CN106488403A - 恶意节点攻击下的基于残差分析的压缩感知定位方法 - Google Patents

恶意节点攻击下的基于残差分析的压缩感知定位方法 Download PDF

Info

Publication number
CN106488403A
CN106488403A CN201610779931.5A CN201610779931A CN106488403A CN 106488403 A CN106488403 A CN 106488403A CN 201610779931 A CN201610779931 A CN 201610779931A CN 106488403 A CN106488403 A CN 106488403A
Authority
CN
China
Prior art keywords
residual
residual error
compressed sensing
measured value
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610779931.5A
Other languages
English (en)
Inventor
颜俊
曹杨芹
朱卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201610779931.5A priority Critical patent/CN106488403A/zh
Publication of CN106488403A publication Critical patent/CN106488403A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/021Calibration, monitoring or correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了恶意节点攻击下的基于残差分析的压缩感知定位算法。首先,利用压缩感知的重构算法初步估计目标位置,计算残差,并分析残差的总和,残差的均值和残差的偏差;然后,根据提出的残差偏差准则,得到可能的受攻击节点测量值集合。根据最大残差准则,从可能的节点中确定最终受攻击的节点测量值。最后利用未受攻击的节点测量值进行压缩感知定位,获取最终目标位置。与传统的压缩感知算法相比,本发明将压缩感知技术和残差分析技术相结合,提出了安全的压缩感知定位算法,定位性能、稳健性和鲁棒性都更好。采用攻击检测方法来检测受攻击的测量值,克服了恶意节点攻击下定位性能差的局限性,扩大了压缩感知定位算法的应用领域。

