CN106480454B - 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺 - Google Patents

一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺 Download PDF

Info

Publication number
CN106480454B
CN106480454B CN201610909871.4A CN201610909871A CN106480454B CN 106480454 B CN106480454 B CN 106480454B CN 201610909871 A CN201610909871 A CN 201610909871A CN 106480454 B CN106480454 B CN 106480454B
Authority
CN
China
Prior art keywords
coating
plating
layers
thickness
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610909871.4A
Other languages
English (en)
Other versions
CN106480454A (zh
Inventor
胡小武
徐涛
万永强
邱宇
李玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201610909871.4A priority Critical patent/CN106480454B/zh
Publication of CN106480454A publication Critical patent/CN106480454A/zh
Application granted granted Critical
Publication of CN106480454B publication Critical patent/CN106480454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Abstract

一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺,包括化学镀Ni‑W‑P层和电镀Cu层。其中化学镀Ni‑W‑P层,其成分按质量百分比构成为:77‑80% Ni,14‑16% W,6‑7% P,所述镀层厚度为3~10µm;而电镀Cu层,其厚度为0.5~3µm。本发明制备的Ni‑W‑P/Cu双镀层成分符合电子封装锡基焊点界面反应阻挡层的使用要求,且镀层与基板结合紧密,镀层平整,厚度均匀,结构致密。本发明具有工艺流程简单、工艺参数容易控制等优势,所制备的Ni‑W‑P/Cu双镀层对锡基焊点界面化合物生长具有非常有效的抑制作用。

