CN106495237B - 一种P型NiO基稀磁半导体纳米管及其制备方法 - Google Patents

一种P型NiO基稀磁半导体纳米管及其制备方法 Download PDF

Info

Publication number
CN106495237B
CN106495237B CN201610896148.7A CN201610896148A CN106495237B CN 106495237 B CN106495237 B CN 106495237B CN 201610896148 A CN201610896148 A CN 201610896148A CN 106495237 B CN106495237 B CN 106495237B
Authority
CN
China
Prior art keywords
semiconductor nano
magnetic semiconductor
diluted magnetic
base diluted
type nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610896148.7A
Other languages
English (en)
Other versions
CN106495237A (zh
Inventor
王娇
刘少辉
郝好山
赵利敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Sanweiti New Material Technology Co ltd
Original Assignee
Henan Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Institute of Engineering filed Critical Henan Institute of Engineering
Priority to CN201610896148.7A priority Critical patent/CN106495237B/zh
Publication of CN106495237A publication Critical patent/CN106495237A/zh
Application granted granted Critical
Publication of CN106495237B publication Critical patent/CN106495237B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Fibers (AREA)

Abstract

本发明涉及一种P型NiO基稀磁半导体纳米管及其制备方法,采用同轴静电纺丝法进行纺丝;制备产物为芯层@壳层结构,经烧结之后,PVP经高温挥发,得到稀磁半导体纳米管,外径为200‑400nm,内径为50‑100nm,长度10‑100μm。该一维纳米管磁性材料由于其特殊的尺寸与结构,往往具有高度的磁各向异性,其易磁化方向沿纳米纤维轴向。因此,与一般铁磁体材料相比,一定取向排列的一维纳米磁性材料磁滞回线具有比较高的矩形比。同时一维纳米管磁性材具有更大的比表面积,比零维纳米材料具有更好的电子传输特性。与现有技术相比,该方法具有简单易行、成本低、方便快速、制备的样品纯度高等优点,可大规模化生产等优点。