Description

恶意节点攻击下的基于残差分析的压缩感知定位方法
技术领域
本发明涉及无线通信技术、传感器技术,定位导航技术,属于通信定位技术领域。
背景技术
近年来随着无线传感网络技术的发展,位置服务广泛用于个人和商业应用,如室内导航,无线网络中的资源分配以及位置安全服务等领域。传统的定位算法包括基于接收信号强度(RSS)算法,基于到达时间(TOA)/基于到达时间差(TDOA)算法和基于到达角度(AOA)算法参见以下技术文献:S.Golden and S.Bateman,“Sensor measurements for Wi-Fi location with emphasis on time-of-arrival ranging,”IEEE Trans.MobileComput.,vol.6,no.10,pp.1185–1198,2007、Y.Shen and M.Win,“On the accuracy oflocalization systems using wideband antenna arrays,”IEEE Trans.Commun.,vol.58,no.1,pp.270–280,2010以及Z.li Wu,C.hung Li,J.-Y.Ng,and K.R.Leung,“Location estimation via support vector regression,”IEEE Trans.MobileComput.,vol.6,no.3,pp.311–321,2007.。
基于RSS的算法可以分为三类,分别是测距定位算法,指纹定位算法和压缩感知定位算法,分别参见K.Yu,I.Sharp,and Y.J.Guo,Ground-Based Wireless Positioning,Wiley-IEEE Press,2009.,D.Milioris,L.Kriara,A.Papakonstantinou,G.Tzagkarakis,P.Tsakalides,and M.Papadopouli,“Empirical evaluation of signal-strengthfingerprint positioning in wireless LANs,”in Proc.13th ACM InternationalConference on Modeling,Analysis and Simulation of Wireless and MobileSystems,Bodrum,Turkey,Oct.2010和C.Feng,W.S.A.Au,S.Valaee,and Z.Tan,“Received-signal-strength-based indoor positioning using compressive sensing,”IEEETransactions on Mobile Computing,vol.11,no.12,pp.1983-1993,2012。在很多实际应用之中,需要将无线传感器布置在无法触及的恶劣环境;因此如何保障网络的安全性成为一项不容忽视的议题。然而现有的定位技术大多假设无线传感器网络工作在友好的环境中,针对存在攻击情况下的定位技术研究较少。而在实际环境下,RSS测量值很容易受到物理攻击。比如攻击者可以通过放大或缩小传输功率来修改RSS测量值。传统的安全算法如加密密钥和身份认证都不能解决这类攻击。目前安全定位算法可以分为两类:检测攻击算法和容忍攻击算法,详见M.Jadliwala,S.Zhong,S.Upadhyaya,C.Qiao,and J.P.Hubaux,“Secure distance-based localization in the presence of cheating beaconnodes,”IEEE Trans.Mobile Computing,vol. 9,no.6,pp.810-823,2010。检测攻击算法根据网络所涉及的定位方法和攻击种类的性质特点,检测并删除恶意节点。容忍攻击算法采取强鲁棒性的统计策略或定位机制,构建强免疫力的安全定位算法,最小化恶意节点攻击效果的目标。
发明内容
本发明的目的是针对上述安全定位算法存在的问题,将压缩感知技术和残差分析相结合,提出恶意节点攻击下的基于残差分析的压缩感知定位方法。
为此,本发明提出的技术方案为一种恶意节点攻击下的基于残差分析的压缩感知定位方法,包括如下步骤:
a.根据待检验的测量值集合,运用压缩感知方法求解未知目标进行定位,得到初始目标位置;
b.计算测量值的残差总和、残差平均值和每个测量值对应的残差偏差;
c.分析残差偏差,将较大残差偏差的测量值作为可能受到攻击的测量值集合;
d.分析残差值,根据最大残差准则确定受攻击的测量值;
e.更新测量矩阵、待检验测量值集合和可疑受攻击的测量值集合大小;
f.根据残差总和判断受攻击的目标是否全部被识别,如果前后两次残差和的差值大于预定义的阈值,则认为残差和没有平稳,仍需进一步发现受攻击的测量值,跳转至步骤a;反之,则认为所有受攻击的测量值已经全部发现;
g.根据未受攻击的测量值,利用压缩感知重构算法输出最终目标位置。
进一步,步骤a中,所述压缩感知方法是基于压缩感知定位模型,该模型事先将给定区域均匀划分为N个网格,布设M个传感器,包含K个目标,假设任意时间在一个网格中只存在一个目标,并且将网格的中心作为目标的位置,N、K、M都是已知的。
进一步,步骤b中,计算残差偏差时遵循残差偏差准则,以对定位过程中出现的恶意节点进行筛选。
