CN1064720C - Vacuum evaporation apparatus - Google Patents

Vacuum evaporation apparatus Download PDF

Info

Publication number
CN1064720C
CN1064720C CN92110361A CN92110361A CN1064720C CN 1064720 C CN1064720 C CN 1064720C CN 92110361 A CN92110361 A CN 92110361A CN 92110361 A CN92110361 A CN 92110361A CN 1064720 C CN1064720 C CN 1064720C
Authority
CN
China
Prior art keywords
evaporation source
deposition plate
vacuum vessel
evaporation
clamping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN92110361A
Other languages
Chinese (zh)
Other versions
CN1070434A (en
Inventor
早川菜
龟山诚
寺田顺司
铃木博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of CN1070434A publication Critical patent/CN1070434A/en
Application granted granted Critical
Publication of CN1064720C publication Critical patent/CN1064720C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

To prevent the quality deterioration of a thin film formed caused by releasing gas adsorbed in a vacuum vessel, to prevent the contamination in the vacuum vessel and to prevent adhesion of dust on a substrate to be deposited in the case of applying vacuum deposition at a comparatively low temp. A sticking prevention plate 4 as removable, having an opening hole part 5 is arranged as approaching to above a vaporizing source 3. This sticking prevention plate 4 is divided in the vacuum vessel 1 into the side containing the vaporizing source 3 and the side containing domy holding tool 2 for holding the substrate 8 to be deposited. Shape of the opening hole part 5 is made to overlap with the holding tool 2 at the time of seeing far the holding tool 2 from the vaporizing source 3, and the particles passed through this opening hole part 5 in the vaporized particles from the vaporizing source 3 are made to always reach to the holding tool 2 or the substrate 8 to be deposited.

