, frosted glass plate 2, resolution test target 3, the first collimator, ultraviolet narrow band pass filter 8, diaphragm 9, the second directional light Pipe, day blind ultraviolet imaging enhancer 14, microscope 15, also include tubular shell 20, bearing 17, guide rail 18, multidimensional adjusting bracket 1 With multidimensional adjusting bracket 2 19;The microscope 15 and day blind ultraviolet imaging enhancer 14 are respectively arranged at multidimensional adjusting bracket 2 19, many On dimension adjusting bracket 1, multidimensional adjusting bracket can realize that five dimensions are adjusted, and be easy to make tested image intensifier cathode plane be placed in test system On the focal plane of system;The multidimensional adjusting bracket 1, multidimensional adjusting bracket 2 19, ultraviolet source 1 and tubular shell 20 are arranged on bearing On 17, the bearing 17 is arranged on guide rail 18, for supporting multidimensional adjusting bracket 1,2 19 frame of multidimensional adjusting bracket, ultraviolet light The bearing 17 in source 1 is moved axially in guide rail 18;Microscope 15 is arranged on multidimensional adjusting bracket 2 19, glimmering for observing image intensifier Resolution test target image on optical screen.9 clear aperature of diaphragm is adjustable from 0.5mm-10mm, incides ultraviolet image intensifying so as to adjust The ultraviolet ray intensity of device.The arrowband ultraviolet filter can reduce the aberration of system.
The ultraviolet source 1 is made up of deuterium lamp, and radiation wave band scope is 110nm-400nm.
The frosted glass plate 2 is the frosted glass plate 2 made of JGS1 silica glass materials using saturating ultraviolet light, makes uneven The conversion of ultraviolet point source uniformly area source is irradiated on resolving power test target.
The resolution test target 3 is the USAF1951 resolving power test targets that is made using JGS1 silica glass material photoetching, thoroughly Wavelength band is crossed for 185nm-2500nm.
First collimator, the second collimator and tubular shell 20 constitute optical imaging system, and described the One collimator, the second collimator are arranged in tubular shell 20, and the ultraviolet narrow-band-filter 8 and diaphragm 9 insert tubulose In housing 20, the optical imaging system imaging magnification is 1:1, total focal length 202.8mm, field number Φ 50mm, relative opening Footpath 1/8, distortion<0.1%, the depth of field ± 0.1mm.First collimator includes the first lens 4, the second lens for setting gradually 5th, the 3rd lens 6, the 4th lens 7, its focal length are 309mm, and bore is 53mm.The incident curvature radius of first lens 4 are 58.48, another side is -792.5;Second lens, 5 incident curvature radius are 195.88, and another side is 34360;3rd lens 6 Incident curvature radius are -174.58, and another side is 54.95;4th lens, 7 incident curvature radius are 259.4, another side For -291.7.The 5th lens 10 that second collimator includes setting gradually, the 6th lens 11, the 7th lens the 12, the 8th Lens 13, image-forming objective lens of second collimator as system, focal length is 300mm, and bore is 53mm, 10 plane of incidence of the 5th lens Radius of curvature is 347.5, and another side is -165.72;Incident curvature radius -44.27 of 6th lens 11, another side is 183.65;7th lens, 12 incident curvature radius are 2333, and another side is -115.88;8th lens, the 13 incident face curvature half Footpath is -225.9, and another side is -47.86.First lens 4, the second lens 5, the 4th lens 7, the 5th lens the 10, the 7th Lens 12, the 8th lens 13 are by CaF2The plus lens that makes, the 3rd lens 6 and the 6th lens 11 are made up of quartz Concavees lens.
Relevant parameter of the following table for each lens of optical system, unit mm