Description

一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺
技术领域
本发明涉及一种抑制无铅焊点界面化合物生长的金属基板化学镀Ni-W-P/电镀Cu的制备工艺,属于电子封装与互连技术领域。
背景技术
为了抑制电子封装领域Sn/Cu界面的快速反应,在Cu基板与Sn基焊料之间增加一阻挡层,以阻止Cu与Sn之间的接触与反应,阻挡层金属与Cu、Sn要有适当的化学结合但又不能反应过快,否则起不到阻挡层作用。据有关研究报道可知,金属Ni及其合金与Sn的反应速度比Cu或Cu合金与Sn的反应速度要低两个数量级,不容易形成过厚的脆性金属间化合物(IMC)层,所以化学镀Ni(P)层经常作为Sn基钎料和Cu基板之间的扩散阻挡层来使用。
近年来,Ni(P)化学镀层作为优异的钎焊阻挡层材料,在微电子封装工业中得到广泛的应用。化学镀Ni(P)薄膜中含有一定的P元素,在钎焊和服役过程中,P元素与Ni、Sn元素之间并不发生化学反应,导致界面上富P层的析出。该富P层由Ni3P晶化层和Ni-Sn-P过渡层构成。另外,镀层中的Ni原子不可避免的和钎料中的Sn原子发生反应,生成Ni3Sn4晶粒。在钎焊及后续时效过程中,焊点界面Ni3Sn4晶粒和富P层均会逐渐长大。有研究表明,Ni3Sn4 IMC的生长速率与钎焊时间的三次开方呈线性关系,而在时效过程中,与时效时间的二次开方呈线性关系;而时效过程中界面富P层的生长速率与时效时间的二次开方呈线性关系。
但是由于化学镀Ni(P)层中P元素的出现,相比于Sn/Cu或者Sn/Ni反应,钎料与Ni(P)层的界面反应变得更为复杂。这种情况下,界面除了Cu-Sn化合物和Ni-Sn化合物,还会出现富P层化合物,比如Ni3P化合物或者Ni-Sn-P三元化合物,这两种化合物极易导致焊点界面脆化及界面金属间化合物剥落。虽然钎料中的Sn和Ni(P)层的反应相比于Sn-Cu间的反应,其速度要低得多,但是,焊点经过高温或长期服役后,将会造成镀层中的Ni元素被大量消耗,甚至出现Ni元素贫乏,促使镀层中出现脆性Ni3P及Ni-Sn-P化合物相。同时,Ni3P相的晶界为Ni原子和Sn原子的快速扩散提供了通道,所以,Ni3P相的出现会进一步加速Sn-Ni界面反应。问题随之而来,由于Ni(P)层中大量Ni原子扩散与Sn原子反应,导致Ni(P)镀层被消耗甚至破坏,严重地减弱其阻挡Sn-Cu反应的效果。
为了解决这一问题,本发明采取两步措施,首先:在Ni(P)化学镀的基础上,将第三元素W添加至Ni(P)镀层中。因为W为难熔元素,所以Ni-W-P镀层的热稳定性要优于Ni(P)镀层;而且W元素的加入能有效地抑制Ni-P化合物的结晶,从而W元素在一定程度上可以大大减缓Ni-W-P镀层中Ni原子的扩散速度,抑制Ni-Sn反应。其次:在Ni-W-P化学镀层上电镀一层Cu薄膜。在钎焊过程中,该Cu膜与钎料中的Sn元素快速反应完全转变成Cu6Sn5化合物薄层。这薄层Cu6Sn5化合物恰好能够有效地保护Ni-W-P镀层,使其Ni元素很难与Sn反应。值得注意的是:此处形成的Cu6Sn5层只起冶金连接及保护层的作用,其厚度有别于传统Sn/Cu界面快速形成的Cu6Sn5层(此处Cu原子可以持续提供,所以造成Cu6Sn5层较厚)。通过以上措施,Ni-W-P/Cu双镀层将提高互连焊点界面微观结构的稳定性,更好地保护Cu基板及Ni-W-P镀层,以此提高焊点的可靠性。
目前,用于电子封装阻挡层的镀层主要集中在化学镀Ni-P或Ni-W-P单层,关于Ni-W-P/Cu双镀层还未见报道。该发明涉及的一种新型无铅焊点界面Ni-W-P/Cu双镀层能够在界面化合物生长上抑制上起到显著的效果。最上层的电镀纯铜在钎焊过程中最先和钎料焊接结合,生成金属间化合物,化学镀Ni-W-P层依然保护完整。电子元器件在长时间的服役过程中,焊点必然会因老化而失效,延长焊点的服役寿命就能极大的增长器件的可用寿命。在老化过程中,最上层的电镀铜充当了消耗层的角色,作为一种牺牲层极大减缓反应速度以保护底部铜基板存在。焊接后由于生成的Cu-Sn化合物不与化学镀Ni-W-P层反应,底部铜基板Cu原子不能经由化学镀层扩散至钎料中,所以在最上层的钎料—电镀铜焊接部位将在很长一段时间内没有长大行为。化学镀Ni-W-P层与铜基板无反应,但此镀层中的Ni可以通过Cu-Sn化合物层并融于其中与钎料中的Sn反应生成(Cu,Ni)6Sn5,在此过程中通过的Ni原子并不能立即与钎料中的Sn原子反应,而是与原有的消耗层生成的Cu6Sn5一起生成(Cu,Ni)6Sn5化合物。电镀纯铜不仅作为消耗层存在而且还充当了Ni扩散过程中的吸收层,两道镀层很好的保护了长时间服役中的Cu基板。
发明内容
本发明的目的是提供现有技术不足提供的一种作为无铅焊点界面反应阻挡层及保护层的化学镀Ni-W-P/电镀Cu薄膜双镀层制备工艺,以代替目前常见的纯Cu表面的化学镀Ni-P反应阻挡层,改善无铅焊点界面结构,从而提高其力学性能及可靠性。