Description

Vacuum-evaporation appts
The vacuum-evaporation appts and one that the present invention relates to carry out vacuum-evaporation under lower temperature is used for the anti-deposition plate of vacuum-evaporation appts.
The vacuum-evaporation appts that forms a film on the surface of substrate (as a camera lens) generally includes a vacuum vessel and and is located at evaporation source in the vacuum vessel.Substrate is by an arch clamping device clamping, and this clamping device is removably mounted on evaporation source top in the vacuum vessel, thereby carries out vacuum-evaporation.In order to prevent that these directly are deposited on the inwall of vacuum vessel from the no show substrate of evaporation source or the evaporating particle of clamping device (as evaporation atom or vapor molecule), catch the anti-deposition plate of these evaporating particles along inwall being provided with of vacuum vessel.
Yet in the vacuum-evaporation appts of above-mentioned prior art, the evaporating particle of no show substrate or arch clamping device can be in the inwall deposition of broad area upper edge vacuum vessel as a film.Like this, in the time of in air leaking enters vacuum vessel, gas (mainly is H 2O) be attracted on the film.Radiant heat from evaporation source when film formation next time makes the gaseous emission that is adsorbed on the film enter vacuum vessel.As a result, the vacuum in the vacuum vessel is just unstable, and perhaps the surplus air mixture in the vacuum vessel changes, thereby the character of the film that forms changes.When carrying out vacuum-evaporation in heating evaporation source not or with lesser temps heating evaporation source (to form film on the plastic lens surface), the problem of adsorbed gas is clearly.Repeatedly repetition along with film forms and leaks constantly thicken along the sedimentary film of the inwall of vacuum vessel, and the quantity of adsorbed gas also increases.Correspondingly, after the firm honing of vacuum vessel and film be concatenated to form after between, the specific refractory power that is formed at on-chip film is different.As a result, film changes between every batch and every batch, and the quality instability.And, when when the sedimentary film of vacuum vessel inwall comes off, the dust and diffuse into vacuum vessel kicked up, and be deposited on the surface of substrate.So just cause defective.
In order to address the above problem, the honing that had proposed to shorten vacuum vessel is already dried at interval or to the vacuum vessel inwall.Yet these methods require to interrupt film and form operation in the long duration, and have reduced productivity.
The purpose of this invention is to provide a kind of vacuum-evaporation appts, it can prevent to launch the film quality that causes again and descend because of adsorbing the gas of vacuum vessel into, prevent the pollution in the vacuum vessel, and prevent the defective that causes in on-chip deposition because of dust, and provide a kind of anti-deposition plate that is used for vacuum-evaporation appts.
Vacuum-evaporation appts of the present invention comprises a vacuum vessel, and one is located at an evaporation source and the arch clamping device in the vacuum vessel, in order to clamping one substrate and be arranged on evaporation source top in the vacuum vessel.Vacuum vessel is divided into the part that a part and that comprises evaporation source comprises clamping device, and the position above evaporation source is formed with a hole.This hole is shaped like this, promptly when it and clamping device when evaporation source is seen clamping device overlapping.Be provided with a dismountable anti-deposition plate and arrive clamping device and substrates from these evaporating particles that pass the hole of evaporation source.
Anti-deposition plate of the present invention is removably mounted in the vacuum-evaporation appts, and this equipment comprises vacuum vessel, is located at evaporation source and arch clamping device in the vacuum vessel, in order to the clamping substrate and be located at evaporation source top in the vacuum vessel.Under anti-deposition plate was installed on situation in the vacuum-evaporation appts, vacuum vessel can be divided into the part and the part that comprises clamping device that comprise evaporation source.Above evaporation source, form porose.This hole is shaped like this, promptly when it and clamping device when evaporation source is seen clamping device overlapping.These evaporating particles that pass the hole from evaporation source arrive clamping device and substrate.
Because vacuum vessel is divided into evaporation source part and clamping device part, the hole is formed at the top of evaporation source, the hole be shaped so promptly when it and clamping device when evaporation source is seen clamping device overlapping, be provided with dismountable anti-deposition plate, so these evaporating particles that pass the hole of anti-deposition plate from evaporation source just arrive clamping device or substrate.On the other hand, if anti-deposition plate is not set, these evaporating particles of being stopped by anti-deposition plate can not be deposited on clamping device or the substrate, that is to say on the inwall that is deposited on vacuum vessel.By anti-deposition plate is set, prevented that thin film deposition is on the inwall above the anti-at least deposition plate of vacuum vessel, even and carry out vacuum-evaporation with lower temperature, also suppressed adsorbed gas and launched, so vacuum-evaporation is carried out in stable vacuum and gaseous mixture from the vacuum vessel inwall.In addition, because the film quantity that is deposited on the vacuum vessel inwall is few, come off and spread from inwall so prevented film, and the thin film deposition that has prevented to come off is on substrate.