进一步,步骤c中所述较大残差偏差是将残差偏差从大到小排序,筛选出一定比例的残差偏差,以缩小可能的受攻击节点的筛选范围。
作为优选,上述一定比例为筛选出的前1/2的残差偏差。
进一步,步骤d中所述最大残差准则是将可能受到攻击的测量值集合中对应残差最大的测量值作为受到攻击的测量值。
与现有技术相比,本发明的有益效果在于:
1.本发明将压缩感知技术和残差分析技术相结合,提出了安全的压缩感知定位算法,与传统压缩感知方法相比,定位性能,稳健性和鲁棒性都更好。
2.本发明采用攻击检测方法来检测受攻击的测量值,算法简单易行。克服了在恶意节点攻击下定位性能差的局限性,扩大了压缩感知定位算法的应用领域。
附图说明
图1是本发明详细流程图。
图2是残差和变化示意图。
图3是两种目标数量下的定位误差的累积分布函数。
图4是两种受攻击测量值数量下的定位误差的累积分布函数。
图5是不同目标数量下的均方根误差对比。
图6是不同受攻击测量值数量下的均方根误差对比。
具体实施方式
现结合附图对本发明的具体实施方式做进一步详细的说明。
由于压缩感知技术在信号稀疏时能提高定位性能,因此本发明提出了一种基于攻击检测的压缩感知安全定位机制。首先,利用压缩感知重构算法估计目标位置,并计算各自的残差,为下一阶段的残差分析做准备。然后,利用残差偏差准则,找出所有可疑的受攻击节点集合。同时根据最大残差准则确定受攻击的测量值。最后,当残差和趋于稳定,说明所有受攻击的节点已经被删除,利用未受攻击的测量值进行最终位置估计。本发明的无线传感器网络定位算法基于压缩感知与残差分析技术包括如下步骤:
步骤1.根据待检验的测量值集合,运用压缩感知方法求解未知目标进行定位,得到初始目标位置。
步骤2.计算测量值的残差总和,残差平均值和每个测量值对应的残差偏差。
步骤3.分析残差偏差,将较大残差偏差的测量值为可能受到攻击的测量值集合。
步骤4.分析残差值,将可能受到攻击的测量值集合中对应残差最大的测量值作为受到攻击的测量值。
步骤5.更新测量矩阵,待检验测量值集合和可疑受攻击的测量值集合大小。
步骤6.根据残差总和判断受攻击的目标是否全部被识别。如果前后两次残差和的差值大于预定义的阈值,认为残差和没有平稳,仍需进一步发现受攻击的测量值,跳转至步骤1;反之,认为所有受攻击的测量值已经全部发现。
步骤7.利用未受攻击的测量值,利用压缩感知重构算法输出最终目标位置。
现对本发明涉及的理论和原理做详细的解释。
1,压缩感知定位模型
给定区域均匀划分为N个网格,布设M个传感器,K个目标.假设任意时间在一个网格中只存在一个目标,并且将网格的中心作为目标的位置。网格数N,目标数目K和传感器数目M都是已知的,并且N>>M,N>>K。
在每次采样时间点,每个传感器节点接收来自所有K个目标的RSS测量值的和。每个传感器将收到的RSS测量值和传给数据融合中心重构K个目标位置。在定位系统中,根据信号衰落模型,第m个传感器节点接收到的来自第n个网格的RSS测量值为:
Pm,n=P0-10nplg(Dm,n/D0) (1)
P0代表传输距离为D0时的RSS测量值,np表示路径衰落因子,范围在2到4之间,Dm,n是第m个传感器节点到第n个网格中心的距离,
(xm,ym),(xn,yn)分别表示第m个传感器节点和第n个网格中心的坐标。
第m个传感器节点接收到的RSS测量值之和可以表示为
如果第n个网格中存在目标那么为1,否则为0.εm是测量值噪声,因此(3)可以写成如下向量表示
Y'=Pθ+ε (4)
θ是未知的0-1向量,其中K个值为1,N-K个值为0。因为N>>K,所以θ是K稀疏向量。因此,定位问题可以看成是K稀疏信号重构问题,并利用CS理论实现重构。值得注意的是这里Y'是未受到攻击的测量值向量,P表示理论的测量矩阵。
2,测量值攻击模型
当测量值受到了恶意攻击,实际测量值yi∈Y和它的真实值y′i∈Y'之间的关系可以表示为一个线性攻击模型:
yi=αy′i+β (5)
α和β是两个攻击变量。
3,算法描述
为了清楚的描述提出的算法,初始化已经识别的受攻击的测量值集合为目标位置集合可疑测量值集合大小为n1=M/2-1。下文中详细描述了搜寻第t个受攻击的测量值的过程。
I.残差计算
根据上面的假设,未识别的测量值集合
同时,未识别的测量值对应的测量矩阵可以定义为:
(w=1,2…γ)是测量矩阵的行向量,γ是的大小,Q是未识别的测量值的索引集合。
因此,中间目标位置估计可以看成是信号重构问题,可以表示为:
其中θI和εI分别表示重构向量和测量噪声向量。在本发明中,求重构向量θI采用的是OMP(Orthogonal Matching Pursuit,正交匹配追踪)重构算法。
根据CS目标位置模型,θI中K个最大的重构因子所对应的网格中心就是本次信号重构出的目标位置的中间值。
于是第t次重构的测量值Yt可以表示为:
qi是测量矩阵的列向量,S是目标位置中间值的网格中心索引。
因此,可以这样计算残差r=[r1,r2,…rγ]T
II.残差分析
残差总和为R
平均残差为rmean
残差偏差为rd,i(i=1,2,…γ)
rd,i=ri-rmean (13)
III.确定受攻击的测量值
残差偏差反映了残差以残差平均值为中心的分散程度。拥有较大残差偏差的测量值将会对定位估计造成消极影响。因此,提出了残差偏差准则来查找可疑攻击测量值。查找的过程描述如下。
根据计算得到的残差偏差集合Rd,将其降序排列
其中
因此,定义可疑攻击测量值集合Yt,s为Rd中前n1个元素。