本发明所述双镀层制备工艺如下:
1.所述双镀层包括化学镀Ni-W-P层和电镀Cu层:
所述化学镀Ni-W-P层,其成分按质量百分比构成为:77-80%Ni,14-16%W,6-7%P,所述镀层厚度为3~10μm,镀层平整细腻;
所述电镀Cu层分布均匀致密,能很好的与化学镀层贴附,厚度为0.5~3μm,镀层平整细腻。
2.所述化学镀Ni-W-P层的制备工艺是:
(1)化学镀液的配制:将硫酸镍、柠檬酸钠、次磷酸钠、乳酸、氯化铵和钨酸钠混合并加水搅拌均匀,再使用氨水溶液调整pH至7;化学镀液中硫酸镍为30g/L,柠檬酸钠为35g/L,次磷酸钠为30g/L,乳酸为16ml/L,氯化铵为1mol/L,钨酸钠为30g/L,所用试剂及药品的纯度为分析纯;化学镀的水浴温度为80~85℃。
(2)将纯Cu片置于上述化学镀液中,同时放入0.1g/L的小铝片,保温静置2.5小时,得到Ni-W-P镀层厚度7μm;所得镀层厚度可据时间调整,镀层速度为2.84μm/h;
3.所述电镀Cu层的制备工艺是:
(1)电镀溶液的配制:将焦磷酸铜、硫酸铜、焦磷酸钾、磷酸氢二钾和硫酸混合溶于水中并搅拌均匀,电镀液中焦磷酸铜为100g/L,硫酸铜为50~70g/L,焦磷酸钾为350g/L,磷酸氢二钾为40~60g/L,硫酸为2~4g/L;电镀温度为35~40℃。
(2)以已进行了化学镀Ni-W-P的基板作为阴极,纯铜板作为阳极,通入直流电流;电镀电流密度为1A/dm2,电压为3V;电镀时间5min,电镀Cu厚度为1μm;所得镀层厚度可据时间调整,电镀的速率为0.2μm/min。
与已有的技术相比,本发明的优点体现在:
1、化学镀工艺操作简单易行,所用药品无毒无害,对环境友好;化学镀过程稳定,效果良好,所得镀层平整致密。
2、电镀可在40℃左右进行,降低能耗,镀液成分稳定,使用稳定的直流电源。
3、化学镀未使用添加剂,镀层杂质含量降低,且镀液成分稳定。使得所得镀层均匀细腻。
4、电镀工艺不需要进行活化敏化,降低污染,对环境友好,操作简单,降低成本。
5、电镀未使用添加剂,所得Cu镀层纯净,且镀液成分稳定。所得镀层均匀致密。
6、可通过控制化学镀和电镀时间长短来控制镀层厚度,得到所需的厚度。
附图说明
图1(a)为单镀层Ni-W-P层微观结构;
图1(b)为双镀层(化学镀Ni-W-P/电镀Cu)微观结构;
图2(a)为纯铜基板与Sn3.0Ag0.5Cu钎料形成焊点后的界面微观结构;
图2(b)为单镀层(化学镀Ni-W-P)与Sn3.0Ag0.5Cu钎料形成焊点后的界面微观结构;
图2(c)为双镀层(化学镀Ni-W-P/电镀Cu)与Sn3.0Ag0.5Cu钎料形成焊点后的界面微观结构;
图3为不同镀层焊点界面化合物厚度;横座标为三种不同基板,纵坐板为不同镀层的厚度;依次为纯Cu基板的厚度11.09μm;Ni-W-P单镀层基板的厚度4.86μm;Ni-W-P/Cu双镀层基板的厚度2.05μm。
具体实施方式
实施例1:
一种抑制无铅焊点界面化合物生长的的金属基板化学镀Ni-W-P/电镀Cu的双镀层制备工艺。选用纯铜作为金属基板,先在金属基板上化学镀一层Ni-W-P,镀层厚度约为3~10μm,然后再在其上电镀一层更薄的铜,电镀层厚度约为0.5~3μm。
化学镀溶液的配制是将硫酸镍、柠檬酸钠、次磷酸钠、乳酸、氯化铵和钨酸钠混合并加水搅拌均匀,再使用氨水溶液调整pH至7;化学镀液中硫酸镍为30g/L,柠檬酸钠为35g/L,次磷酸钠为30g/L,乳酸为16ml/L,氯化铵为1mol/L,钨酸钠为30g/L。硫酸镍、柠檬酸钠、次磷酸钠、乳酸、氯化铵和钨酸钠等药品均用分析纯配制。化学镀在水浴温度为80℃中进行,并在溶液中加入极微量(约0.1g/L)的铝进行引渡。
电镀溶液的配制是将焦磷酸铜、硫酸铜、焦磷酸钾、磷酸氢二钾和硫酸混合溶于水中并搅拌均匀。电镀液中焦磷酸铜为100g/L,硫酸铜为60g/L,焦磷酸钾为350g/L,磷酸氢二钾为50g/L,硫酸为3g/L。电镀的操作中是以已进行了化学镀Ni-W-P的基板作为阴极,纯铜板作为阳极,通入直流电流;电镀电流密度为1A/dm2,电压为3V;电镀温度为35~40℃。
由图1可以看出来化学镀Ni-W-P镀层与Cu基板结合紧密,镀层平整,厚度均匀,结构致密,基本无空隙。化学镀速率约为2.84μm/h,电镀Cu层与化学镀层结合良好,镀层均匀分布,基本无空隙,电镀的速率为0.2μm/min。
实施例2:
本实施例的方法同实施例1,不同的是柠檬酸钠30g/L,焦磷酸钾为300g/L。所得化学镀的速率约为2.75μm/h,电镀的速率为0.19μm/min。
实施例3:
本实施例的方法同实施例1,不同的是硫酸镍为35g/L,焦磷酸钾为200g/L。所得化学镀的速率约为2.88μm/h,电镀的速率为0.18μm/min。