Description

一种P型NiO基稀磁半导体纳米管及其制备方法
技术领域
本发明属于功能材料制备技术领域,尤其是涉及一种P型NiO基稀磁半导体纳米管及其制备方法。
背景技术
稀磁半导体(DMS)是指用磁性的过渡族金属元素或稀土元素部分地替代半导体中的非磁性元素后形成的一种新型的具有磁性的半导体材料。由于兼有半导体和铁磁的性质,可能给信息存储技术等领域带来革命性的影响,因而稀磁半导体成为物理学家和材料学家的研究热点之一。现在已经制备出较多的稀磁氧化物半导体,包括ZnO,TiO2,SnO2等,这些都是本征的n型半导体。在自旋电子器件中不但需要n型的半导体,也需要p型的半导体,可是有关p型稀磁半导体的制备与性能研究的报道并不多。NiO禁带宽度在3.7eV以上,化学计量比的NiO是Mott-Hubbard型绝缘体,其室温电导率小于l0-13S/cm,当材料中存在Ni2+空位或者引入Li+离子时将转变成为p型宽带隙半导体。同时NiO是典型的反铁磁体,奈尔温度为532K。
随着电子元件向小型化发展,p型稀磁半导体纳米材料的合成及性能研究显得更为重要,p型稀磁半导体纳米材料的性能不仅与其组成、相态有关,而且还与其形貌、大小有着密切的关系。合成的NiO基p型稀磁半导体纳米材料形貌有纳米颗粒、纳米线、纳米管等形貌。而纳米管与块体材料相比,一维纳米管磁性材料由于其特殊的尺寸与结构,往往具有高度的磁各向异性,其易磁化方向沿纳米纤维轴向。因此,与一般铁磁体材料相比,一定取向排列的一维纳米磁性材料磁滞回线具有比较高的矩形比。同时一维纳米管磁性材具有更大的比表面积,比零维纳米材料具有更好的电子传输特性。纳米管以其独特的光学、电学、热学、磁学、电化学特性,在诸多领域展现出潜在的应用价值,同时可以大幅缩小器件体积、提高性能,便于集成化制造。
目前制备一维纳米管磁性材料方法有很多种,包括模板法,水热法等。而模版法存在制备的样品纯度不高、产量比较低等缺点,水热法存在设备要求高、反应周期长等缺点,因此很有必要探索一种新的合成NiO基稀磁半导体纳米管的方法。
高压静电纺丝法是指利用无机盐的高分子溶液在梯度电场作用下,以纺丝的形式在接收板上得到复合纳米纤维,复合纳米纤维再经过高温退火之后就可以得到无机纳米纤维。高压静电纺丝法已经制备出了多种无机纳米纤维材料,材料具有比表面积大,长径比大,纤维表面呈现多孔状,并且具有掺杂精确,过程可控,耗能低,操作方便等优点,已经成为制备一维纳米材料的重要途径。多人采用静电纺丝法制备了NiO纳米纤维,而目前采用静电纺丝法制备NiO稀磁半导体纳米管的资料鲜有报道。
发明内容
本发明是为了克服上述现有技术存在的缺陷,提供一种简单易行、成本低、方便快速、样品纯度高的NiO稀磁半导体纳米管的制备方法。
实现本发明的技术方案是:一种P型NiO基稀磁半导体纳米管,所述P型NiO基稀磁半导体纳米管室温条件下为立方体结构,采用静电纺丝法制备,外径为200-400nm,内径为50-100nm,长度10-100μm。
所述P型NiO基稀磁半导体纳米管的制备方法,步骤如下:
(1)以Ni(CH3COO)2·4H2O和Fe(NO3)3·9H2O为原料,Ni(CH3COO)2·4H2O与Fe(NO3)3·9H2O的物质的量之比为0.99:0.01,将原料溶解在体积分数为5%-10%的稀盐酸中,加入高聚物PVP制备出壳层纺丝液,高聚物PVP与稀盐酸质量之比为1:2-4;
(2)将高聚物PVP将加入到酒精中,高聚物PVP与酒精质量之比为1:2-3,制备出芯层纺丝液;
(3)将步骤(1)中的壳层纺丝液和步骤(2)中的芯层纺丝液进行静电纺丝得到样品,将得到的样品放入马弗炉中进行热处理,得到NiO基稀磁半导体纳米管。
所述步骤(3)中静电纺丝的电场为1.5kV/cm-2.5kV/cm。
所述步骤(3)中热处理条件是:升温速率为1-3℃/min,在600-900℃保温1-4小时。
所述高聚物PVP的相对分子量为160000。
所述P型NiO基稀磁半导体纳米管用于高密度非易失性存储器、自旋电子器件磁感应器、光隔离器件、半导体激光器集成电路以及量子计算机。
本发明的有益效果是:
(1)制备的P型NiO基稀磁半导体纳米管材料具有比表面积大,长径比大,纤维表面呈现多孔状,并且具有掺杂精确,过程可控,耗能低,操作方便等优点;
(2)选用体积分数5%-10%稀盐酸为溶剂,稀盐酸作为溶剂可以加速溶解原料,同时也可以选取碳酸镍作为原料,此举可大大节约生产成本;选用的高聚物为PVP(相对分子量160000),此分子量的高聚物具有更大的粘性,此举可以使用更少的原料制备更多的PVP溶剂;
(3)该方法制备的P型NiO基稀磁半导体纳米管在高密度非易失性存储器、自旋电子器件磁感应器、光隔离器件、半导体激光器集成电路以及量子计算机等方面有着重大的潜在应用;
(4)本方法制备出粉体是管状的NiO基稀磁半导体纳米管,同时一维纳米管磁性材具有更大的比表面积,比一维纳米纤维材料具有更好的电子传输特性。
附图说明
图1为实施例1制备的Ni0.99Fe0.01O纳米管的X射线衍射(XRD)图谱;
图2为实施例1制备的Ni0.99Fe0.01O纳米管的透射电子显微镜(TEM)图谱;
图3为实施例1制备的Ni0.99Fe0.01O纳米管的扫描电子显微镜(SEM)图谱;
图4为实施例1制备的Ni0.99Fe0.01O纳米管在室温下的磁滞回线。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
以Ni(CH3COO)2·4H2O和Fe(NO3)3·9H2O为原料,按照Ni元素、Fe元素物质的量之比为0.99:0.01称量样品,以体积分数5%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP的相对分子量是160000,PVP与稀盐酸质量之比为1:2,制备出壳层纺丝液,将PVP将加入到酒精中,PVP与酒精质量之比为1:2,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。纺丝电场为1.5kV/cm,之后将收集的样品放入马弗炉中进行热处理,升温速率为1℃/min,在600℃保温4小时,得到NiO基稀磁半导体纳米管。
该实施例制备的Ni0.99Fe0.01O纳米管的X射线衍射(XRD)图谱如图1所示。从图中可以看出,在2θ=37.2°,43.4°,62.9°,75.2°和79.4°处出现的分别对应于立方相NiO(111)、(200)、(220)、(311)和(222)晶面的五个特征峰外。不存在与Fe相关的其他物相的衍射峰,这表明在Fe掺杂量较低时,制备出的Ni0.99Fe0.01O的晶体仍然具有立方晶相结构,Fe离子很好地进入了NiO的晶格,而不是形成新的杂相。
该实施例制备的Ni0.99Fe0.01O纳米管的透射电子显微镜(TEM)图谱如图2所示,制备的Ni0.99Fe0.01O纳米管的扫描电子显微镜(SEM)图如图3所示,最终合成的Ni0.99Fe0.01O纳米管,外形为管状,外径为200-400nm,内径为50-100nm,长度10-100μm。
如图4所示实例1制备的Ni0.99Fe0.01O纳米管在室温下的磁滞回线,可以看出,Ni0.99Fe0.01O具有较大的磁化强度和矫顽场。
实施例2
以Ni(CH3COO)2·4H2O和Fe(NO3)3·9H2O为原料,按照Ni元素、Fe元素摩尔比为0.9:0.1称量样品,以体积分数10%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP的相对分子量是160000,PVP与稀盐酸质量之比为1:4,制备出壳层纺丝液,将PVP将加入到酒精中,PVP与酒精质量之比为1:3,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。纺丝电场为2.5kV/cm,之后将收集的样品放入马弗炉中进行热处理,升温速率为3℃/min,在900℃保温1小时,得到NiO基稀磁半导体纳米管。
实施例3
以Ni(CH3COO)2·4H2O和Fe(NO3)3·9H2O为原料,按照Ni元素、Fe元素摩尔比为0.95:0.15称量样品,以体积分数8%稀盐酸为溶剂,将原料在溶剂中充分溶解,加入高聚物PVP,高聚物PVP的相对分子量是160000,PVP与稀盐酸质量之比为1:3,制备出壳层纺丝液,将PVP将加入到酒精中,PVP与酒精质量之比为1:2.5,制备出芯层纺丝液;采用静电纺丝仪器进行样品的制备和收集。纺丝电场为2 kV/cm,之后将收集的样品放入马弗炉中进行热处理,升温速率为2℃/min,在800℃保温1小时,得到NiO基稀磁半导体纳米管。