Evaporating particle from evaporation source is launched in certain three-dimensional perspective that makes progress, and has only seldom part side direction or emission downwards.Like this, when anti-deposition plate was provided with near evaporation source, the evaporating particle of most of no show clamping devices or substrate just was deposited on the anti-deposition plate., just can form stay-in-grade film, and can between every batch, not change always to keep anti-deposition plate cleaning by the deposition plate of more relieving a garrison for every batch of vacuum-evaporation.When evaporation is (for example forming film on plastic lens) when carrying out under lower temperature, even close the evaporation source that anti-deposition plate is provided with prevents that the temperature rise of deposition plate does not constitute problem yet.
The shape of anti-deposition plate can be an Any shape, evaporating particle arrives except passing the hole of preventing deposition plate the vacuum vessel part that comprises clamping device like this, evaporating particle can not pass other zone, and it can extend to the side of evaporation source and is roughly parallel at the evaporating particle flow direction of lateral location from evaporation source.When anti-deposition plate extended to the evaporation source side, nearly all evaporating particle of no show clamping device or substrate can be bonded on the anti-deposition plate.Like this, by the deposition plate of in every batch, more relieving a garrison, can obtain the cleaning ambient in the vacuum vessel.
When one group of evaporation source is set, can be the anti-deposition plate that each evaporation source is provided with said structure in vacuum vessel.By for each evaporation source is provided with anti-deposition plate, when according to the evaporation source heating means, evaporating materials and shape thereof and evaporation is distributed not simultaneously, the interval between evaporation source and anti-deposition plate all can reach optimizing to each evaporation source.Be that the situation that one group of evaporation source is provided with a shared anti-deposition plate is compared, can prevent to be deposited on the inwall of vacuum vessel from the evaporating particle that evaporation source leaks by the hole.
Describe embodiments of the invention with reference to the accompanying drawings in detail, wherein:
Fig. 1 is a longitudinal sectional view, shows according to the present invention the structure of first embodiment of empty evaporation equipment always,
Fig. 2 is a longitudinal sectional view, shows the relation between the diameter in a interval between an anti-deposition plate and an evaporation source and a hole,
Fig. 3 is the sectional view of vacuum-evaporation appts shown in Figure 1,
Fig. 4 shows the relation between anti-deposition plate and the flashboard,
Fig. 5 is a longitudinal sectional view, shows the structure of second embodiment of one vacuum-evaporation appts according to the present invention,
Fig. 6 is a longitudinal sectional view, shows the structure of the 3rd embodiment of one vacuum-evaporation appts according to the present invention.
Referring now to accompanying drawing, explain embodiments of the invention.
Fig. 1 is a longitudinal sectional view, shows the structure of first embodiment of vacuum-evaporation appts of the present invention; Fig. 2 is a longitudinal sectional view, shows the relation between the diameter in a interval between an anti-deposition plate and an evaporation source and a hole; Fig. 3 is the sectional view of the structure of vacuum-evaporation appts.
Vacuum-evaporation appts comprises the tubular vacuum vessel 1 that has connected evaporation unit (not shown) in the side of being generally, one is arranged on the evaporation source 3 at vacuum vessel 1 bottom centre place, with an arch clamping device 2, it is above with in the face of evaporation source 3 that it is removably mounted on the center of vacuum vessel 1.Clamping device 2 is used for clamping one substrate, as a plastic lens, makes it in the face of evaporation source 3.Because it is arcual, thus the particle that it can avoid evaporating pass clamping device 2 and be bonded on the top board of vacuum vessel 1, no matter and the position on clamping device 2 how, it keeps a constant distance basically from evaporation source 3.Substrate 8 be clamped on the internal surface of clamping device 2 and when its inboard when evaporation source 3 looks be a circular arc that limits by clamping device 2.On the other hand, evaporation source 3 has the recess of a clamping evaporating materials 9 at its top, and it produces the evaporating particle stream of an evaporating materials 9 by currently known methods such as electron beam or resistive heating in a given three-dimensional perspective, shown in arrow among Fig. 1.
One is installed on the top of a flashboard axis 10 in order to control from the flashboard 6 of the evaporating particle of evaporation source 3 stream, and extend this 10 bottom of passing vacuum vessel 1 rotationally and airtightly.When flashboard axis 10 rotated, flashboard 6 also alternately moved to one near evaporation source 3 and directly is in the position of evaporation source 3 tops and leaves a position that is located immediately at evaporation source 3 tops.
One anti-deposition plate 4 is removably mounted in the vacuum vessel 1 and above flashboard 6, vacuum vessel 1 is divided into a part and a part that comprises clamping device 2 that comprises evaporation source 3 by jaw 7.Anti-deposition plate 4 is plate-like pieces, and the heart has a circular hole 5 therein, and the periphery of anti-deposition plate 4 closely contacts with the inwall of vacuum vessel 1 basically.Hole 5 is shaped like this, and is promptly overlapping when it and clamping device when evaporation source 3 is seen clamping device 2, and equals from the three-dimensional perspective of the clamping device 2 of evaporation source 3 findings from the three-dimensional perspective in the hole 5 of evaporation source 3 findings.Anti-deposition plate 4 is positioned adjacent to evaporation source 3, just is deposited on from the evaporating particle except that the evaporating particle that is deposited on flashboard 6 or flashboard axis 10 of evaporation source 3 like this and prevents on the deposition plate 4 or pass hole 5.
Explain the relation between the diameter in the interval of 3 of anti-deposition plate 4 and evaporation sources and hole 5 referring now to Fig. 2.
If the evaporation area of evaporation source 3 (water surface of evaporation of the evaporating materials 9 of heating) can be counted as a point basically, equal from the three-dimensional perspective of evaporation source 3 being seen clamping devices 2 from the three-dimensional perspective in evaporation source 3 being seen holes 5, and satisfy following relation:
L/R=h/φ
Wherein h is the evaporation area of evaporation source 3 and the interval between the anti-deposition plate 4, and φ is the diameter in hole 5, and R is the diameter of clamping device 2, and L is by the plane that limits bottom of clamping device 2 and the distance between the evaporation area.
In order to prevent thin film deposition on the inwall of vacuum vessel 1 by means of anti-deposition plate 4, the interval h between anti-deposition plate 4 and the evaporation source 3 should be as far as possible little, as long as it can not hinder the motion of flashboard 6.For example, anti-deposition plate 4 can be located immediately at the about 10-50mm in flashboard top.Because the evaporating particle stream from evaporation source 3 is uniform, and bigger density is arranged directly over evaporation source 3, so clamping device 2 be arranged on evaporation source 3 directly over, and the center in hole 5 preferably is positioned at and connects among the evaporation source 3 among the heart and clamping device 2 on the wire of the heart.For example, suppose L=600mm, R=500mm, and flashboard 6 is positioned at evaporation source top 80mm, h=100mm is about 83.3mm by must portal 5 diameter of above-mentioned formula so.
Explain the operation of vacuum-evaporation appts now.
Substrate 8 is installed on the clamping device 2, then clamping device 2 is installed on the vacuum vessel 1.Evaporating materials 9 is contained in the evaporation source 3.Drive flashboard axis 10 and make flashboard 6 be located immediately at the top (off-position) of evaporation source 3, and vacuum vessel is evacuated.Then, heating evaporation source 3 is to produce evaporating particle stream from evaporating materials 9.When the generation of evaporating particle stream stablize, the position (open position) that driving flashboard axis 10 leaves flashboard 6 to be located immediately at evaporation source 3 tops, and film begins to be formed on the substrate 8.The sectional view of the vacuum-evaporation appts under this state is shown among Fig. 3, wherein is contained in the center that evaporating materials 9 on the evaporation source 3 comes across hole 5.
Because the anti-deposition plate 4 that has a hole 5 is located at the top of evaporation source 3, so from the evaporating particle of evaporation source 3 or be deposited on the anti-deposition plate 4 or pass hole 5.Because hole 5 forms like this; promptly it and clamping device 2 are overlapping and equal from the three-dimensional perspective of evaporation source 3 being seen clamping devices 2 from the three-dimensional perspective in evaporation source 3 being seen holes 5 when evaporation source 3 is seen clamping device 2; so pass the evaporating particle or the arrival clamping device 2 in hole 5 or arrive the substrate that is clamped on the clamping device 2, on the surface of substrate 8, just form a film like this.Evaporating particle can not arrive the vacuum vessel inwall of anti-deposition plate 4 tops.
When on substrate 8, forming the film of pre-determined thickness, flashboard 6 is urged to off-position, and stops heating evaporation source 3, air is released into vacuum vessel 1, and takes out the clamping device 2 of tape base sheet 8 from vacuum vessel 1.Replace place where troops were originally stationed deposition plate 4 with a clean anti-deposition plate.When the film that carries out next batch forms operation, repeat above step.
In vacuum-evaporation, owing to adopted anti-deposition plate 4, at least prevented that thin film deposition is on the inwall of the above vacuum vessel 1 of anti-deposition plate, even and vacuum-evaporation is to carry out at low temperatures, also can suppress adsorbed gas emission on the wall within the vacuum vessel 1, vacuum-evaporation is just carried out in stable vacuum and gaseous mixture like this.Correspondingly, the variation on the performance of the film of formation is also suppressed in the difference batch.Owing to be deposited within the vacuum vessel 1 film on the wall almost is zero, just avoided film to come off and spread from inwall, and the thin film deposition that has prevented to come off is on substrate 8.Because the evaporating particle stream from evaporation source 3 makes progress, so the film that is deposited on the anti-vacuum vessel inwall of deposition plate below 4 is zero basically.Even there is depositing of thin film, because anti-deposition plate 4 has been arranged, the film that comes off also is difficult to arrive substrate 8.
In this vacuum evaporation equipment, anti-deposition plate not only extends above evaporation source, also extends to the side of evaporation source, and in lateral location, anti-deposition plate is parallel to the evaporating particle stream from evaporation source usually.Position up, anti-deposition plate are usually perpendicular to the evaporating particle stream from evaporation source.
Interval between evaporation source and anti-deposition plate preferably like this, the nearly all evaporating particle stream from evaporation source that does not promptly pass the hole all is deposited on the anti-deposition plate.Interval between anti-deposition plate and the flashboard preferably like this, i.e. vacuum vessel the off-position of flashboard can not arrive anti-deposition plate from the evaporating particle of evaporation source above.
Like this, flashboard 6 preferably is designed to satisfy and concern A<B, and as shown in the figure, wherein A is the interval between anti-deposition plate 4 and the flashboard 6, and B is the distance between the end of the edge of opening (end face of anti-deposition plate 4) in hole 5 flashboard 6 extremely in the closed position.That is, flashboard 6 be preferably disposed on anti-deposition plate 4 near.
Explain the second embodiment of the present invention now.Fig. 5 is a longitudinal section, shows the structure of vacuum-evaporation appts in the present embodiment.
In the present embodiment, one group of evaporation source 13 is arranged on the bottom of vacuum vessel 11, and is provided with a shared anti-deposition plate 14 for these evaporation sources 13.Anti-deposition plate 14 has a sidewall 14a who extends downwards.Other parts are identical with the foregoing description 1.Evaporation source 13 can have different types as shown in the figure.Have one group of hole 15 that is used for one group of evaporation source 13 on the anti-deposition plate 14.Hole 15 is shaped like this, promptly sees that from corresponding evaporation source 13 clamping device 2 they and clamping device 2 are overlapping, and equals from the three-dimensional perspective of the clamping device 2 of corresponding evaporation source 13 findings from the three-dimensional perspective in the hole 15 of 13 tools of corresponding evaporation source.The sidewall 14a of anti-deposition plate 14 extends to the bottom of vacuum vessel 11 with the whole periphery of the side inwall of lower edge vacuum vessel at the horizontal component of anti-deposition plate 14.Like this, anti-deposition plate 14 is supported oneself by its sidewall 14a, and does not need jaw used among the embodiment 17.
In this vacuum evaporation equipment, owing to adopted sidewall 14a, be deposited on the sidewall 14a from the evaporating particle of evaporation source 13 sideward directed, prevented thin film deposition fully on wall within the vacuum vessel 11 below anti-deposition plate 14 horizontal components, and further reduced adsorbed gas.
Explain the third embodiment of the present invention now.Fig. 6 shows the sectional elevation of vacuum-evaporation appts of the present invention.In above-mentioned second embodiment, for the evaporation source group has adopted a shared anti-deposition plate, but in the present embodiment, for each evaporation source provides an anti-deposition plate, and vacuum vessel is divided into a part and a part that comprises clamping device that comprises evaporation source.
Four evaporation sources 23 1-23 4Be arranged on the bottom of vacuum vessel 21.Heating means (as electron beam heating or resistive heating), the evaporating materials 9 of loading and evaporation source 23 1-23 4Shape have nothing in common with each other.Anti-deposition plate 24 1-24 4Be evaporation source 23 1-23 4Be provided with respectively.Anti-deposition plate 24 1-24 4Be the type of box of the no end, have the sidewall of the bottom that extends to vacuum vessel 21, and have hole 25 respectively at the top 1-25 4Hole 25 1-25 4Be shaped like this, promptly from corresponding evaporation source 23 1-23 4See clamping device, they and clamping device (Fig. 5 is not shown) are overlapping, and from corresponding evaporation source 23 1-23 4The hole 25 of finding 1-25 4Three-dimensional perspective equal from corresponding evaporation source 23 1-23 4The three-dimensional perspective of the clamping device of finding, as them in the above-described embodiments.In addition, evaporation source 23 1-23 4With corresponding anti-deposition plate 24 1-24 4Horizontal component (top board) between the interval according to heating means, evaporating materials 9 and evaporation source 23 1-23 4Shape design best.
In this vacuum evaporation equipment, because the anti-deposition plate 24 of band sidewall 1-24 4Be each evaporation source 23 1-23 4Be provided with respectively, so it has prevented that the evaporating particle that (not being corresponding) leaks from another hole is bonded on the inwall of vacuum vessel.In addition, because evaporation source 23 1-23 4With corresponding anti-deposition plate 24 1-24 4Between the interval reach optimizing, it also is uniform being formed at on-chip film thickness and character.
According to the present invention, vacuum tank is divided into the part that comprises evaporation source and comprises clamping Device part, hole are formed on the position of evaporation source top on the anti-deposition plate, and are shaped like this The hole namely sees that from evaporation source clamping device it and the overlapping and anti-deposition plate of clamping device are detachable . Correspondingly, do not reduce productivity ratio, 1. just prevented the inwall of thin film deposition at vacuum tank On, and, even vacuum evaporation is to carry out, also suppressed adsorbed gas from very under a low temperature Emission on the empty inwall, and obtained under stable vacuum and admixture of gas Vacuum evaporation, and stablized the character of the film that is formed, 2. anti-settling by in every batch, changing Long-pending plate, the pollution in the vacuum tank is maintained at than low degree, and has reduced the film of formation Change of properties, and improved quality and 3. reduced owing to come off from the vacuum tank inwall With the dust that diffuses to form and reduced the defective that the deposition because of dust causes.