Day of the invention blind ultraviolet imaging enhancer spatial resolution test device workflow:Power supply is first turned on, to purple Outer light source 1 and blind ultraviolet imaging enhancer 14 of tested day are powered, the light of ultraviolet point source radiation through quartzy clouded glass, be converted into compared with Uniformly ultraviolet area source, is then irradiated on the resolution test target 3 being placed on focal surface of collimator tube, and light enters first Lens 4, the second lens 5, the 3rd lens 6, the 4th lens 7, form parallel ultraviolet light, and light is through narrow band pass filter, diaphragm 9, the object lens being made up of the 5th lens 10, the 6th lens 11, the 7th lens 12, the 8th lens 13 are incided, finally resolution Test target 3 is as on the image intensifier cathode plane being placed at object lens focal plane.Because image intensifier is in running order, finally Conversion of 3 UV image of resolution test target through ultraviolet imaging enhancer, becomes visible images into the fluorescent screen in image intensifier On.If the visible images on fluorescence are unintelligible, the position of image intensifier cathode plane can be adjusted by multidimensional adjusting bracket, with When interpretation is carried out to fluoroscopic picture with microscope 15, until the definition of picture reaches most preferably, show the cathode plane of image intensifier On the focal plane of test system, the numerical value corresponding to minimal graph group obtained now by microscope 15 is just image intensifier Spatial resolution.In addition can pass through to adjust diaphragm 9, the day that can be tested in the case of different light intensity blind ultraviolet imaging enhancer 14 Image resolution ratio.Fig. 2 is a concrete resolution test target pattern of the invention.
A kind of day blind ultraviolet imaging enhancer spatial resolution method of testing, comprise the following steps:
1) turn on the power, power to ultraviolet source 1 and blind ultraviolet imaging enhancer 14 of tested day, wait 10 minutes, allow ultraviolet Light source 1 and day blind ultraviolet imaging enhancer 14 are in steady statue;
2) diaphragm 9 is adjusted, makes clear aperature maximum, while movement is loaded with the bearing 17 of ultraviolet source 1 in orbit, improved Image brightness marked by resolution test target 3;
3) moved between optical imaging system outfan and image intensifier using virgin paper sheet, allow target picture to be presented on blank sheet of paper On piece, target image sharpness situation of change is observed, the position of target image planes is slightly sentenced;
4) movement is loaded with the bearing 17 of day blind ultraviolet imaging enhancer 14 in orbit, makes the moon of day blind ultraviolet imaging enhancer 14 Pole-face is tentatively in target image planes;
5) load ultraviolet narrow-band-filter 8, regulation diaphragm 9 arrives suitably sized;
6) ultraviolet imaging enhancer negative electrode shading protective cover is removed;
7) multidimensional adjusting bracket 1 is adjusted, moves forward and backward day blind ultraviolet imaging enhancer 14, while eye observation image intensifying Target picture on device fluorescent screen, accurate adjustment day blind ultraviolet imaging enhancer 14 position, until image clearly;
8) movement is loaded with the bearing 17 of microscope 15, and the target that is observed on fluorescent screen by eyepiece is as situation of change, coarse adjustment The position of microscope 15;
9) mobile multidimensional adjusting bracket 2 19, moves forward and backward microscope 15, while the target that is observed on fluorescent screen by eyepiece Mark picture, the position of accurate adjustment microscope 15, until image clearly;
10) adjust multidimensional adjusting bracket 1 again, move forward and backward ultraviolet imaging enhancer, while adjusting multidimensional adjusting bracket two 19, the target that is observed on fluorescent screen by eyepiece is as situation of change;
11) step 10 is repeated several times), it is just as increasing until passing through the numerical value corresponding to the minimal graph group that microscope 15 is obtained The spatial resolution of strong device;
Microscope 15 in device can also change CCD camera into and target picture on ultraviolet imaging enhancer fluorescent screen is imaged, so After be transferred to computer, be presented on display and observe, its control method is identical with microscope 15.

Claims (5)

1. blind ultraviolet imaging enhancer spatial resolution test device of a kind of day, it is characterised in that:Including the ultraviolet light for setting gradually Source, frosted glass plate, resolution test target, the first collimator, ultraviolet narrow band pass filter, clear aperature is adjustable from 0.5mm-10mm Diaphragm and the second collimator, also include tubular shell, microscope, bearing, guide rail and multidimensional adjusting bracket;The microscope and Day, blind ultraviolet imaging enhancer was arranged on multidimensional adjusting bracket;The multidimensional adjusting bracket, ultraviolet source and tubular shell are arranged on and prop up On seat, the bearing is arranged on guide rail, for supporting the bearing of multidimensional adjusting bracket and ultraviolet source to move axially on guide rail;
First collimator, the second collimator and tubular shell composition optical imaging system, first collimator, Second collimator is arranged in tubular shell, in the ultraviolet narrow band pass filter and diaphragm insertion tubular shell, optical imagery System imaging amplification is 1:1, the first lens that first collimator includes setting gradually, the second lens, the 3rd lens, 4th lens, the 5th lens that second collimator includes setting gradually, the 6th lens, the 7th lens, the 8th lens, institute It is by CaF to state the first lens, the second lens, the 4th lens, the 5th lens, the 7th lens, the 8th lens2The plus lens that makes, 3rd lens and the 6th lens are the concavees lens being made up of quartz.
2. day according to claim 1 blind ultraviolet imaging enhancer spatial resolution test device, it is characterised in that:Ultraviolet light Source is constituted for deuterium lamp, and radiation wave band scope is 110nm-400nm.
3. day according to claim 1 and 2 blind ultraviolet imaging enhancer spatial resolution test device, it is characterised in that:Hair Sheet glass is the frosted glass plate made of JGS1 silica glass materials using saturating ultraviolet light.
4. day according to claim 3 blind ultraviolet imaging enhancer spatial resolution test device, it is characterised in that:Resolution Test target is the USAF1951 resolving power test targets that is made using JGS1 silica glass material photoetching, through wave band 185nm-2500nm.
5. blind ultraviolet imaging enhancer spatial resolution method of testing of a kind of day, it is characterised in that:Comprise the following steps:
1) turn on the power, power to ultraviolet source and blind ultraviolet imaging enhancer of tested day, wait 10 minutes, allow ultraviolet source and day Blind ultraviolet imaging enhancer is in steady statue;
2) diaphragm is adjusted, makes clear aperature maximum, while movement is loaded with the bearing of ultraviolet source in orbit, carry high resolution bathymetric Examination target image brightness;
3) moved between optical imaging system outfan and image intensifier using virgin paper sheet, allow target picture to be presented on virgin paper sheet On, target image sharpness situation of change is observed, the position of target image planes is slightly sentenced;
4) movement is loaded with the bearing of day blind ultraviolet imaging enhancer in orbit, the cathode plane of day blind ultraviolet imaging enhancer is tentatively located In target image planes;
5) load ultraviolet narrow band pass filter, diaphragm is adjusted to suitably sized;
6) ultraviolet imaging enhancer negative electrode shading protective cover is removed;
7) multidimensional adjusting bracket one is adjusted, moves forward and backward day blind ultraviolet imaging enhancer, while observing on image intensifier fluorescent screen Target picture, accurate adjustment day blind ultraviolet imaging enhancer position, until image clearly, the multidimensional adjusting bracket one for carry day blind ultraviolet The multidimensional adjusting bracket of image intensifier;
8) movement is loaded with microscopical bearing, and the target image sharpness situation of change that is observed on fluorescent screen by eyepiece, coarse adjustment are shown The position of micro mirror;
9) mobile multidimensional adjusting bracket two, moves forward and backward microscope, while the target picture that is observed on fluorescent screen by eyepiece, accurate adjustment Microscopical position, until image clearly, the multidimensional adjusting bracket two is the microscopical multidimensional adjusting bracket of carrying;
10) adjust multidimensional adjusting bracket one again, move forward and backward ultraviolet imaging enhancer, while adjusting multidimensional adjusting bracket two, pass through Target on eyepiece observation fluorescent screen is as situation of change;
11) step 10 is repeated several times), until the numerical value corresponding to the minimal graph group that obtained by microscope is image intensifier Spatial resolution.
CN201610953657.9A 2016-11-03 2016-11-03 A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method Active CN106500967B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610953657.9A CN106500967B (en) 2016-11-03 2016-11-03 A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610953657.9A CN106500967B (en) 2016-11-03 2016-11-03 A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method

Publications (2)

Publication Number Publication Date
CN106500967A true CN106500967A (en) 2017-03-15
CN106500967B CN106500967B (en) 2019-05-31

Family

ID=58322318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610953657.9A Active CN106500967B (en) 2016-11-03 2016-11-03 A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method

Country Status (1)

Country Link
CN (1) CN106500967B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982990A (en) * 2018-05-30 2018-12-11 中国人民解放军陆军工程大学 A kind of image intensifier tester
CN110346120A (en) * 2019-08-05 2019-10-18 北方夜视技术股份有限公司 The test macro and test method of a kind of strong optical resolution of automatic gate image intensifier and dynamic range
CN110375962A (en) * 2019-08-15 2019-10-25 中科院南京天文仪器有限公司 The device and method for demarcating optical system focal plane is illuminated based on preposition boundling
CN110375962B (en) * 2019-08-15 2024-05-31 中科院南京天文仪器有限公司 Device and method for calibrating focal plane of optical system based on front-end cluster illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017325A (en) * 1983-07-08 1985-01-29 Hamamatsu Photonics Kk Apparatus for measuring intensity of ultraviolet image
CN102419251A (en) * 2011-12-26 2012-04-18 北方夜视科技集团有限公司 Ultraviolet image intensifier resolution testing device
CN102564733A (en) * 2010-12-27 2012-07-11 南京理工大学 Resolution test device of ultraviolet image intensifier
CN206192634U (en) * 2016-11-03 2017-05-24 中国科学院西安光学精密机械研究所 Blind ultraviolet image intensifier spatial resolution testing arrangement of day