由于在上面的可疑攻击测量值集合中至少有一个受攻击的测量值。因此,本发明提出了最大残差准则来选出最有可能受到攻击的测量值。利用所有测量值对应的残差,可以定义受攻击的测量值索引为it,attack
更新可疑受攻击测量值集合大小为
n1=n1-1 (17)
IV.判断是否发现所有受攻击的测量值
下一步,就是判断所有的受攻击测量值是否都找到了。我们可以利用残差和来显示攻击检测程度,分析前一次的残差和和本次残差和的情况来进行分析。
如果|Rt-Rt-1|<η,说明残差和趋于稳定。
如果|Rt-Rt-1|≥η,说明残差和并不稳定。
η是预定义的阈值,取决于测量值的受攻击程度。
基于上述定义,如果本次残差和趋于稳定,可以认为所有的受攻击测量值都被发现了,不需要再更新受攻击测量值集合。否则,利用本发明的算法继续(t+1)次检测。对于(t+1)次检测过程,应该更新受攻击的测量值如下:
假设有Ma个受攻击的测量值,图2给出了残差和变化的示意图。当存在一些受攻击的测量值时,定位精度下降,残差和不稳定(η1>η)。当Ma个受攻击的测量值都被检测出来时,虽然剩下的M-Ma个未受攻击的测量值残差非常小,但是残差和仍然不稳定。这是上一次较大的残差和η2>η所造成的。从理论分析,只有所有未受攻击的测量值用于定位,残差和才是最小的也是稳定的η3<η。因此当残差和趋于稳定时,意味着现在的测量值都是未受到攻击的测量值,因此不需要再删除任何测量值了。
V.最终位置估计
利用未受到攻击的测量值来估计目标位置。未受到攻击的测量值集合Yf可以表示为:
并且
同时,更新后的测量矩阵Pf可以表示为:
是测量矩阵P中对应的行向量。
根据压缩感知理论,信号重构向量估计可以表示为:
εf是测量噪声。
根据OMP重构算法,中K个最大的重构因子对应的网格中心为最终目标位置。
4,仿真情况
仿真实验的定位区域设为50m×50m的方形区域,划分的网格数目为N=14×14=196个,传感器个数为64个,均匀分布在定位区域,检测受攻击的测量值的阈值为η=0.001。信号强度-距离模型参数:P0=-40dBm,d0=1,np=2。攻击模型参数设置为α=0,β=-17。实验的结果如图3-6所示。其中图3是两种目标数量下的定位误差的CDF(cumulativedistribution function,累积分布函数)。图4是两种受攻击测量值数量下的定位误差的CDF。图5是不同目标数量下的RMSE(root-mean-square error,均方根误差)对比。图6是不同受攻击测量值数量下的均方根误差对比。
以上所述仅为本发明的一个具体实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于该方法包括如下步骤:
a.根据待检验的测量值集合,运用压缩感知方法求解未知目标进行定位,得到初始目标位置;
b.计算测量值的残差总和、残差平均值和每个测量值对应的残差偏差;
c.分析残差偏差,将较大残差偏差的测量值作为可能受到攻击的测量值集合;
d.分析残差值,根据最大残差准则确定受攻击的测量值;
e.更新测量矩阵、待检验测量值集合和可疑受攻击的测量值集合大小;
f.根据残差总和判断受攻击的目标是否全部被识别,如果前后两次残差和的差值大于预定义的阈值,则认为残差和没有平稳,仍需进一步发现受攻击的测量值,跳转至步骤a;反之,则认为所有受攻击的测量值已经全部发现;
g.根据未受攻击的测量值,利用压缩感知重构算法输出最终目标位置。
2.如权利要求1所述的恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于步骤a中,所述压缩感知方法是基于压缩感知定位模型,该模型事先将给定区域均匀划分为N个网格,布设M个传感器,包含K个目标,假设任意时间在一个网格中只存在一个目标,并且将网格的中心作为目标的位置,N、K、M都是已知的。
3.如权利要求1所述的恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于步骤b中,计算残差偏差时遵循残差偏差准则,以对定位过程中出现的恶意节点进行筛选。
4.如权利要求1所述的恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于步骤c中所述较大残差偏差是将残差偏差从大到小排序,筛选出的一定比例的残差偏差,以缩小可能的受攻击节点的筛选范围。
5.如权利要求4所述的恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于所述的一定比例优选为50%。
6.如权利要求1所述的恶意节点攻击下的基于残差分析的压缩感知定位方法,其特征在于步骤d中所述最大残差准则是将可能受到攻击的测量值集合中对应残差最大的测量值作为受到攻击的测量值。
CN201610779931.5A 2016-08-30 2016-08-30 恶意节点攻击下的基于残差分析的压缩感知定位方法 Pending CN106488403A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610779931.5A CN106488403A (zh) 2016-08-30 2016-08-30 恶意节点攻击下的基于残差分析的压缩感知定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610779931.5A CN106488403A (zh) 2016-08-30 2016-08-30 恶意节点攻击下的基于残差分析的压缩感知定位方法