Claims (1)

1.一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺,其特征在于:
A.所述双镀层包括化学镀Ni-W-P层和电镀Cu层:
所述化学镀Ni-W-P层,其成分按质量百分比构成为:77-80%Ni,14-16%W,6-7%P,所述化学镀Ni-W-P层厚度为3~10μm;
所述电镀Cu层厚度为0.5~3μm;
B.所述化学镀Ni-W-P层的制备工艺是:
(1)化学镀液的配制:将硫酸镍、柠檬酸钠、次磷酸钠、乳酸、氯化铵和钨酸钠混合并加水搅拌均匀,再使用氨水溶液调整pH至7;所用试剂及药品的纯度为分析纯;化学镀的水浴温度为80~85℃;
(2)将纯Cu片置于上述化学镀液中,同时放入0.1g/L的小铝片,保温静置2.5小时,得到Ni-W-P镀层厚度7μm;所得镀层厚度可据时间调整,镀层速度为2.84μm/h;
C.所述电镀Cu层的制备工艺是:
(1)电镀溶液的配制:将焦磷酸铜、硫酸铜、焦磷酸钾、磷酸氢二钾和硫酸混合溶于水中并搅拌均匀;
(2)以已进行了化学镀Ni-W-P的基板作为阴极,纯铜板作为阳极,通入直流电流;电镀电流密度为1A/dm2,电压为3V;电镀时间5min,电镀Cu厚度为1μm;所得镀层厚度可据时间调整,电镀的速率为0.2μm/min;
所述化学镀液中硫酸镍为30g/L,柠檬酸钠为35g/L,次磷酸钠为30g/L,乳酸为16ml/L,氯化铵为1mol/L,钨酸钠为30g/L;
所述电镀溶液中焦磷酸铜为100g/L,硫酸铜为50~70g/L,焦磷酸钾为350g/L,磷酸氢二钾为40~60g/L,硫酸为2~4g/L;电镀温度为35~40℃。
CN201610909871.4A 2016-10-19 2016-10-19 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺 Active CN106480454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610909871.4A CN106480454B (zh) 2016-10-19 2016-10-19 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610909871.4A CN106480454B (zh) 2016-10-19 2016-10-19 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺

Publications (2)

Publication Number Publication Date
CN106480454A CN106480454A (zh) 2017-03-08
CN106480454B true CN106480454B (zh) 2018-12-07

Family

ID=58270995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610909871.4A Active CN106480454B (zh) 2016-10-19 2016-10-19 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺

Country Status (1)