Claims (5)

1. evaporation equipment comprises:
One vacuum vessel;
One is located at the evaporation source in the described vacuum vessel;
One is located at the clamping device in order to clamping one plastic substrate of described evaporation source top in the described vacuum vessel;
One is divided into the anti-deposition plate that a part and that comprises described evaporation source comprises the part of described clamping device with described vacuum vessel, and the position of described anti-deposition plate above described evaporation source has a hole; It is characterized in that:
By clamp mechanism described anti-deposition plate is installed on the described vacuum vessel movably;
One near the flashboard of described anti-deposition plate, and described flashboard can be located immediately at the position on the described evaporation source and move from being located immediately between the position of departing from described evaporation source top position;
Anti-deposition plate is located immediately at the position of described flashboard top 10 to 50mm;
The shape in the hole on the anti-deposition plate is configured to basically all and passes this hole and all arrive on clamping device or the substrate from the particle that is evaporated that evaporation source comes, thereby the particle deposition that is prevented from by anti-deposition plate to be evaporated is on the inwall of the vacuum vessel on the anti-deposition plate.
2. evaporation equipment as claimed in claim 1 is characterized in that, satisfies following condition:
A<B
A is the distance between anti-deposition plate and the described flashboard, and B is the distance between the end of the nose end in described hole and described flashboard described flashboard during with described bore closure.
3. evaporation equipment as claimed in claim 1 is characterized in that, described flashboard is installed on the rotating flashboard axis.
4. evaporation equipment as claimed in claim 1 is characterized in that described hole forms like this, and promptly when when described evaporation source is seen described clamping device, described hole and described clamping device are overlapping.
5. evaporation equipment as claimed in claim 1, it is characterized in that, gap between described evaporation source and the described anti-deposition plate is selected like this, and promptly all those evaporating particles that do not pass described hole from described evaporation source all are deposited on the described anti-deposition plate basically.
CN92110361A 1991-09-11 1992-09-08 Vacuum evaporation apparatus Expired - Fee Related CN1064720C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23191091A JPH0570931A (en) 1991-09-11 1991-09-11 Vacuum deposition apparatus and sticking prevention plate
JP231910/1991 1991-09-11
JP231910/91 1991-09-11