Publications (1)

Publication Number Publication Date
CN106488403A true CN106488403A (zh) 2017-03-08

Family

ID=58273516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610779931.5A Pending CN106488403A (zh) 2016-08-30 2016-08-30 恶意节点攻击下的基于残差分析的压缩感知定位方法

Country Status (1)

Country Link
CN (1) CN106488403A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315163A (zh) * 2017-05-12 2017-11-03 南京邮电大学 一种基于平方中位数的压缩感知安全定位方法
CN111898317A (zh) * 2020-07-29 2020-11-06 上海交通大学 基于任意位置压缩感知的自适应偏差管道模态分析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130275044A1 (en) * 2012-03-30 2013-10-17 International Business Machines Corporation Method and apparatus for transporting residue of vehicle position data via wireless network
CN103945529A (zh) * 2014-04-15 2014-07-23 南京邮电大学 基于rss的无线传感器网络定位方法
CN104270713A (zh) * 2014-09-09 2015-01-07 西北大学 基于压缩感知的被动式移动目标轨迹测绘方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130275044A1 (en) * 2012-03-30 2013-10-17 International Business Machines Corporation Method and apparatus for transporting residue of vehicle position data via wireless network
CN103366411A (zh) * 2012-03-30 2013-10-23 国际商业机器公司 用于通过无线网络传输车辆位置数据残差的方法和装置
CN103945529A (zh) * 2014-04-15 2014-07-23 南京邮电大学 基于rss的无线传感器网络定位方法
CN104270713A (zh) * 2014-09-09 2015-01-07 西北大学 基于压缩感知的被动式移动目标轨迹测绘方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANGQIN CAO ET.AL: "A Residual Error Analysis based Secure CS Approach for Malicious Node Attack", 《IEEE XPLORE DIGITAL LIBRARY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315163A (zh) * 2017-05-12 2017-11-03 南京邮电大学 一种基于平方中位数的压缩感知安全定位方法
CN111898317A (zh) * 2020-07-29 2020-11-06 上海交通大学 基于任意位置压缩感知的自适应偏差管道模态分析方法

Similar Documents

Publication Publication Date Title
CN106646338B (zh) 一种快速精确的室内定位方法
CN111913156B (zh) 基于深度学习模型与特征联合的雷达辐射源个体识别方法
Huang et al. Machine-learning-based data processing techniques for vehicle-to-vehicle channel modeling
CN103761748B (zh) 异常行为检测方法和装置
CN105813194B (zh) 基于指纹数据库二次校正的室内定位方法
CN108919177B (zh) 一种基于虚拟信源估计与轨迹校正的定位地图构建方法
CN112135248B (zh) 一种基于K-means最优估计的WIFI指纹定位方法
Moreira et al. Multiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning
CN103747524A (zh) 一种基于云平台的Android终端室内定位方法
CN107241696B (zh) 基于信道状态信息的多径效应辨别方法和距离估计方法
CN105407529B (zh) 基于模糊c均值聚类的无线传感器网络节点定位算法
Xu et al. Self-adapting multi-fingerprints joint indoor positioning algorithm in WLAN based on database of AP ID
CN109348416B (zh) 基于二分k均值的指纹室内定位方法
CN108650626A (zh) 一种基于泰森多边形的指纹定位算法
CN110413655B (zh) 一种基于改进隐马尔科夫模型的楼层识别方法
CN107579846A (zh) 一种云计算故障数据检测方法及系统
CN109061774A (zh) 一种雷暴核关联性处理方法
CN110376290A (zh) 基于多维核密度估计的声发射源定位方法
Shao et al. Floor identification in large-scale environments with wi-fi autonomous block models
CN108616982A (zh) 一种智能建筑微区域内被动式人员定位及统计方法
CN110445772B (zh) 一种基于主机关系的互联网主机扫描方法及系统
CN106488403A (zh) 恶意节点攻击下的基于残差分析的压缩感知定位方法
Turgut et al. Performance analysis of machine learning and deep learning classification methods for indoor localization in Internet of things environment
CN108521631B (zh) 一种面向室内定位的移动ap识别方法
CN106202113B (zh) 应用于组队运动的信息提供方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170308