Claims (7)

1.一种P型NiO基稀磁半导体纳米管的制备方法,其特征在于步骤如下:
(1)以Ni(CH3COO)2·4H2O和Fe(NO3)3·9H2O为原料,Ni(CH3COO)2·4H2O与Fe(NO3)3·9H2O的物质的量之比为0.99:0.01-0.9:0.1,将原料溶解在体积分数为5%-10%的稀盐酸中,加入高聚物PVP制备出壳层纺丝液,高聚物PVP与稀盐酸质量之比为1:2-4;
(2)将高聚物PVP加入到酒精中,高聚物PVP与酒精质量之比为1:2-3,制备出芯层纺丝液;
(3)将步骤(1)中的壳层纺丝液和步骤(2)中的芯层纺丝液进行静电纺丝得到样品,将得到的样品放入马弗炉中进行热处理,得到NiO基稀磁半导体纳米管。
2.根据权利要求1所述的P型NiO基稀磁半导体纳米管的制备方法,其特征在于:所述步骤(3)中静电纺丝的电场为1.5kV/cm-2.5kV/cm。
3.根据权利要求1所述的P型NiO基稀磁半导体纳米管的制备方法,其特征在于:所述步骤(3)中热处理条件是:升温速率为1-3℃/min,在600-900℃保温1-4小时。
4.根据权利要求1所述的P型NiO基稀磁半导体纳米管的制备方法,其特征在于:所述步骤(1)和步骤(2)中高聚物PVP的相对分子量为160000。
5.一种P型NiO基稀磁半导体纳米管,其特征在于:利用权利要求1-4任一项所述的方法制备得到。
6.根据权利要求5所述的P型NiO基稀磁半导体纳米管,其特征在于:所述P型NiO基稀磁半导体纳米管室温条件下为立方体结构,外径为200-400nm,内径为50-100nm,长度10-100μm。
7.权利要求1或5所述的P型NiO基稀磁半导体纳米管的应用,其特征在于:所述P型NiO基稀磁半导体纳米管用于高密度非易失性存储器、自旋电子器件磁感应器、光隔离器件、半导体激光器集成电路以及量子计算机。
CN201610896148.7A 2016-10-14 2016-10-14 一种P型NiO基稀磁半导体纳米管及其制备方法 Active CN106495237B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610896148.7A CN106495237B (zh) 2016-10-14 2016-10-14 一种P型NiO基稀磁半导体纳米管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610896148.7A CN106495237B (zh) 2016-10-14 2016-10-14 一种P型NiO基稀磁半导体纳米管及其制备方法

Publications (2)

Publication Number Publication Date
CN106495237A CN106495237A (zh) 2017-03-15
CN106495237B true CN106495237B (zh) 2018-01-26

Family

ID=58294009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610896148.7A Active CN106495237B (zh) 2016-10-14 2016-10-14 一种P型NiO基稀磁半导体纳米管及其制备方法

Country Status (1)

Country Link
CN (1) CN106495237B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175422B2 (en) * 2007-01-22 2015-11-03 The United States Of America As Represented By The Secretary Of The Army Polymer-micelle complex as an aid to electrospinning
CN102234846B (zh) * 2010-04-28 2013-08-21 中国科学院化学研究所 具有微米管套纳米线结构的核/壳纤维及其制备方法
KR101314578B1 (ko) * 2010-11-29 2013-10-10 광주과학기술원 저가의 전이금속을 포함하는 나노섬유를 이용한 연료전지용 전이금속―탄소나노섬유 촉매 및 이의 제조방법
CN102817105A (zh) * 2012-08-24 2012-12-12 上海交通大学 核壳结构合成高分子-天然高分子复合纤维的制备方法
CN103305964B (zh) * 2013-06-24 2015-08-12 清华大学 NiO基稀磁半导体纳米纤维及其制备方法

Also Published As

Publication number Publication date
CN106495237A (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
Lan et al. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites
Zhang et al. Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review
Wang et al. The construction of carbon-coated Fe3O4 yolk-shell nanocomposites based on volume shrinkage from the release of oxygen anions for wide-band electromagnetic wave absorption
Zhang et al. BaFe12O19 single-particle-chain nanofibers: preparation, characterization, formation principle, and magnetization reversal mechanism
Xia et al. Nanostructured iron oxide/hydroxide‐based electrode materials for supercapacitors
Song et al. Boosting piezoelectric performance with a new selective laser sintering 3D printable PVDF/graphene nanocomposite
He et al. Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching
Wei et al. Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders
CN101607818B (zh) 具有多铁性能的层状结构钛铁钴酸铋陶瓷材料及其制备方法
Li et al. Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol‐gel method
KR101294594B1 (ko) 자기적 특성이 부여된 나노섬유 및 그 제조방법
Zhang et al. Templated fabrication of NiFe2O4 nanorods: characterization, magnetic and electrochemical properties
Gajović et al. The synthesis of pure‐phase bismuth ferrite in the Bi–Fe–O system under hydrothermal conditions without a mineralizer
Chatterjee et al. NiO nanoparticle synthesis using a triblock copolymer: Enhanced magnetization and high specific capacitance of electrodes prepared from the powder
Thangamani et al. Magnetic behavior of ni-doped cuo nanoparticles synthesized by microwave irradiation method
Xie et al. Preparation and magnetic properties of poly (3-octyl-thiophene)/BaFe11. 92 (LaNd) 0.04 O19-titanium dioxide/multiwalled carbon nanotubes nanocomposites
CN103586465B (zh) 一种Sm-Co基纳米磁性材料的制备方法
Cheng et al. Enhanced microwave absorption properties of intrinsically core/shell structured La 0.6 Sr 0.4 MnO 3 nanoparticles
Li et al. Partial cationic inversion-induced magnetic hardening of densely packed 23-nm-sized nanocrystallite-interacting nickel ferrite electrospun nanowires
Kim et al. Fabrication of the novel Fe2+ αO3+ α–CoFe2O4 composite fibers and their magnetic properties
Fan et al. Low‐Temperature Synthesis, Magnetic and Microwave Electromagnetic Properties of Substoichiometric Spinel Cobalt Ferrite Octahedra
Li et al. Spin canting and spin-flop transition in antiferromagnetic Cr2O3 nanocrystals
Yuan et al. Microwave absorption performance of in situ synthesized Fe3O4-SiO2 hybrid fibres with enhanced environmental stability
Ristiani et al. Introduction of Na⁺ in Reduced Graphene Oxide Prepared From Coconut Shells and Its Magnetic Properties
Xing et al. Core-shell LaOCl/LaFeO3 nanofibers with matched impedance for high-efficiency electromagnetic wave absorption

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230512

Address after: No. 2004, Building C, Jianzheng East Center, No. 100 Shangdu Road, Zhengzhou Area (Zhengdong), Henan Pilot Free Trade Zone, Zhengzhou City, Henan Province, 450000

Patentee after: Henan sanweiti New Material Technology Co.,Ltd.

Address before: 451191 No. 1 Zhongshan North Road, Longhu Town, Zhengzhou City, Henan Province

Patentee before: HENAN INSTITUTE OF ENGINEERING

TR01 Transfer of patent right