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017325A (en) * 1983-07-08 1985-01-29 Hamamatsu Photonics Kk Apparatus for measuring intensity of ultraviolet image
CN102564733A (en) * 2010-12-27 2012-07-11 南京理工大学 Resolution test device of ultraviolet image intensifier
CN102419251A (en) * 2011-12-26 2012-04-18 北方夜视科技集团有限公司 Ultraviolet image intensifier resolution testing device
CN206192634U (en) * 2016-11-03 2017-05-24 中国科学院西安光学精密机械研究所 Blind ultraviolet image intensifier spatial resolution testing arrangement of day

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
唐光华 等: "日盲型紫外像增强管的应用及研制进展", 《光电子技术》 *
曹希斌 等: "一种响应波长在120nm~200nm的紫外增强器", 《应用光学》 *
贺英萍 等: "紫外像增强器分辨力和视场质量测试技术研究", 《应用光学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982990A (en) * 2018-05-30 2018-12-11 中国人民解放军陆军工程大学 A kind of image intensifier tester
CN108982990B (en) * 2018-05-30 2020-12-04 中国人民解放军陆军工程大学 Image intensifier tester
CN110346120A (en) * 2019-08-05 2019-10-18 北方夜视技术股份有限公司 The test macro and test method of a kind of strong optical resolution of automatic gate image intensifier and dynamic range
CN110375962A (en) * 2019-08-15 2019-10-25 中科院南京天文仪器有限公司 The device and method for demarcating optical system focal plane is illuminated based on preposition boundling
CN110375962B (en) * 2019-08-15 2024-05-31 中科院南京天文仪器有限公司 Device and method for calibrating focal plane of optical system based on front-end cluster illumination

Also Published As

Publication number Publication date
CN106500967B (en) 2019-05-31

Similar Documents

Publication Publication Date Title
US6476976B2 (en) Doubly telecentric lens and imaging system for multiwell plates
CN206192634U (en) Blind ultraviolet image intensifier spatial resolution testing arrangement of day
CN105988207B (en) Magnifying optics, optical unit and projector apparatus
CN109656006B (en) Wide-spectrum non-focusing all-day air bright imager
Teubner et al. Optical Imaging and Photography: Introduction to Science and Technology of Optics, Sensors and Systems
CN109716434B (en) Four-dimensional multi-plane broadband imaging system based on non-reentrant quadratic distortion (NRQD) grating and prismatic grating
CN105911672A (en) Short-wave infrared wide-band apochromatism image space telecentric teleobjective
CN112005100A (en) Optical disc microscopy for fluorescence microscopy
CN106500967A (en) A kind of day blind ultraviolet imaging enhancer spatial resolution test device and method
Desjardins et al. Design of indirect X-ray detectors for tomography on the ANATOMIX beamline
US3856398A (en) Apparatus and method for wide area, dark field, high resolution autoradiography
CN209417404U (en) A kind of non-focusing all-sky airglow imager of wide spectrum
CN111442908A (en) Device and method for detecting visible light transmittance and uniformity of optical fiber image transmission element
Watson A wide-field multi-object spectroscopy (MOS) system
CN110376171A (en) Transmission-type fluorescence detection imaging system applied to dPCR detector
US20220091402A1 (en) Observation apparatus
CN104459945B (en) Detect the object lens of chalcogenide glass uniformity and there is its chalcogenide glass uniformity detection
Keller Proper alignment of the microscope
RU170421U1 (en) Optical design of an extraclock coronograph
Teubner et al. Optical Imaging and Photography: Imaging Optics, Sensors and Systems
Xie et al. Design and stray light analysis of a high NA night vision zoom optical system
Hamly et al. Factors in fluorescence microscopy
Frolov et al. Engineering solutions and synthesis of optics for visualization systems of light microscopes
Schacke et al. Thin Multi-Aperture Microscope
Needham HINTS ON 35 mm COLOUR PHOTOMICROGRAPHY, ESPECIALLY WITH THE LEICA CAMERA

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200109

Address after: 523000 room 524, building 2, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Patentee after: Dongguan Zhongke atomic precision manufacturing technology Co., Ltd

Address before: 710119, No. 17, information Avenue, new industrial park, hi tech Zone, Shaanxi, Xi'an

Patentee before: Xi-an Inst. of Optics and Fine Mechanics, Chinese Academy of Sciences