Publications (2)

Publication Number Publication Date
CN1070434A CN1070434A (en) 1993-03-31
CN1064720C true CN1064720C (en) 2001-04-18

Family

ID=16930975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92110361A Expired - Fee Related CN1064720C (en) 1991-09-11 1992-09-08 Vacuum evaporation apparatus

Country Status (2)

Country Link
JP (1) JPH0570931A (en)
CN (1) CN1064720C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874851B2 (en) 2007-03-30 2012-02-15 富士フイルム株式会社 Vacuum deposition system
CN101698931B (en) * 2009-11-18 2012-11-07 九江学院 Double-flash evaporation device for preparing superlattice thermoelectric film material
CN103160788B (en) * 2011-12-16 2017-06-30 上海大学 Vacuum vaporation system
CN105154831B (en) * 2015-09-07 2016-10-05 京东方科技集团股份有限公司 A kind of vacuum evaporation source apparatus and vacuum evaporation equipment
CN105349948A (en) * 2015-12-04 2016-02-24 贵州大学 Novel thermal evaporation coating device and using method thereof
KR101901072B1 (en) * 2017-10-31 2018-09-20 캐논 톡키 가부시키가이샤 Evaporation source device, film formation apparatus, film formation method and manufacturing method of electronic device
CN108642454B (en) * 2018-06-26 2020-07-03 云谷(固安)科技有限公司 Evaporation plating equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395440A (en) * 1980-10-09 1983-07-26 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for manufacturing ultrafine particle film
US4950642A (en) * 1987-08-07 1990-08-21 Hitachi, Ltd. Method for fabricating superconducting oxide thin films by activated reactive evaporation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395440A (en) * 1980-10-09 1983-07-26 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for manufacturing ultrafine particle film
US4950642A (en) * 1987-08-07 1990-08-21 Hitachi, Ltd. Method for fabricating superconducting oxide thin films by activated reactive evaporation

Also Published As

Publication number Publication date
JPH0570931A (en) 1993-03-23
CN1070434A (en) 1993-03-31

Similar Documents

Publication Publication Date Title
CN1064720C (en) Vacuum evaporation apparatus
US20040134428A1 (en) Thin-film deposition device
JPH09500690A (en) Static perforated plate used for reactive sputter deposition
US20200040445A1 (en) Vacuum system and method for depositing a plurality of materials on a substrate
JPH11504386A (en) Sputtering apparatus having on-board service module
US6235118B1 (en) Method for forming a thin film of ultra-fine particles, and an apparatus for the same
US5785763A (en) Electron-gun evaporation system having evaporation-source stream regulator
KR102005835B1 (en) Linear evaporation source having slit nozzle, and apparatus having the same
US4583488A (en) Variable axis rotary drive vacuum deposition system
CN108677148B (en) Evaporation source and evaporation device
CN1272098C (en) Combinatorial systems and methods for coating with organic materials
JPH10176262A (en) Vapor deposition device
JPH10228863A (en) Forming method of phosphor film and device thereof
CN114481038A (en) Evaporation crucible and evaporation system
JPS6379959A (en) Device for vapor-depositing thin film
TWI816883B (en) Deposition apparatus
JPH05320892A (en) Vacuum device for forming thin film
JP7434261B2 (en) Vapor deposition equipment and vapor deposition method
EP0231658B1 (en) Molecular beam epitaxial apparatus
KR20030060608A (en) Method of vacuum evaporation and apparatus the same
TWI835440B (en) Evaporation device and evaporation method
JPH11279748A (en) Ion plating device
US20240042482A1 (en) Evaporation system having improved collimation
TW201814070A (en) Deposition apparatus
JPH0532468B2 (en)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20010418

Termination date: 20110908