Country Link
CN (1) CN106480454B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107447239B (zh) * 2017-08-21 2018-08-28 安徽省含山县兴建铸造厂 一种耐腐蚀防振锤的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225516A (zh) * 2008-02-03 2008-07-23 罗森鹤 一种化学镀镍钨磷合金镀液及使用该镀液的化学镀方法
CN101440490A (zh) * 2008-12-29 2009-05-27 中国计量学院 一种烧结钕铁硼表面镀覆多层镀层的防护新工艺
CN101978096A (zh) * 2008-03-20 2011-02-16 阿托特希德国有限公司 Ni-P层系统及其制备方法
CN102560576A (zh) * 2012-02-21 2012-07-11 合肥工业大学 一种作为焊点反应阻挡层的Ni-Cu-P三元合金涂层及其电镀制备工艺
EP2535441A1 (en) * 2011-06-14 2012-12-19 Atotech Deutschland GmbH Copper filled opening with a cap layer
CN105039943A (zh) * 2015-07-13 2015-11-11 北京科技大学 一种化学镀Ni-W-Zn-P合金镀层的镀液及其镀层工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225516A (zh) * 2008-02-03 2008-07-23 罗森鹤 一种化学镀镍钨磷合金镀液及使用该镀液的化学镀方法
CN101978096A (zh) * 2008-03-20 2011-02-16 阿托特希德国有限公司 Ni-P层系统及其制备方法
CN101440490A (zh) * 2008-12-29 2009-05-27 中国计量学院 一种烧结钕铁硼表面镀覆多层镀层的防护新工艺
EP2535441A1 (en) * 2011-06-14 2012-12-19 Atotech Deutschland GmbH Copper filled opening with a cap layer
CN102560576A (zh) * 2012-02-21 2012-07-11 合肥工业大学 一种作为焊点反应阻挡层的Ni-Cu-P三元合金涂层及其电镀制备工艺
CN105039943A (zh) * 2015-07-13 2015-11-11 北京科技大学 一种化学镀Ni-W-Zn-P合金镀层的镀液及其镀层工艺

Also Published As

Publication number Publication date
CN106480454A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
Bi et al. Effect of Co addition into Ni film on shear strength of solder/Ni/Cu system: experimental and theoretical investigations
Goh et al. Effects of hydroquinone and gelatin on the electrodeposition of Sn–Bi low temperature Pb-free solder
CN101636517B (zh) 镀Mg基合金的钢材
Dimitrijević et al. Non-cyanide electrolytes for gold plating–a review
Balaraju et al. Structure and phase transformation behavior of electroless Ni–P alloys containing tin and tungsten
Zhang Tin and tin alloys for lead-free solder
Kim et al. The effects of electroplating parameters on the composition and morphology of Sn-Ag solder
US10233555B2 (en) Method of obtaining a yellow gold alloy deposition by galvanoplasty without using toxic metals or metalloids
WO2016098789A1 (ja) ノーシアン電解金めっき液および金めっき方法
US5391402A (en) Immersion plating of tin-bismuth solder
EP1983077A1 (en) Electrolyte and method for electrolytic deposition of gold-copper alloys
CN106480454B (zh) 一种抑制无铅焊点界面化合物生长的基板双镀层制备工艺
Rajamani et al. Electrodeposition of tin-bismuth alloys: Additives, morphologies and compositions
Kazimierczak et al. Electrodeposition of tin-zinc-bismuth alloys from aqueous citrate-EDTA baths
Huang et al. Effect of deposition potential on electrodeposition of Sn-Ag-Cu ternary alloy solderable coating in deep eutectic solvent
US4274926A (en) Process for the electrolytic deposition of silver and silver alloy coatings and compositions therefore
Mao et al. Interfacial reactions between Sn-2.5 Ag-2.0 Ni solder and electroless Ni (P) deposited on SiCp/Al composites
JP2004183091A (ja) 錫−銀−銅含有めっき液、電解めっき方法、錫−銀−銅含有めっき被膜、並びにこのめっき被膜を使用したはんだ付け方法
WO2006068046A1 (ja) 電気スズおよびスズ合金めっき液
Chen et al. Electroless Ni-WP alloys as barrier coatings for liquid solder interconnects
TW201211323A (en) Cyanide based electrolytic gold plating solution and plating method using same
JPH09316649A (ja) 無電解めっき液
JPH0565659A (ja) 無電解銅ニツケル合金めつき方法
Lee et al. Pulse electroplating of Ni–W alloy for the diffusion barrier in under bump metallurgy
Fang et al. Formation of Sn-Bi alloys through sequential electrodeposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant