CN106461621A - 具有改进的检测极限的gc‑tof ms - Google Patents

具有改进的检测极限的gc‑tof ms Download PDF

Info

Publication number
CN106461621A
CN106461621A CN201580024231.9A CN201580024231A CN106461621A CN 106461621 A CN106461621 A CN 106461621A CN 201580024231 A CN201580024231 A CN 201580024231A CN 106461621 A CN106461621 A CN 106461621A
Authority
CN
China
Prior art keywords
ion
bag
source
time
tof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580024231.9A
Other languages
English (en)
Inventor
A·N·维尔恩驰寇韦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leco Corp
Original Assignee
Leco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leco Corp filed Critical Leco Corp
Publication of CN106461621A publication Critical patent/CN106461621A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7206Mass spectrometers interfaced to gas chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/067Ion lenses, apertures, skimmers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/147Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/406Time-of-flight spectrometers with multiple reflections

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

为了提高GC‑MS分析的灵敏度、动态范围和特异性,公开了基于利用电子碰撞电离改进的半开放式源的特性的新装置的实施例,提供与已知开放式EI源相比高得多的亮度。在一个实现方案中,源变得与用于较高分辨率分析的多反射TOF分析器相容以用于提高检测极限。利用空间和时间再聚焦的改进方案,提出了利用PSD、CID和SID碎裂以及使用单反射TOF或者MR‑TOF分析器的各种串联TOF‑TOF质谱仪。

Description

具有改进的检测极限的GC-TOF MS
技术领域
本公开主要涉及质谱分析以及更具体地涉及用气相色谱仪和电子碰撞离子源以及通过在这种仪器中提供MS-MS部件以提高飞行时间质谱仪的灵敏度。
背景技术
色谱质谱仪GC-MS是气相色谱仪(GC)、电子碰撞电离源(EI)和质谱仪(MS)的组合。GC-MS广泛地用于环境、法医和临床应用。由于GC-MS提供高分辨率和高度预测色谱法、定量电离以及NIST库识别,因此只要分析物化合物是足够挥发性的,GC-MS就优于LC-MS。
GC-MS可以用于许多应用,诸如如需要在6个或者7个数量级内的宽动态范围中进行分析的PCB和杀虫剂的分析。对GC柱的上限载荷被气相色谱(按照1mL/min的氦流)和EI源的线性响应两者限制到每个化合物大约10ng(1E-8g)。因此,对大动态范围的需求转换成将检测极限(LOD)提高至复合物基质(comples matrices)内感兴趣的每痕量化合物大约1-10fg(1E-15g-1E-14g)的水平。
由于四极分析器的低成本,大多数常见GC-MS仪器采用四极分析器。尽管这些仪器采用所谓的“封闭式”EI源(其对样本进行浓缩以及将电离效率提高至大约1%),但是四极GC-MS的LOD仅达到大约1pg(1E-12g),主要由于四极分析器中的质量扫描损耗和质量分析器的低分辨率。
GC-TOF(诸如US,Michigan的LECO公司的Pegasus GC-TOF)提供了优于四极GC-MS的若干分析优势。单反射飞行时间(TOF MS)分析器提供迅速谱获取以及在没有扫描损耗的情况下检测整个质量范围中的所有离子。分析器具有宽空间接受,这对于单一离子透射是足够的。由于快速并且非偏斜的谱获取,GC-TOF允许快速GC以及部分交叠GC峰的更好的反卷积,诸如用于多达大约10000个成分的增强分离的多维GC(GCxGC)。
尽管四极GC-MS采用所谓的“封闭式”EI源,生成连续离子束,但是GC-TOF采用所谓的“开放式”EI源,将离子累积在电子束的势阱内,这消除了TOF分析器的脉冲之间的离子损耗。“开放式”电子碰撞(EI)离子源已经赢得了健壮并且永不清空的EI源的声誉。GC-TOF按照10kHz的频率提供强离子信号-高达每个脉冲10000个离子。然而,检测极限(LOD)已经与四极GC-MS(即,1pg)相当。
与“开放式”源相比,已经根据WO2013163530通过引入半开放式EI离子源(so-EI)将GC-TOF的LOD提高至大约100fg,这提高了样本电离效率以及对分析物分子(而不是化学本底)进行浓缩,同时仍然保留离子积累部件。由于在化学本底和基质上的时间样本浓度,当使用标准“开放式”EI源以及双级GCxGC时,LOD也提高至100fg。两个观察表明LOD可以主要地受复合物基质和化学本底(比方说,来自抽吸系统的油)的质谱干扰限制。随后,当使用更高特异性的仪器(单个MS的较高分辨率或者串联MS-MS的较高选择性中的任何一个)时,人们将预计更好的LOD。
近来引入的GC-MR-TOF(诸如,LECO公司的“Citius GC-HRT”)采用封闭式EI源以及具有正交加速器(OA)的高分辨率多反射TOF(MR-TOF)分析器。尽管高分辨率(R=25-40K),该仪器还是具有相当的LOD=0.1-1pg,很可能由于在稀少MR-TOF脉冲下OA中的工作比损耗。
近来涌现的GC-Q-TOF串联(诸如,Agilent的GC-Q-TOF)采用“封闭式”EI源、用于选择母离子的四极过滤器、用于离子碎裂的CID单元以及用于碎片分析的具有正交加速器的单反射TOF。尽管提高了特异性(预计MS-MS将分析物信号与基质和化学本底分离),GC-Q-TOF已经展示了仅大约0.1pg的LOD(即,与先前的GC-MS相比,适度的提高),大概由于转移光学器件中的离子损耗和正交加速器中的工作比损耗。
因此,现有GC-MS仪表通过使用多个装置也没有将LOD提高至1-10fg的水平,多个装置包括:高效率“封闭式”EI源;累积开放式和半开放式EI源;具有广泛接受度的非扫描TOF分析器;高分辨率MR-TOF仪器;以及高选择性MS-MS仪器。
因此,仍然有在GC-MS分析时提高灵敏度的实际问题,优选地在低复杂度仪器中实现,同时使用健壮并且快速响应的EI源以及还具有软电离部件。
发明内容
发明人意识到广泛使用的GC-TOF仪器(具有开放式EI源以及具有单反射TOF分析器)的灵敏度主要受与基质和化学本底的质谱干扰限制,而不是受电离或者分析器传输的效率限制。因此,为了提高LOD,在本领域中需要在保持高离子传输的同时利用串联MS-MS部件增强分析器的分辨率或者分析的特异性。
发明人还意识到由发明人在WO2013163530中提出的半开放式电子碰撞离子源(so-EI)提高电离效率和分析物每本底比率两者。在当前公开的so-EI源的发明相关研究中,发明人还发现so-EI源与早先用于TOF MS的开放式源相比提供高得多的亮度(即,信号与离子包相位空间的比率)。
公开了在so-EI源与高分辨率多反射飞行时间(MR-TOF)分析器之间有效耦合的新方法,其提供高离子传输、低飞行时间偏差和大动态范围。还公开了so-EI源与低气体压力CID和各种SID碎裂单元的耦合的另外的新方法,其提供高离子传输、低飞行时间偏差和大动态范围从而使得so-EI-MR-TOF适合于各种串联TOF技术。那些装置和方法预计提高分析的特异性(即,样本、基质与化学本底之间的区别)以及相应地提高分析的灵敏度和可靠性。
发明人还意识到还可以通过以频繁以及软脉动离子喷射模式操作封闭式EI源继之以脉动“聚束”(即,用于压缩离子包时间展度的脉动加速)来提高so-EI-MR-TOF的灵敏度。通过以几个简单方式抑制化学本底公开了GC-MS LOD的又另外的提高。
根据本公开的第一方面,色谱质谱仪包括单级或者双级气相色谱仪、半开放式EI源、多反射飞行时间分析器和接口。半开放式EI源具有大约0.1至1cm2之间的源开口以及具有用于电子束的正偏置狭缝。半开放式EI源布置在单独差动抽吸级中、提供电子束中的离子存储以及提供累积离子的脉动喷射。多反射飞行时间分析器包括周期透镜以及飞行时间检测器。接口包括一组聚焦和偏转离子-光学元件,使离子源与分析器耦合以使得离子源的空间发射度与分析器的接受度匹配以及由于空间发射度的离子信号的时间变宽在检测器处至少被消除至一阶泰勒展开。
优选地,为了通过频繁编码脉冲发生增大动态范围,装置还可以包括:(i)同步时钟,具有按照编程的非均匀的时间间隔以不超过大约10ns的时间增量触发的能力;(ii)脉冲发生器,配置为按照至少大约30kHz的平均频率进行脉冲发生;以及(iii)数据系统,用于谱解码。优选地,检测器包括磁性离子至电子转换器、由导电网孔覆盖的闪烁器以及具有延长的使用寿命的光电倍增器。那些部件可以帮助处理预计在1E+9离子/秒范围中的大离子通量。
在一个实现方案中,可以从由下列组成的组选择接口:(i)差动抽吸室,容纳所述离子源以及放置在所述离子镜之间;(ii)一组等时弯曲静电扇区,用于所述源的外部安装;(iii)一组等时弯曲静电扇区,用于使离子轨迹移位;(iv)能量过滤器,由静电扇区或者与空间聚焦透镜组合的偏转器组成;(v)具有脉动电力供应的透镜偏转器,用于使氦离子偏转或者用于粗略的质量选择;(vi)无栅离子镜,放置在所述离子源后面;(vii)弯曲场加速器,内置到所述源中,用于等时空间聚焦;(viii)差动孔口,放置在空间上聚焦的平面处以及接着是空间聚焦透镜;(ix)伸缩透镜系统,用于以加宽角度展度为代价减小空间包大小;以及(x)它们的组合。那些实施例帮助穿过so-EI源的宽并且发散的包到具有有限相位空间接受度和来自空间宽源的艰难离子注入的MR-TOF分析器的实际耦合。
在一个实现方案中,优选地,MR-TOF分析器的参数的特征在于下列中的至少一个:(i)在0.5m与1.5m之间的盖至盖距离;(ii)具有约5mm与20mm之间的透镜间距的周期透镜;(iii)在大约7m与30m之间的离子飞行路径;以及(iv)在大约3keV与10keV之间的加速电压。优选地,所述MR-TOF分析器具有平面或者圆柱对称性。这种参数被选择为提供至少大约20-25K的分辨率以使半挥发性化合物与来自无所不在的碳氢化合物的氮和氧含量分离。
在一个实现方案中,装置还可以包括用于将外部离子引入到so-EI源中的离子转移光学器件以及从由下列组成的组选择的一个源:(i)化学电离源;(ii)光化学电离源;以及(iii)具有调节的等离子体的离子源。在一个实现方案中,优选地,所述装置还可以包括用于来自从由下列组成的组选择的分析物分子的外部传送的入口:(i)分子束发生器;(ii)分子分离器,用于分离氦流和分析物流。那些实施例在使用样本引入时类似的或者相同的差动抽吸装备的同时,为更软的电离和更宽范围的气相色谱通量而扩展GC-MS能力。
在一个实现方案中,优选地,为了提供MS-MS能力,装置还包括从由下列组成的组选择的至少一个装置:(i)定时离子选择器,用于选择穿过所述离子源的母离子;(ii)所述so-EI源后面的无栅离子镜,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iii)内置到所述so-EI源中的弯曲场加速器,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iv)表面诱导解离SID单元,面向一次离子包;(v)表面诱导解离SID,相对于母离子包轨迹以滑动角布置;(vi)在气体压力为P的具有大约1cm以下的长度L的短CID单元内的碰撞诱导解离CID,为在与母离子的单次平均碰撞相对应的大约1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)碰撞诱导解离CID单元,通过选择约0.1与0.3cm2之间的所述源开口来布置在所述源内;(viii)在碎裂单元之后的脉冲加速器;(ix)在碎裂单元之后的空间聚焦透镜;以及(x)在碎裂单元之后的碎片离子包的后加速;(xi)在碎裂单元之后的转向装置;以及(xii)它们的组合。优选地,装置还包括在所述源之后的脉冲发生器,用于下列组中的一个目的:(i)调节从所述源脉冲喷射的离子包的时间焦面;(ii)调节从所述源脉冲喷射的离子包的能量或者能量展度;(iii)将所述源之后的连续流转换成离子包,接着进行所述离子包的能量过滤。
根据本公开的第二方面,一种色谱质谱分析的方法包括:
通过单级或者双级气相色谱法分离分析物混合物;将分析物分子注入到具有在大约0.1至1cm2之间的开口的电离室中,用于提高分析物分子与化学本底之间的比率;
通过穿过狭缝的电子束电离分析物分子,所述狭缝相对于围绕电离体积的电极正偏置,用于保留分析物离子以及去除二次电子;脉动喷射离子包;
在空间和时间上再聚焦所述离子包以匹配之后的质谱分析的发射度;
调节空间展度以及过滤所述离子包的能量展度以匹配之后的质谱分析的接受度;
调节所述离子包的时间波前倾斜度以在离子检测器处达到离子信号的最小时间展度;
离子包的脉动或者连续转向,用于对准;
在由无场区域分隔的无栅离子镜的电场之间的多次等时反射时在时间上分离离子包,以及由放置在所述无场区域中的周期聚焦透镜将所述离子包空间限制在漂移方向上;
用飞行时间检测器检测所述离子包以形成波形信号;以及
分析所述信号以提取质谱以及色谱-质谱信息。
在一个实现方案中,优选地,为了增大所述分析的动态范围,按照与所述时间分离步骤处的离子飞行时间相比至少小大约10倍的周期布置所述离子喷射步骤;按照不小于离子包时间宽度的时间增量对相邻脉冲之间具有通常唯一的时间间隔的喷射脉冲进行编码;以及对与所述谱分析步骤处的多个喷射脉冲相对应的部分交叠信号进行解码。
在一个实现方案中,优选地,在所述离子电离步骤之后的所述离子再聚焦和对准离子包的步骤可以包括下列组中的至少一个步骤:(i)容纳所述离子镜之间的所述电离室以及对围绕所述室的壳体进行差动抽吸以使离子包转向最小化;(ii)在所述离子镜外部容纳所述电离室以及通过一组等时弯曲静电扇区的电场转移离子包;(iii)用一组弯曲等时静电扇区的电场使离子轨迹移位;(iv)在静电扇区内或者通过使所述离子包在空间上聚焦和偏转来对离子包进行能量过滤;(v)使在某个预设质量阈值以下的氦离子或者离子脉动偏转;(vi)通过放置在所述电离室后面的无栅离子镜进行离子包的等时空间聚焦;(vii)利用布置在所述电离室内以及所述电离室之后的等时弯曲场对离子包进行脉冲加速;(viii)将离子包空间聚焦到差动孔口中,接着穿过所述孔口空间聚焦以形成基本上平行的离子轨迹;(ix)所述离子包的伸缩聚焦,用于以加宽离子包角度展度为代价减小空间包大小;以及(x)它们的组合。
在一个实现方案中,优选地,从由下列组成的组选择所述离子时间分离步骤:(i)以大约0.4m与1.5m之间的盖至盖距离布置离子镜;(ii)按照大约5mm与20mm之间的周期在漂移方向上布置所述周期空间聚焦;(iii)布置大约7m与30m之间的离子飞行路径;(iv)通过大约3keV与10keV之间的电压对所注入离子包进行加速;优选地,离子镜的所述电场具有平面或者圆柱对称性;以及(v)它们的组合。
优选地,方法还可以包括下列步骤:在所述电离室外部形成分析物离子,按照大约5eV与100eV之间的离子能量将外部形成的离子的连续离子束转移到所述电离室中,将所述连续离子束的一部分脉冲加速到飞行时间分离器中,以及对于飞行时间分离步骤使如此形成的离子包转向以对准它们的轨迹;以及其中从由下列组成的组选择所述外部电离方法:(i)化学电离;(ii)光化学电离;以及(iii)利用调节的等离子体的电离。优选地,离子注入到所述电离室中的所述步骤可以从由下列组成的组进行选择:(i)利用超音速气体射流的准直在差动抽吸系统内形成振动冷分析物分子的引导分子束;(ii)在差动抽吸系统内分离色谱气流和分析物分子流的一部分;以及(iii)它们的组合。
优选地,所述检测步骤可以包括下列步骤:在平行于离子包时间波前的表面处的离子-电子转换器;通过所述转换表面与所述无场区域之间的电势差使电子加速;使二次电子在大约30度与180度之间进行磁转向;将所述二次电子加速至由导电网孔覆盖的闪烁器以用于去除静电带电,从而每单个电子产生多个光子;以及用光电倍增器检测所述光子。
优选地,为提供MS-MS能力的目的,方法还可以从由下列组成的组进行选择:(i)在所述电离步骤之后的母离子的定时离子选择;(ii)按照相反方向将离子喷射到放置在所述电离室后面的无栅离子镜的静电场中以及将一次离子包同时时间和空间聚焦到在所述电离室内部形成或者在所述电离室之后放置的碎裂单元中;(iii)将一次离子同时时间和空间聚焦到在所述电离室内以及在所述电离室之后的加速器的弯曲场内的碎裂单元中;(iv)在与平行于所述离子包的时间波前放置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的延迟脉动提取;(v)在与相对于母离子轨迹以滑动角布置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的静态或者脉动加速;(vi)布置在气体压力为P的具有在大约1cm以下的长度L的单元内的碰撞诱导解离,为与母离子的单次平均碰撞相对应的大约1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)通过在来自所述色谱仪的1ml/min气流下选择大约0.1与0.3cm2之间的所述室开口来布置在所述电离室内的碰撞诱导解离;(viii)在碎裂步骤之后的脉动加速;(ix)在碎裂步骤之后的空间聚焦;(x)在碎裂步骤之后的碎片离子包的后加速;(xi)在碎裂步骤之后进行转向;以及(xii)它们的组合。
优选地,方法还可以包括离子包的脉动加速步骤,用于下列组中的一个目的:(i)在所述离子喷射步骤之后调节离子包的时间焦面;(ii)在所述离子喷射步骤之后调节离子包的能量或者能量展度;(iii)对在所述电离室之后的连续流或者准连续流进行转换,接着进行所述脉动加速离子包的能量过滤步骤;以及(iv)它们的组合。优选地,所述离子包再聚焦步骤可以包括利用在大约2与5之间的转换因子将宽(大约7-10mm)以及低发散离子包(<5-6mrad)转换为较小(大约3-5mm)以及较宽发散(大约15-20mrad)包的步骤。
优选地,为了提高所述分析的动态范围,方法还可以包括使离子包强度(增益)在离子喷射之间交替以及记录与不同增益相对应的分开数据集的步骤,以及其中所述强度交替方法包括从由下列组成的组选择的一个:(i)使推出脉冲的持续时间交替以改变电子束电离的持续时间;(ii)使任何阶段处的离子包的空间聚焦交替,较早阶段的离子转移优先;(iii)使检测器增益交替;(iv)使离子路径在宽开口与较小面积孔口之间交替;以及(v)它们的组合。
优选地,方法可以还包括通过下列组中的一个步骤提高抽吸系统的分析物分子与化学本底的比率的步骤:(i)用电子电离步骤处采用的多孔磁体的无电镀镍封闭或者覆盖;(ii)在源壳体的涡轮抽吸之后引入另外的气流以避免油从机械泵扩散;(iii)选择小尺寸的大约0.5L/s至1L/s之间的机械泵以在机械抽吸线路中维持足够粘性的流动,从而阻止油扩散;以及(iv)它们的组合。
根据本公开的第三方面,质谱仪包括半开放式EI源、飞行时间分析器、碎裂单元以及用于增强质谱仪的MS-MS能力的装置。半开放式EI源限定0.1与1平方厘米之间的源开口以及适合于提供累积离子的脉动喷射。飞行时间分析器具有飞行时间检测器。为了MS-MS能力将碎裂单元并入TOF分析器中。从由下列组成的组选择用于增强质谱仪的所述MS-MS能力的装置:(i)定时离子选择器,用于选择穿过所述离子源的母离子;(ii)所述so-EI源后面的无栅离子镜,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iii)内置到所述so-EI源中的弯曲场加速器,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iv)表面诱导解离SID单元,面向一次离子包;(v)表面诱导解离SID,相对于母离子包轨迹以滑动角布置;(vi)气体压力为P的具有在1cm以下的长度L的短CID单元内的碰撞诱导解离CID,为与母离子的单次平均碰撞相对应的在1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)碰撞诱导解离CID单元,通过选择0.1与0.3cm2之间的所述源开口以布置在所述源内;(viii)在碎裂单元之后的脉动加速器;(ix)在碎裂单元之后的空间聚焦透镜;以及(x)在碎裂单元之后的碎片离子包的后加速;(xi)在碎裂单元之后的转向装置;以及(xii)它们的组合。
本公开的该方面的实现方案可以包括下列特性中的一个或者多个。在一些实现方案中,TOF分析器是下列组中的一个:(i)线性TOF;(ii)单反射TOF;(iii)包括至少一个静电扇区的TOF;(iv)多反射TOF分析器。在一些示例中,质谱仪还包括在so-EI源之后的脉冲发生器,用于从由下列组成的组选择的目的:(i)调节从所述源脉冲喷射的离子包的时间焦面;(ii)调节从所述源脉冲喷射的离子包的能量或者能量展度;以及(iii)将在所述源之后的连续流转换成离子包,接着进行所述离子包的能量过滤;以及(iv)它们的组合。可选地,为了通过频繁编码脉冲发生增大动态范围,质谱仪还包括同步时钟、脉冲发生器和用于谱解码的数据系统。同步时钟具有按照编程的非均匀时间间隔以不超过10ns的时间增量触发的能力;(ii)脉冲发生器,具有按照至少30kHz的平均频率进行脉冲发生的能力;以及(iii)数据系统,用于谱解码。
在一些实现方案中,质谱仪还包括从由下列组成的组选择的接口:(i)差动抽吸室,容纳所述离子源以及放置在所述离子镜之间;(ii)一组等时弯曲静电扇区,用于所述源的外部安装;(iii)一组等时弯曲静电扇区,用于使离子轨迹移位;(iv)能量过滤器,由静电扇区或者与空间聚焦透镜组合的偏转器组成;(v)具有脉动电力供应的透镜偏转器,用于使氦离子偏转或者用于粗略的质量选择;(vi)无栅离子镜,放置在所述离子源后面;(vii)弯曲场加速器,内置到所述源中,用于等时空间聚焦;(viii)差动孔口,放置在空间上聚焦的平面处以及接着是空间聚焦透镜;(ix)伸缩透镜系统,用于以加宽角度展度为代价减小空间包大小;以及(x)它们的组合。在一些示例中,从由下列组成的组选择MR-TOF分析器的参数:(i)在0.5m与1.5m之间的盖至盖距离;(ii)具有5mm与20mm之间的透镜间距的周期透镜;(iii)在7与30m之间的离子飞行路径;(iv)在3keV与10keV之间的加速电压;以及(v)它们的组合。可选地,MR-TOF分析器具有平面或者圆柱对称性。
在一些实现方案中,质谱仪还包括用于将外部离子引入到so-EI源中的离子转移光学器件以及从由下列组成的组选择的一个源:(i)化学电离源;(ii)光化学电离源;以及(iii)具有调节的等离子体的离子源。可选地,质谱仪还包括用于来自从由下列组成的组选择的一个源的分析物分子的外部传送的入口:(i)分子束发生器;(ii)分子分离器,用于分离氦流和分析物流;以及(iii)它们的组合。在一些示例中,检测器包括磁性离子至电子转换器、由导电网孔覆盖的闪烁器以及具有延长的使用寿命的光电倍增器。
根据本公开的第四方面,色谱质谱分析的方法包括下列步骤:通过穿过电离室狭缝的电子束电离分析物分子,所述狭缝相对于围绕电离体积的电极正偏置,用于保留分析物离子以及去除二次电子;脉冲喷射离子包;飞行时间分析器中的离子分离;用于MS-MS分析的离子碎裂;以及从由下列组成的组选择的增强MS-MS的至少一个步骤:(i)在所述电离步骤之后的母离子的定时离子选择;(ii)按照相反方向将离子喷射到放置在所述电离室后面的无栅离子镜的静电场中以及将一次离子包同时时间和空间聚焦到在所述电离室内部形成或者在所述电离室之后放置的碎裂单元中;(iii)将一次离子同时时间和空间聚焦到在所述电离室内以及在所述电离室之后的加速器的弯曲场内的碎裂单元中;(iv)在与平行于所述离子包的时间波前放置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的延迟脉动提取;(v)在与相对于母离子轨迹以滑动角布置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的静态或者脉动加速;(vi)布置在气体压力为P的具有1cm以下的长度L的单元内的碰撞诱导解离,为与母离子的单次平均碰撞相对应的1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)通过在来自色谱仪的1ml/min气流下选择0.1与0.3cm2之间的所述电离室开口来布置在所述电离室内的碰撞诱导解离;(viii)在碎裂步骤之后的脉动加速;(ix)在碎裂步骤之后的空间聚焦;(x)在碎裂步骤之后的碎片离子包的后加速;(xi)在碎裂步骤之后进行转向;以及(xii)它们的组合。
本公开的该方面的实现方案可以包括下列特征中的一个或者多个。在一些实现方案中,方法还包括对离子包进行脉冲加速,用于从由下列组成的组选择的一个目的:(i)在所述离子喷射步骤之后调节离子包的时间焦面;(ii)在所述离子喷射步骤之后调节离子包的能量或者能量展度;(iii)对在所述电离室之后的连续流或者准连续流进行转换,接着进行所述脉动加速离子包的能量过滤步骤;以及(iv)它们的组合。在一些示例中,离子包再聚焦步骤包括利用在2与5之间的转换因子将宽(7-10mm)以及低发散离子包(<5-6mrad)转换为较小(3-5mm)以及较宽发散(15-20mrad)包的步骤。可选地,飞行时间分离步骤包括下列组的静电场中的时间分离:(i)线性无场TOF分析器;(ii)至少一个离子镜;(iii)两个离子镜的平面场;(iv)至少一个静电扇区;以及(v)它们的组合。
下面在附图和描述中对本公开的一个或者多个实现方案的细节进行阐述。通过描述和附图以及权利要求,其它方面、特征和优点将显而易见。
附图说明
现在将仅通过示例的方式以及参照附图对本发明的各种实施例连同仅出于例示性目的给出的布置一起进行描述,在附图中:
图1描绘了具有半开放式电子碰撞(so-EI)源以及单反射TOF质量分析器的飞行时间质谱仪TOF-MS;
图2描述了半开放式EI源的主要特性(即,电子束狭缝上的有限开口和正偏置,以便示出作者测量中确定的离子包的参数);
图3描绘了本发明的GC-MR-TOF装置,其中基于离子束再聚焦和转向使so-EI源耦合至具有等时接口的MR-TOF分析器;
图4描绘了按照离子包聚焦和转向的不同方法图3的GC-MR-TOF装置;
图5描绘了采用弯曲等时入口的带有MR-TOF分析器的so-EI的替换配置;
图6描绘了交替脉冲持续时间的方法以及频繁编码的脉冲发生的方法(两者都被设计用于提高so-EI-MR-TOF的动态范围)的时间图;
图7描绘了用于提高动态范围和使用寿命以及适合于本发明的so-EI-MR-TOF中的密集离子包的TOF检测器;
图8描绘了具有外部CI源以及具有用于so-EI源中的软电离的外部分子束发生器的实施例;
图9描绘了具有外部CI源的实施例,接着进行脉动离子包聚束以及随后在弯曲等时扇区接口中进行能量过滤,后者在共同未决的申请中进行描述;
图10图示了将离子包同时空间和时间聚焦到碎裂单元中以用于串联TOF分析的方法;
图11描绘了利用通过so-EI源的源后衰变和按滑动角的SID碎裂的本发明的串联GC-MS-MS装置的两个实施例;
图12描绘了在so-EI源后面设置的离子镜中进行空间离子再聚焦的本发明的串联TOF装置的实施例,连同图示同时飞行时间聚焦的时间图;
图13描绘了具有用so-EI源后面设置的元件布置的空间和时间聚焦的两个MS-MS实施例;在实施例131中,由so-EI源中的弯曲场布置聚焦;在实施例132中,由SID碎裂单元中的弯曲场布置聚焦;
图14描绘了使用结合在so-EI源后面的具有与离子包的时间波前(time-fronts)对准的SID表面的SID单元的串联TOF装置的实施例;以及
图15描绘了具有并入MR-TOF分析器中以及通过离子源差动抽吸级抽空的CID单元的串联TOF装置的实施例。
各种附图中相同的参考符号指示相同元件。
具体实施方式
通过so-EI源的离子包
参照图1,示出了具有半开放式EI(so-EI)源2和单反射TOF MS 3的GC-TOF装置1。样本混合物由气相色谱仪8(GC或者双级GCxGC)在时间上分离以及通过在热输送管线9内加热的GC柱转移到so-EI源2中。电子束13使样本电离以及将离子累积在电子束13的静电阱内。以10kHz-30kHz的频率对反射极(repeller)12施加电脉冲以将离子包喷射驱动到TOFMS 3中。对于标准GC-TOF的细节,我们参照WO2013163530申请,该申请通过引用合并于此。
so-Ei源2的主要部件包括:(a)源室11,具有有限总开口(即,限制在大约0.1cm2与1cm2之间)-源室11的初级开口是提取电极17中的提取孔口27-用于维持较高样本浓度以及用于提高样本-化学本底比率;以及(b)在电子发射体15前面的狭缝14,偏置在正电位(相对于围绕电离体积的电极)处,用于沿着电子束13的方向限制正离子以及用于引出二次电子。
参照图2,描绘了so-EI源2在累积阶段21处和喷射阶段25处的扩展视图,连同用实验方法测量的离子参数一起。使用具有0.75cm2开口的so-EI源2、以2.5kV加速度具有1.5m飞行路径的60cm长反射TOF分析器进行所有测量以及同时测量TOF检测器7上的离子信号(图1所示)。
在累积阶段21中,电子束13由热灯丝电子发射体15发射、由前狭缝14a提取以及在反射极板12与提取电极17的提取孔口27(提取孔口27由图2中图示为虚线的网孔覆盖)之间的电离空间20内加速至70eV能量。沿着具有200-300高斯场强度的磁体16的磁力线限制电子束13。通过输送管线9将所分析的样本典型地以1mL/min的流速注入到氦载气内。将样本和氦气引入电离空间20中以及由提取孔口27的气体传导限定它们的浓度。将提取孔口27的开口面积保持在0.1cm2至1cm2之间产生3L/s与30L/s之间的氦气传导,而分析物分子的传导率按分析物质量的平方根较低。这种布置与完全开放的源相比提供10倍与100倍之间的电离效率提高。然而,孔口大小的进一步减小受多个负面过程限制,诸如,减缓源反应时间(例如,对于GCxGC)、积累空间电荷、失去离子积累性质以及在离子喷射时气体上的过度离子散射。70eV电子束使样本分子电离,从而形成离子云24和二次电子23。二次电子23保持被限制在限制电子束13的相同磁力线内。一次电子束13和磁性锁定的二次电子23两者形成俘获离子的负势阱。两个狭缝14上的强正偏置(在图2中,在后狭缝14b处清楚地图示了正偏置)将离子锁定在电子束方向上以及引入二次电子23,其反过来使阱更浅以及促进氦离子离开电子陷阱。因此,分析物离子被完全俘获,同时等离子体浓度显著减小,这在下一个阶段的离子包喷射25处有帮助。
与开放式EI源相比,离子云24和离子包26的参数在so-EI源中大大提高。另外,与源室11、反射极电极12、提取电极17和周围电子束13相比,当两个狭缝14具有正偏置时,离子包26的参数大大地改善。由施加至后狭缝14b(但优选地也施加至前狭缝14a)的电力供应22表明正偏置。所有测量指的是前狭缝14a上大约+20V与+100V之间以及后狭缝14b上+50V至+300V之间的偏置。考虑提取孔口27的大小和由偏转轮廓确定(使用图1中的透镜偏转器10)的所测量离子包26直径D=5mm-10mm进行离子云24的直径D(与TOF轴正交)的估计,同时对透镜偏转器10中的离子聚焦进行建模。这种计算还考虑稍后测量的角度展度。假设在源中小加速度场E<<100V/mm处回转(turnaround)时间起主导作用,则离子云24的轴向能量展度(沿着TOF轴)被测量为0.1eV。在3keV平均能量下将离子包26角度展度测量为Δα=6mrad(与在4keV下的Δα=5mrad相对应),同时安装另外的准直仪以及测量偏转轮廓。径向能量展度由角度发散计算为0.05eV。近乎热(在300℃源温度下50meV)能量展度由源中的“冷等离子体”条件解释。通过由TOF MS仿真辅助的飞行时间散焦(改变镜电势)处的包时间扩展将离子包26的能量展度测量为ΔK=100-150eV。在100V/mm的加速度场下根据离子包能量展度ΔK计算离子云高度H=1-1.5mm。在最优TOF条件下在TOF检测器7上测量500amu离子的离子包时间展度ΔT=7ns,同时在没有同质异位素干扰的情况下使用强峰以及对于较小离子质量确认ΔT2~m/z规则/关系。在我们的测量中,我们还确认高达500μs累积时间的so-EI源2的离子积累性质。使用高达500μs的脉冲周期并没有影响灵敏度和TOF分辨率。
so-EI-TOF的灵敏度已经被测量为S=150离子/fg,同时将从100fg到10ng载荷下的六氯苯(HCB)注入到GC 9的GC柱中。通过检查次HCB同位素的检测来辅助LOD测量。典型灵敏度对于利用NIST库的可靠识别为LOD=100fg以及对于检测主质量峰(化合物依赖性)为从20fg到30fg。
为了比较,在小狭缝偏置电压或者零狭缝偏置电压下的相同测量已经确认了离子包参数的显著劣化。峰时间宽度加宽大约2倍以及轴向和径向能量展度加宽3倍至4倍。另外,离子云高度扩大1.5-2倍。
为了支持so-EI源2优点的论点,我们对于来自Pegasus GC-TOF的开放式EI源进行类似测量:越过标准开放式EI源的离子包在m/z=300下具有30-40ns的时间宽度(与对于so-EI的5ns时间宽度比较)。离子包26的直径与源开口和检测器大小相当(25-30mm,与so-EI中的5-10mm相比较)。射束强烈地发散(10-20mrad,与so-EI中的5mrad相比较)。
这些测量确认与标准开放式源相比so-EI提供好得多的离子包参数以及狭缝14上的正偏置提供进一步的显著提高。离子包参数的这种巨大改进使得so-EI源2与较小接受度的TOF分析器(诸如MR-TOF(形成so-EI-MR-TOF)和具有CID和SID单元的各种so-EI-TOF-TOF串联体)相容,这在之前是不实际以及不能想象的。下一个问题来了,是否值得麻烦呢?
so-EI-MR-TOF的合理性
采用半开放式电子碰撞离子源2(so-EI)和低分辨率TOF的GC-TOF的检测极限主要地受化学噪声和基质离子引起的质谱干扰而不是所生成离子的数量限制。so-EI源2在TOF检测器7上提供非常高效率的电离,接近100-150离子/fg。在这种灵敏度下,1fg样本载荷为检测提供足够的离子信号。然而,当与低分辨率分析器(R≈1-2K)相结合时,仪器的检测极限(LOD)被限制至50-100fg,主要地由于与化学本底和基质离子的质谱干扰。本底信号的统计波动不允许区分较弱的分析物信号。发明人得出GC-TOF的灵敏度和动态范围两者预计在较高TOF分辨率下和/或利用MS-MS部件随着仪器特异性而提高的结论。与现有技术知识相反,发明人发现,假如利用优化离子光耦合,则so-EI源2生成低发散离子包(在4keV下,Δα=5mrad),其可以与多反射TOF分析器的接受度相容(即,适配明显小于单反射TOF的接受度水平)。因此,仍然可以使越过so-EI源2的相对较宽的(5-10mm)离子包26再聚焦以适配MR-TOF分析器的接受度。
发明人还发现,与具有耦合至具有正交加速器的MR-TOF的封闭式EI源的替换GCMR-TOF布置相比,so-EI-MR-TOF的总电离和输送效率高得多(150离子/fg,与1-3离子/fg的封闭式EI电离和输送效率相比),这使得so-EI-MR-TOF成为实现LOD提高的优选解决方案。另外,由于不需要转移光学器件或者正交加速器,因此so-EI-MR-TOF没有那么复杂。因此,so-EI-MR-TOF是用于解决两组问题的正确方式:(a)提高LOD以及(b)降低仪器复杂度和成本。
发明人还发现在so-EI源2中使用正偏置狭缝14将离子包26的时间展度降低2倍与3倍之间。当使用100-200V/mm的加速场时,离子包时间宽度可以被降低至5ns(在250amu下)以及降低至7ns(在500amu下)。发明人还发现离子云厚度足够小(≈1.5mm)以及这种加速场允许适度能量展度(200-300eV),在高于4-5kV的加速电压下保持在MR-TOF分析器的能量容差窗口内(7-10%)。离子包参数的组合允许在中等大小MR-TOF分析器内获得R=20K的分辨率,在10m飞行路径内以及在400μs的飞行时间下提供1000amu离子。发明人还发现,so-EI源2可以在不影响NIST识别的谱质量的情况下维持长期(400μs)的离子累积。其它离子包参数的分析以及MR-TOF对于这种离子包的仿真已经表明GC-MR-TOF的分辨率主要地受so-EI源2的时间展度而不是受分析器偏差限制。由于中等(对于MR-TOF)分辨率,允许较弱的机械容差以及可以低成本制造这种MR-TOF分析器。因此,离子包最初参数的详细研究导致所提出的:(a)so-EI源2与MR-TOF分析器的有效耦合;以及(b)与现有技术GC-MR-TOF相比,具有较低机械容差的低成本MR-TOF分析器。
so-EI-MR-TOF组合的新颖性由下列论据支持。对于具有大接受度的单反射TOF,最近在WO2013163530中介绍了so-EI源2,该申请通过引用合并于此。因此,已知GC-TOF解决方案不能以so-EI源2的优异参数来操作。由于先前知识教导这种组合会引入不必要的复杂化、提供弱分辨率以及引起严重离子损耗,因此在WO2013163530中没有设想so-EI源2与高分辨率MR-TOF的组合。然而,相反,发明人已经发现高分辨率对于LOD提高的重要性、发明了相容的so-EI-MR-TOF组合、公开了这种组合以及如下面所示提供了用于这种耦合的多个有效解决方案。
so-EI源与MR-TOF的耦合
参照图3,本公开的so-EI-MR-TOF组合的实施例31将半开放式电子碰撞(so-EI)源32结合到多反射飞行时间分析器33(MR-TOF)中。MR-TOF分析器33具有由以加速度势浮置的漂移空间35分隔的一对平行无栅离子镜34、一组周期透镜36、第一端部偏转器37和第二端部偏转器38(两者可选)以及飞行时间检测器40(优选地为如在下文中描述的具有扩展的动态范围的检测器)。将so-EI源32结合到差动抽吸室(如箭头32P和33P所示,其描绘分开的涡轮泵)中。so-EI源32包括具有大约0.1cm2与1cm2之间的总开口的电离室11、发射与附图平面正交取向的电子束的电子发射体15(在图1-2中更详细地示出)、至少一个(优选地两个)正偏置电子狭缝14以及脉冲加速板18。so-EI源32与准直仪19、透镜偏转器10和漂移空间展度部35s适配。
分析器33可以如图3所示为平面的或者如在WO2011107836(以及通过引用合并于此)中描述的为圆柱形,用于对于飞行路径和飞行时间展度在紧凑大小的分析器33内增加反射次数。分析器33可以具有离子镜34,该离子镜34具有如在WO2005001878(其通过引用合并于此)中描述的三阶能量聚焦或者如在WO2013063587(其也通过引用合并于此)中描述的更高阶聚焦。优选地,使用低成本制造技术(使用涂敷有镍磷的铝镜)构建分析器。
应当满足多个条件以获得期望范围的分辨能力(大约R=20K-25K)。为了调节具有10ns时间展度度(在大约1000amu下)、大约25-50mm*mrad发射度(在4keV下)以及200-300eV能量展度的so-EI离子包,MR-TOF分析器33应当具有至少大约500mm的盖间距离以及至少大约4keV的加速电压。使用更高加速电压(高达10kV,实际由于镜电极中的一个上大约高两倍的电压而受限制)以及使用高达大约1m-1.5m的更大盖间距离是更优选的。分析器33的飞行路径应当扩展至至少大约12m-15m,以及飞行时间应当扩展至至少大约400μs-500μs。
为了固定期望分辨率以及防止离子损耗,离子喷射方案通常应当使so-EI源32的离子束发射度与MR-TOF分析器33的接受度匹配以及使与在透镜偏转器10中聚焦和转向、在周期透镜36中聚焦以及在偏转器37和偏转器38中转向的离子束相对应的飞行时间偏差最小化。估计显示,在没有这种匹配的情况下,周期透镜36在Z方向上的宽度需要大到达到所需要的总飞行路径长度,以及TOF偏差由于大离子包Z方向宽度而使离子包时间展度度扩大与由so-EI源32提供的初始时间展度度相当的值。
在一个实施例中,具体地,匹配的优选方案如下。参照图3,离子包遵循从so-EI源32开始的离子轨迹39。为了确保离子包的时间波前平行于Z轴,so-EI源32相对于X轴倾斜角度α。透镜偏转器10使离子包轨迹弯曲至相同角度α(使得轨迹偏离X轴2*α)。在WO2007044696(公开OA-MR-TOF)中对使离子包时间波前与离子镜对准的该方案进行了进一步描述,该申请通过引用合并于此。另外,在所考虑的组合实施例31的耦合方案中,透镜偏转器10将离子轨迹39T聚焦到端部偏转器37与端部偏转器38之间的中间空间聚焦39F,使用能够避免在第一端部偏转器37处从角度2α到角度β的时间展度度(值得注意地,角度β匹配周期透镜36中的离子轨迹倾斜)。透镜偏转器10与该组周期透镜36中的第一周期透镜(与偏转器37组合)的组合同时提供了由so-EI源32产生的宽离子包到第一端部偏转器37的位置处的较窄离子包的转变(其中,由来自so-EI源32的离子角度发散以及从so-EI离子源32到第一端部偏转器37的飞行路径长度确定离子包宽度)。随后,该组周期透镜36将离子轨迹39再聚焦至第二端部偏转器38,阻止离子包在第二端部偏转器38中倾斜以及从而允许离子包的时间波前独立于第二端部偏转器38的激励在平行于检测器的表面平面的位置到达检测器40。该描述的方案仍然没有阻止从具有角度发散的so-EI离子源32开始的离子的离子包时间波前的倾斜。
参照图4,本公开的so-EI-MR-TOF组合的实施例41仅在其离子轨迹聚焦性质上不同于实施例31。离子轨迹42沿Z方向从具有角度展度的so-EI离子源32开始以及形成如安置在第一端部偏转器37内的变焦区域43所示的有限宽度(典型地大约4-5mm)的包,使得从角度2α到角度β的离子偏转必定使所考虑离子包的时间波前倾斜。然而,可以由通过该第二端部偏转器38的另外的包倾斜消除保持在第二端部偏转器38的位置处的任何倾斜,使得离子包到达检测器40,该检测器40具有平行于该检测器40表面的时间波前。替换地,代替使离子包倾斜的第二端部偏转器38,可以使检测器40的表面平面机械地倾斜。该方法要求将图3的离子轨迹39聚焦到检测器40的表面,而不是偏转器38的位置。
参照图5,本公开的so-EI-MR-ROF组合的另一个优选实施例51提供更容易的so-EI源52接入以及还在离子注入到MR-TOF分析器53时提供能量过滤。so-EI源52和MR-TOF 53两者包括与先前关于实施例31描述的那些组件类似的组件(相应地,图5利用几乎相同的部件编号)。源52通过等时弯曲入口(C-入口)54耦合至MR-TOF分析器53,该等时弯曲入口54被设计用于以大约180°-β的角度进行离子轨迹转向,其中β是MR-TOF分析器53中的离子轨迹39的倾斜角(偏离X轴)。图5的C-入口54的特定实施例包括由孔口57和孔口58分隔的三组静电扇区55。孔口中的一个(例如,图5中的第二孔口58)放置在空间聚焦的平面中,其允许在没有空间离子损耗的情况下过滤百分之几的离子能量。可选地,在C入口54之前安装一组伸缩透镜60。
存在应当考虑在C-入口54设计中的考虑。弯曲入口使飞行时间聚焦移动,以及其优选地包括C-入口54上游的自由飞行区域59。尽管C-入口54可以充当差动抽吸管,但是出于该目的在浮置漂移区59中利用差动孔口更实际,其允许在与由涡轮泵33P抽空的分析器相同的差动抽吸级中设置C-入口54。另外,优选地在将离子注入到C-入口54中之前通过透镜偏转器10使强氦离子束偏转以使因具有错误能级的离子的表面污染最小化。C-入口54可以用于通过Matsuda板上的电压调节对离子包在MR-TOF入口处的位置和角度进行精细调节,该Matsuda板充当围绕静电扇区55的盖电极。发明人在WO2006102430中对这种调节方案提供了另外的细节,该申请通过引用合并于此。
再次参照图5,方案51的另一个改进涉及包括和利用一组伸缩透镜60。透镜组60被调节以在能量过滤孔口58的位置处形成空间聚焦,在该位置处具有可变角度离子包扩展。该变型在从C-入口54离开时提供最终离子束宽度的必要匹配。由于离子包宽度产生的源自透镜组60的二阶时间偏差可以用由弯曲C-入口54产生的相反符号的偏差来补偿以消除由于离子包时间波前的倾斜和时间偏差两者产生的时间展度。
图4-图5的示例装置和方法提供so-EI源32、52与MR-TOF分析器33、53之间的最优耦合。该最优耦合针对MR-TOF分析器接受度采用so-EI源空间发射度,同时还使离子束最优地再聚焦以用于提高传输以及使时间展度度至少最小化至一阶泰勒展开式T|Y=0、T|Z=0、T|a=0和T|b=0(其中Y和Z是横向空间展度,以及a和b是离子包的横向角度展度)。还公开了对MR-TOF分析器有效地并且等时地采用so-EI源的多个其它注入系统。这种另外的公开的接口包括下列元件:(i)差动抽吸室,调节离子源以及放置在所述离子镜之间;(ii)一组等时弯曲静电扇区,用于离子源的外部安装;(iii)一组等时弯曲静电扇区,用于使离子轨迹移位;(iv)能量过滤器,由静电扇区或者与空间聚焦透镜组合的偏转器组成;(v)具有脉动电力供应的透镜偏转器,用于使氦离子偏转或者用于粗略的质量选择;(vi)无栅离子镜,放置在离子源后面;(vii)内置到离子源中的弯曲场加速器,用于等时空间聚焦;(viii)差动孔口,放置在空间聚焦的平面处以及接着是空间聚焦透镜;和/或(ix)伸缩透镜系统,用于以加宽角度展度为代价减小空间包大小。
空间电荷限制和脉冲发生方案
so-EI源2、32、52的高灵敏度很可能在纳克(在大约1ng-10ng处或者在大约1ng-10ng之间)范围中的高样本载荷处导致空间电荷限制。在由MR-TOF分析器33、53中的延长飞行时间决定的大约500μs的完全累积时间处,在MR-TOF分析器33、53和so-EI源2、32、52两者中预计那些影响。让我们利用数值计算:在100i/fg的灵敏度或者大约100i/fg灵敏度下以及在每1秒GC峰10ng样本载荷或者大约10ng样本载荷下,离子通量预计达到大约1E+9离子/秒。如果按大约500μs的周期操作MR-TOF分析器33、53是标准方案(即,脉冲发生源在500μs周期或者大约500μs周期),则每次发射的离子数量达到大约2e+6离子/发射。通常,由大约3-10个主峰呈现EI谱。仍然,单个m/z比率的每个离子包的离子数量可以高达3E+5或者1E+6个离子。已知MR-TOF分析器33、53维持高达大约300-1000个离子的分辨率以及保持高达单个m/z比率的每个包大约2-3E+4个离子的不受影响的质量准确度。
参照图6,呈现了采用优选模式的so-EI-MR-TOF组合操作的时间图表。为了解决空间电荷限制的问题,公开了两个解决方案:(a)交替增益,由喷射脉冲的工作比控制;以及(b)在高达大约100kHz的平均频率下频繁编码的脉冲发生。
再次参照图6,在实验室时间T中通过一组时间图表描述了交替增益61的方法。图表62描绘了数据获取系统(DAS)按每500μs或者大约每500μs的周期性启动。图表63描绘了以交替工作比施加的推动脉冲(其可以例如施加至图3中的反射极电极12)的时序。如图2的喷射阶段25图所示,当施加推动脉冲时,电子束被偏转。脉冲断开时间的持续时间在发射之间变化,使能电子束中离子累积的持续时间的变化,伴随离子信号强度的按比例变化。在图表64中描绘了可变质谱强度。如曲线图65描绘的,在至少两个分开的存储器缓冲器内合计谱。总和1将具有用于分析较弱质量峰的最大信号强度(强发射),而强峰可以使分析器的空间电荷极限饱和,TOF检测器、放大器和DAS的动态范围也饱和。那些强质谱信号在较弱发射(短电子开放时间)处不会使数据系统饱和以及将从总和2谱被提取。方案66显示,由于在将动态范围扩展两个数量级的同时每5-10次发射(有足够信号统计)仅可以获取一次弱发射(例如,在大约5μs与50μs的开放时间之间)以及可以以80%的工作比获取强发射(在500μs电子开放时间处),因此可以以对灵敏度的轻微妥协配置这种交替。
再次参照图6,用实验室时间T通过时间图表描绘了频繁编码的脉冲发生的方法67。图表62描绘了按照500μs时间周期(与MR-TOF分析器中最长离子飞行时间相对应)触发数据获取系统的周期性脉冲。图表68示出了以500μs持续时间串施加的推动脉冲。在变焦视图68Z中更清楚地看到脉冲串的细节。通过公式69描述具有唯一时间间隔的示例串:Tj=T1*j+T2*j*(j-1),其中j是串中的脉冲数,T1是脉冲之间的平均周期(典型地10μs),以及T2是与峰宽相比更宽选择的增量(比方说,为20ns)。WO2011135477(通过引用合并于此)描述了谱编码和解码的其它细节。在高分辨率MR-TOF分析中,EI谱足够稀疏以使谱群体增大30倍与50倍之间。如有必要,则可以通过部分质量过滤(其可以由例如图3中的透镜偏转器10实现)减小谱群体,从而以用于目标分析的质量范围的适度折衷为代价使工作比最大化。在先前的估计中,每包(即,每次发射的每个质量峰)的最大离子数被估计为1E+6个离子。将每次发射的离子累积时间降低30倍到50倍之间将使该最大数量降低至每个包2-3E+4个离子之间。该降低足以在整个动态范围中维持1-2ppm的质量准确度。
长寿命检测器
为了应对所公开so-EI-MR-TOF装置实施例的巨大离子通量(达到高达1E+9离子/秒),可以利用下列新组合大大增强检测器的动态范围和使用寿命。
参照图7,所改进的飞行时间检测器的实施例71包括导电转换器72、磁体73、由导电网孔74涂敷或者覆盖的闪烁器75以及光电倍增器76。在某种意义上,除了检测器71实施例具有提高飞行时间性能的另外部件以外,检测器71与广泛使用的戴利检测器相似。图7还呈现了图3的MR-TOF分析器31的一部分,将检测器71实施例结合到通用检测器40的位置中。
在操作中,导电转换器72安装在Y-Z平面中,垂直于X轴以及平行于沿着离子包轨迹39撞击离子包的时间波前39F安装。此外,导电转换器72相对于MR-TOF分析器33的漂移空间35负浮置几百伏特(例如,在检测器71实施例中,与漂移空间35处的-5kV电势存在300V电势差)。离子击中具有5-6kev之间能量的导电转换器72(考虑来自so-EI源的加速度),从及随后对于GC-MS中分析的小分子(典型地低于500amu)以接近于一的离子-电子效率发射二次电子。所发射的电子通过导电转换器72电极与漂移空间35电极之间的300V差来加速,同时由磁体73形成的磁场沿着二次电子轨迹77进行转向。安装磁体73以沿着Y轴形成磁力线,用以使所发射的电子沿Z方向转向。将偏置调节为与给定磁场强度(在30至300高斯之间选择)相对应以提供电子到闪烁器75上的聚焦。磁体73的轴优选地从离子束的轴偏移以提供另外的Y方向二次电子约束(考虑磁力线的曲率),同时90度的磁转向提供天然的X方向电子约束。通过覆盖网孔的窗口78对沿着它们的轨迹77的二次电子进行采样以及随后将所述二次电子加速至正偏置闪烁器75。尽管闪烁器75的较高偏置(高达+10kV)优选用于较高信号增益,但是由于实际原因可能被限制。闪烁器75是具有每60-100eV的电子能量至少1个光子的高电子-光子效率的快速有机闪烁器(例如,St.Gobain的BC418或者BC422Q)。因此,10-15kV能量的单个二次电子形成至少15个光子。不管光子收集的有限效率(在我们的实验中被估计为大约20%的效率)如何以及不管PMT 76中的光发射极的有限光子效率(25-30%)如何,这允许可靠地检测几乎每个一次离子。
值得注意地,常规混合TOF检测器可以在闪烁器75前面采用另外的微通道(MCP)级以增强总体信号增益以及还可以在闪烁器75之上采用薄(1μm)铝涂层以防止闪烁器带电荷以及增强光子收集。那两个部件大大地限制这种常规混合TOF检测器的使用寿命和动态范围两者。所公开检测器的实施例71对那些问题进行缓解。由于所公开的对实施例71的改进消除了对MCP放大的需要,因此不存在MCP的饱和(已知在1E+7离子/秒/cm2的通量密度下出现),以及将到闪烁器75上的电子剂量减少100倍至1000倍之间(由于没有MCP放大)。也没有否则可能以低重复性抑制快速电子的薄铝涂层。因此,实施例71还消除了以大离子剂量破坏铝涂层的问题。作为替代,在0.3-1mm单元大小的导电网孔74处,沉积或者覆盖厚金属导电网孔74看起来足以通过1kV/mm的表面放电和泄漏提供电子电荷的静电去除。
在市场上可买到具有延长使用寿命300库仑(由输出电荷测量)同时提供相对较短(1.5ns)上升时间的PMT放大器(例如,Hamamatsu的R9880U)。在1E+6总增益和1E+9个离子/秒的平均离子通量下,输出电流为160μA(即,检测器71预计使用2E+6秒-在最大载荷下几乎500小时以及在标准载荷下至少一年)。利用外部PMT耦合(比方说,通过用于使光子通过的玻璃管),可以在不需要使仪器排气的情况下替换PMT模块76。外部PMT耦合还以如图6图示的先前已经描述的频繁脉冲发生模式帮助抑制从脉冲发生器进行拾取。
可以提高检测器71的线性范围(正常地通过标准电阻分压器由输出电流限制至100μA)。例如,最后几级可以由更强大的电源(至少几mA的电流极限)馈电以及由有源电路控制。为了增强检测器71的动态范围,将最后的PMT级76连接至缓冲电容器。但是那些标准解决方案可能不足以用于时间峰信号。通过使用下列,此处公开了动态范围的进一步提高:(a)源2、32、52中的频繁编码脉冲,其将检测器最大信号降低两个数量级;或者(b)交替增益脉冲,接着是具有快速切断以及迅速恢复的放大器。先前已经在本公开中对两个解决方案进行了描述以及在图6中进行了图示。如果采用下列方案,则还可以提高动态范围:(a)使用具有不同光收集效率的双PMT;(b)从不同PMT级得到信号;(c)使用具有双重(三重)增益输出的前置放大器;以及(d)使电子收集效率或者PMT增益在发射之间交替。
值得注意地,如果使用(a)常规(稀少脉冲)操作方案或者(b)具有短使用寿命的常规TOF检测器(对于标准MCP和非密封SEM,典型地为1库仑),则所公开的so-EI-MR-TOF仪器31、41、51将是不实际的以及不能想象的。所提出的脉冲发生方法-频繁编码的脉冲发生或者交替增益方案(在共同未决的申请中,通过引用合并于此)以及目前公开的长寿命检测器-确实解决了那些问题以及使so-EI-MR-TOF 31、41、51成为用于增强GC-MS分析的灵敏度和动态范围的实际解决方案。
软电离源
在一个实现方案中,优选地,除so-EI源2、32、52以外,GC-MS仪器具有至少一些软电离选项。NIST库中大约30%的化合物不形成分子离子,以及通过使用软电离选项增强它们的识别。在这里,我们提出了使化学电离CI、冷EI以及分子发生器耦合至so-EI-MR-TOF装置31、41、51的若干方式。
参照图8,示出了本公开的两个实施例81和85,其中so-EI源52被用作正交加速器,用于外部生成的离子84或者用于外部引入的分子束89。两者都可以采用TOF,诸如,图1中的单反射MS 3或者图3-5中的MR-TOF分析器33、53。
参照图8,本发明的GC MR-TOF的一个优选实施例81包括先前描述的so-EI-MR-TOF装置31、41、51,具有so-EI源32、52和MR-TOF分析器33、53(其在图8中未示出)。另外,将CI源82与so-EI源52正交地安装以及通过转移光学器件83(优选地具有加热的准直仪)进行耦合。在操作中,CI源82形成连续离子束84,其通过转移光学器件83在空间上聚焦到so-EI源进入口52a上。可以在尝试将外部生成的离子累积在电子束的静电阱内时开启电子束。然而,在本实施例中,我们提出切断电子束以及依赖正交加速度的常规方法。连续离子束84的一部分由反射极12进行脉动加速。优选地,将连续离子束84的能量维持在5eV与15eV之间以使离子轨迹56的倾斜最小化。由一对透镜偏转器10对倾斜的离子包进行转向以使包轨迹56与MR-TOF分析器33、53中的离子路径对准。优选地,在频繁编码时操作脉动加速以增强仪器的工作比。尽管该方法可以折衷工作比和CI分析的分辨率,但是它允许在so-EI-MR-TOF仪器31、41、51中在软CI与标准EI电离方法之间直接交替。
再次参照图8,GC-MR-TOF的又另一个优选实施例85描绘了与外部分子束发生器86耦合的so-EI源52。分子束发生器86包括喷嘴室87、以大约100mL/min供应氦气的端口87G、撇除器88以及另外的抽吸端口87P。优选地,另外的抽吸端口87P连接至涡轮泵32P的差动入口,将源室抽空(即,同一发生器可以用作如在WO2013163530中描述的分子分离器,该申请通过引用合并于此)。在适当气体动力设置下(即,在大约0.1mm的小型喷嘴、撇除器88的1mm开口以及等于至少10L/s以及更优选地70-300L/s的充分抽吸87P下),分子束发生器86形成以2-3km/s速度运送分析物分子的振动冷分析物分子的阱引导的分子束89(估计两个或者三个马赫数以及1km/s的氦载气热速度)。射束被引导到so-EI源52的源室11中。与标准EI方法相比,内部能量冷分子的电子电离较软以及形成强得多的分子离子。因此,所形成的离子将保持分析物速度以及预计具有显著的能级(例如,对于300amu的离子在3km/s的速度下为14eV)。连续射束可以由收集器90监控,该收集器90驻留在越过源室11出口孔的so-EI源52内。优选地,so-EI源52中的总开口为大约1cm2以将so-EI源52中的气体压力维持在0.1-1Tor以及限制分析物分子与残余气体之间的碰撞次数(例如,将它们限制到不超过几次)。连续分子束89的一部分由反射极12进行脉冲加速,以及离子包由一对透镜偏转器10进行偏转以使包轨迹与MR-TOF分析器33、53中的离子路径对准。优选地,在频繁编码时操作脉动加速以提高仪器的工作比。尽管该公开的方法可以折衷软EI的分辨率和工作比,但是它允许在实施例31、41、51中在软EI与标准EI电离方法之间直接交替。
参照图9,本公开的另一个实施例91包括如上面更详细描述的以及如图5图示的具有弯曲入口54的MR-TOF 53。实施例还包括形成连续离子束的化学电离源93以及连接至脉冲发生器95的脉动加速器(聚束器94)。连续离子束在空间上由透镜偏转器10聚焦以布置穿过准直仪59的离子通过以及提供在弯曲入口54之后聚焦的离子包39。聚束器94(优选地位于透镜偏转器10之后)对连续离子束的一部分进行加速。包聚焦在中间空间聚焦平面处以及由狭缝58进行能量过滤,从而接受适合于MR-TOF 53的包部分。优选地,根据频繁编码的脉冲发生方法操作聚束器94。如在共同未决申请(最初作为US61/973117提交以及通过引用合并于此)中描述的,该方法允许脉动转换达到高达10-20%的工作比。
再次参照图9,本公开的又另一个实施例97包括邻近so-EI源92安装的化学电离源93,其中so-EI源92充当空间聚焦透镜以及在一些实施例中可以充当脉动加速级。实施例允许操作以CI模式和EI模式两者设置的同一硬件。当使用CI电离时,so-EI源92传递离子束。当使用EI模式时,中性分析物分子穿过CI源93体积。
在实施例91和97两者中,促使CI源93喷射连续离子束或者准连续离子束。脉动加速器(实现为聚束器94)使离子包聚束(替换地或者另外地,so-EI源92的反射极12可以使离子包聚束)。能量过滤器(实现为弯曲入口54)使适配在与MR-TOF分析器53的能量接受度匹配的能量接受度内的离子的一部分通过。优选地,在频繁时间编码(EFP)时施加脉冲以增强分析的工作比。
本发明人在前面提到的以及合并的共同未决申请中用另外的细节对实施例91和95进行了描述。
关于so-EI-MR-TOF的结论
与在电子束中离子累积的常规开放式EI源相比,so-EI源提供亮大约十至一百倍的离子束(比较每相位空间的分析物信号)以及短几倍的离子包。本公开提出了用于有效耦合so-EI源的多个解决方案,包括用于空间和角度再聚焦的有效离子注入方案、用于减小离子束注入时MR-TOF分析器偏差的等时方案、针对so-EI源内和MR-TOF分析器内的空间电荷限制的问题的解决方案,以及提出了具有延长的使用寿命和增大的动态范围的检测器,用于检测大(即,高达1E+9离子/秒)通量。在没有这种新公开的解决方案的情况下以及在没有所公开亮度的so-EI源的情况下,EI-MR-TOF组合将是不实际的。
GC-MS-MS
可以通过使用MS-MS分析的特异性提高由于GC-MS的灵敏度和特异性的滞后而出现的GC-MS灵敏度的当前限制,不管MS1中的顺序母体选择时通常与工作比损耗相关联的另外的空间损耗如何。由于高GC再现性以及由于目标分析物化合物中的主要关注,GC-MS-MS分析不同于其它MS-MS分析(诸如,蛋白质组等中的LC-MS-MS),其中在分析之前已知目标化合物的母体质量和保留时间。按照保留时间的母体质量的前期映射允许选择单个母离子质量或者很少的母离子质量,以及随后使用MS-MS在大大提高分析选择性的同时不会降低信号强度。
如果提供下列,则so-EI源的发射度足够小以与TOF-TOF分析器相容:(a)母离子包的合适时间和空间聚焦;和(b)子离子包的合适时间和空间再聚焦和后加速。
如果使用内置在MR-TOF分析器中或者通过弯曲等时入口耦合的表面诱导解离(SID)碎裂单元,则可以在so-EI-MR-TOF仪器中实现MS-MS部件。本发明人的WO2013192161(通过引用合并于此)描述了将同一MR-TOF分析器用于两个MS级。还描述了以具有10-20%工作比的中等分辨率的母体选择(R1≈100)实现的综合MS-MS(即,平行或者全部质量),同时使用与频繁编码脉冲发生(EFP)组合的无冗余采样(NRS)的新复用方法。
如果进行多个调节步骤(诸如以中等离子能量将宽离子包聚焦到小尺寸的CID单元中以及对碎片进行加速和再聚焦),则还可以用碰撞诱导解离(CID)单元实现MS-MS部件。公开了用于改进该方案的多个其它装置,诸如so-EI源后面的聚焦反射器以及内置到CID单元中的时间离子选择器。所公开的装置还与NRS和EFP方法相容,用于大大提高分析的动态范围和工作比。
根据方法布置,MS-MS的效率显著地变化。下面公开了用于单反射TOF以及用于MR-TOF分析器的几个实际的MS-MS设置。
与现有技术TOF-TOF的区分
如US5739529、US6703608、US6717131、US6300627、US6512225、US6621074、US6348688、US6770870、US7667195、US8461521、WO2011028435、US2012168618和WO2013134165描述的,已经为MALDI离子源开发了各种串联TOF-TOF仪器,这些申请中的每一个通过引用合并于此。然而,MALDI是具有极小空间和能量发射度的固有脉动源,以及其主要形成分子离子,这使它们对于TOF-TOF来说很优秀。
由于EI源巨大的发射度、由于预计的EI形成离子的亚稳态衰变以及由于已经形成的通常通过使碎片与色谱时间相关来恢复的碎片谱,因此没有认为EI源与TOF-TOF相容。
表格1:比较DE MALDI、标准开放式脉动EI源与近来引入的半开放式so-EI源之间的初始离子包参数:
为了评估MALDI源中的离子包参数,我们假设100μm激光光斑、1-2ns的初始喷射事件、500m/s的轴向速度、150-200m/s的轴向和径向速度展度的喷射羽流以及施加具有1kV/cm场强度的提取脉冲之前的300ns延迟。在施加提取脉冲之前,假设非相关时间展度为1ns,以及假设能量展度为1eV(即,ΔT*ΔK=1ns*eV)。在300ns延迟之后,脉冲将扩展30微米,加速将引起30eV能量展度和2ns时间展度。不管60ns*eV的乘积如何,那些展度强烈地相关,其用于如在Marvin Vestal等人的US5760393、US5625184和US6541765(它们中的每一个通过引用合并于此)中描述的DE聚焦。非相关能量发射度保持1ns*eV。角度发散由75-100m/s速度(即,0.05eV)下的1000amu初始径向能量限定。在加速至5kV之后,全角度发散变成6mrad,以及因此空间发射度是0.5mm*mrad。
因此,MALDI源的空间和时间能量发射度与标准开放式EI源相比小三个数量级以及与近来引入的so-EI源相比小两到三个数量级。有几个其它差别。例如,MALDI TOF在20-30kV的加速度下工作而EI-TOF在1-5kV的加速度下工作。以及MALDI源是浮置的,而so-EI在接地电势处。最后,MALDI源在真空中,而so-EI源中的气体压力被估计为在0.1与1mTor之间。
存在EI源的TOF-TOF作为用于提高分析特异性的装置的实用性。由于大多数射束扩展发生在CID单元中以及亚稳态反冲(recoil)时,因此发明人发现尽管母离子的发射度大得多,也可以使碎片离子的发射度与MALDI-TOF-TOF中的那些离子的发射度相当。发明人还发现,为了实现可接受的碎片离子参数,人们应当在碎裂单元处施加同时空间和时间聚焦以及使那些单元实际上尽可能短。
母离子和碎片离子参数的估计
TOF-TOF方案的分析和优化将需要估计各种MS-MS级处的离子包参数,将该离子包参数总结在表格2中。为了下列数值示例的相容性,让我们进行这种估计。我们假设质量500amu的母离子和质量100amu的碎片离子。我们假设TOF分析器中的5keV离子能量以及1m长TOF分析器中的3m飞行路径(L)。我们假设碎裂之前的母体能量为500eV,(即,母离子根据V2=2eU/m按照14mm/μs速度移动)。
在软碎裂时(源后衰变,与氦原子碰撞或者与表面滑动碰撞),碎片平均速度保持大约相同,这意味着100amu碎片以100eV平均能量移动。我们假设亚稳态碎裂时的最大反冲能量是1eV,这意味着100amu的碎片在质量中心以1.4mm/μs的速度反冲。这引起+/-10%的最大速度展度以及半最大值下的10%宽度的速度展度(VFWHM=3%)。这还意味着就在碎裂之后的出现碎片相对于母体轨迹100mrad的角度发散。考虑从100eV能量到5keV能量的后加速,碎片角度发散随着能量的平方根而降低以及变成14mrad。值得注意地,1eV反冲能量的碎片离子的角度发散与碎片质量无关以及可以由(1eV/5000eV)的平方根来估计。
当布置CID单元时,我们假设单元中气体压力P的调节平均引起一个碰撞(即,碰撞离子的部分等于1-1/e)。假设500amu离子的横截面为100A2(即1E-14cm2)。那么,对于1atm下n=2.7E+19分子/cm3,单个碰撞平均值的情况发生在长度*压力乘积L*P=3cm*mTor下。
我们假设氦气(m=4amu)。考虑动量守恒,M=500amu母离子的碰撞将导致m/M动量和能量损耗。这与质量中心大约4eV碰撞能量相对应。我们假设这种能量足以引起相对较小的分子离子以及已经激发的分子离子的碎裂。那么在FWHM=8mrad下,可以将母离子的最大角度展度估计为+/-8mrad。然而,不管由碰撞本身引起的低速度和角度展度如何,碎裂可能在1ev的相同反冲能量下发生,引起碎裂单元中100mrad的发散以及TOF分析器中14mrad的发散。值得注意地,在发散估计中,气体碰撞与碎片反冲相比保持小因素,即使针对小的母体质量(低至50amu)以及与碎片质量无关。还值得注意地,从碎片散射的角度来看,可以使用允许较小母体能量的较重气体。
当布置与表面(SID)的滑动碰撞时,我们假设离子能量沿着滑动离子路径的保持以及1eV的径向能量展度,该1eV的径向能量展度与+/-50mrad的发散相对应。与1eV反冲能量结合的这种发散预计引起单元中140mrad的角度发散以及TOF分析器中的20mrad发散。
在表格2中呈现这种估计的结果。此时,我们对下列进行强调:尽管越过so-EI源的一次射束的发射度比MALDI源大100倍(即,50对比0.5),但是它小于经过CID单元的发射度(200mm*mrad)。
表格2:所预计离子包参数的总结
参照图10,在所有速度和角度分布的计算中,我们假设最大展度比半最大处全宽度Max=2FWHM宽大约两倍。在方案101中,将初始离子方向与反冲方向之间的角度注释为β,各向同性反冲或者CID散射时的概率(立体角)与Abs[sin(β)]成比例。假设反冲速度的cos2(V/Vmax*π/2)分布的最简单模型,则在图表中呈现速度P(V)和角度P(a)概率分布,支持Max=2FWHM的关系。
穿过MS-MS的so-EI源的聚焦
某个有限长度碎裂单元内的离子角度散射增大碎片离子包的发射度(参见,表格2)。在所有情况下,预计碎片反冲提供在碎裂单元中FWHM为100mrad以及在TOF2中FWHM为15mrad的最宽角度发散。
如果布置宽离子包(10mm)的碎裂,则离子包发射度仅仅适配单反射TOF的接受度。对于L=3m的TOF2分析器,离子包将发散45mm,其尤其在使用图7具有8mm宽PMT窗口的长寿命检测器的情况下引起损耗。另外,宽离子包的再聚焦很可能增加显著的时间偏差。
在这里,我们公开了适合于so-EI源的通用解决方案。考虑一次离子束的全角度发散为在5kV下5mrad(FWHM=2.5mrad)以及在500eV下15mrad(FWHM=7.5mrad),母离子到碎裂单元中的空间聚焦提供一个解决方案。假设在空间聚焦时保留相位空间(意味着低偏差系统),则可以将射束从10mm*15mrad再聚焦为2mm*75mrad。随后,在碎裂单元中散射之后,总角度发散(增加为100mrad反冲发散的正方形)在2.5mm直径下将是130mrad(即300mm*mrad)。在从100eV到5keV的后加速之后,碎片离子的总发散将经历到20mrad(FWHM)的7倍降低(随着平均能量比的平方根),以及碎片离子的发射度将变为40-50mm*mrad(FWHM)。所公开的母离子聚焦提供3倍发射度提高以及使其与MR-TOF分析器的接受度相容。对于具有紧凑并且长寿命的检测器的单反射TOF MS分析器,如果不使用碎片的空间聚焦,则传输提高九倍。如果使用碎片空间聚焦,则透镜系统的球面偏差随着离子包直径的平方而升高,以及三倍发射度降低预计使球面飞行时间偏差下降九倍。
再次参考图10,相位-空间图102图示了母体聚焦到碎裂单元中的优点。较小(虚线)椭圆与母离子相对应以及较大(白色)椭圆与碎片相对应。与母离子到碎裂单元中的空间聚焦相对应的左侧图表为碎片离子提供最小发射度(椭圆面积)。除减小发射度以外,空间聚焦帮助在接近完全透射时将离子束限制到CID单元的紧密孔口中。
还注意到,如果使用在一个方向上具有大3-4倍(与so-EI源相比)的空间发射度的标准开放式EI源,意味着通过有限接受度的CID单元和TOF分析器至少低10倍的透射,则离子损耗将是毁灭性的。
除了由能量分配效应(即,碎片离子EF的能量与碎片质量MF成比例降低:EF=EM*MF/M)和初始离子的大能量展度聚集的问题以外,在时间-能量空间中存在非常类似的问题。迫切需要在碎裂单元中设置中间时间聚焦平面,理想地与时间选择器(TIS)平面相结合。随后,该平面成为TOF2级的中间时间焦点平面。在从500eV后加速到5000eV之后,能量展度变得与单反射TOF的能量接受度(在R=10K下,25%)和MR-TOF的能量接受度(对于R=50K,10%)相容。
so-EI的最大挑战在于在限制聚焦系统偏差的同时与空间和时间聚焦平面两者结合。在这里,我们提出两个新的解决方案:(a)在源后面使用具有内置透镜的无栅镜;以及(b)使用空间聚焦无栅加速器,其模拟无栅离子镜的一半。
源后衰变(PSD)
如在通过引用合并于此的US6300627(Bruker的LIFT)中描述的,已经为具有单反射TOF分析器的MALDI源开发了采用源后衰变(PSD)的TOF-TOF方法。在第一线性TOF分支(leg)内出现源后衰变。由位于第一时间焦点平面处的时间离子选择器(TIS)门(例如,由Bradberry-Nielsen双极导线门(BN门))选择与感兴趣的特定母离子相对应的碎片。优选地,在明显较小的加速电势处布置第一TOF分支以及在TIS之后对所有碎片进行后加速,以在离子镜中更好地进行飞行时间聚焦。无场区内的碎裂易于受到所谓能量分配效应的影响-碎片离子的能量随着碎片与母体质量的比率而降低E’=E*m/M。在MALDI-TOF和MALDI-TOF-TOF中开发了几个飞行时间聚焦的方法。在与MALDI PSD相对应一个方法中,镜电势逐级下降以聚焦特定范围的碎片质量(适配到离子镜的20-30%的能量接受度中)。该方法很慢并且无效。在另一个方法中,由加速电压的至少2/3使碎片离子加速穿过TIS以适配在整个全体碎片离子的离子镜的能量接受度内。第三个方法与碎片全体的脉动聚束(脉动加速为特定平面处出现的离子提供飞行时间聚焦)相对应以提供时间选择。
已知电子碰撞电离形成亚稳态离子,以及人们可以假设使用PSD TOF-TOF方法。碎裂单元可以促使母离子碎裂穿过so-EI源。然而,当应用TOF-TOF方法时,人们应当考虑so-EI源提供大得多的空间和时间能量发射度(如表格1所示)。
参照图11,呈现实施例111以图示为so-EI源2应用常规TOF-TOF方法的问题。实施例111采用接地so-EI源2和单反射TOF 3。尽管MR-TOF选项也被考虑在内,但是为简单起见示出了单反射TOF。半开放式EI源2包括具有提取电极17的源室11,该提取电极17具有在0.1cm2与1cm2之间的提取孔口27以及具有正偏置的狭缝14。在1mL/min的氦流下,气体压力被估计为0.1-1mTor。装置111还包括中间漂移腔室112,在板113中具有差动孔口以及电连接至具有在-300V与-1000V之间的中间加速电压下的狭缝的脉动加速板18,该狭缝优选地为脉动的。装置111还包括连接至脉冲发生器116的时间选择器门114以及连接至漂移腔室5的加速电压(典型地-5kV)的TOF入口网孔115。
在操作中,穿过so-EI源2出现有限量的亚稳态衰变。与标准开放式EI源相比源室11中的气体压力升高,这促进碰撞诱导解离(CID)。在提取电极17中的最优0.5cm2源开口(提取孔口27)处以及在穿过GC的1mL/分钟氦流下,我们计算源中的气体压力为大约1E-6巴,与具有100A2(1E-14cm2)横截面的500amu离子的3cm平均自由路程相对应。两个效应预计引起中间漂移腔室112中的亚稳态碎裂。板113中的差动孔口可以用于提供与氦分子的大约单个离子碰撞。作为数值示例,中间漂移腔室112中的气体压力为0.3毫巴以及中间漂移腔室112的长度为10cm。在碎裂之后,碎片在中间漂移腔室112的无场区域内以由TIS(时间选择器门114)设置(例如,通过将散射偏转关闭一段短时间)的母离子的速度飞行。
PSD-TOF-TOF方法的问题和解决方案
so-EI源的特异性(宽射束、大能量展度和到第一时间聚焦的短距离)使现有技术TOF-TOF方法成为很差的解决方案。
第一个问题是,如果远离so-EI源布置时间焦面,则母离子有大时间展度。为了布置5cm的时间焦距(母离子的任何合理时间选择需要的),必须使so-EI源中的场强度降低超过25倍(4伏特/mm)。作为估计,两级加速(在短得可以忽略的第二加速级处)的焦距LT=2an,其中a是第一级的长度以及n是穿过级的速度的比率。在LT=50mm以及a=5mm下,需要将n设置为5(即,加速场强度是4V/mm),这对于500amu使回转时间增大至大到不合理的值150ns。值得注意地,对于线性TOF MALDI,该问题在连续模式中的小相对能量展度下或者在使用如US5760393(其通过引用合并于此)中描述的延迟提取时柔和得多。
为了延长焦距以及减小回转时间,可以利用延迟提取操作源。对狭缝电势进行脉冲调节以在时间上锁定电子束以及按照微秒延迟施加离子提取脉冲。然而,如用实验方法在我们自己的实验中发现的,效果有限。由于这个原因,在这里我们公开了在so-EI源后面使用反射镜(如在下文中描述的以及在图12中图示的)以按照与源的实际距离调节时间焦面。作为数值示例,将焦距调节至LT=10mm以使加速场保持为100V/mm。时间选择器随后移动至下一个焦面中,该焦面可以更加远离源地移动以提供大约50至100的充分时间门分辨率。
本发明人的共同未决申请(通过引用合并于此)描述了替换解决方案,其中通过使用另外的聚束器使焦面更加远离源地移动。
由于穿过so-EI源的离子包的大宽度(7mm)而产生第二个问题。碎片反冲在TOF2级处形成30mrad(Max)的角度展度(表格2);因此,即使对于单反射TOF分析器,总包发射度也变得过高(200mm*mrad)。如果不施加空间聚焦,则离子包将在TOF分析器的3m飞行路径中扩展30-60mm。可以部分地通过将加速电势增大至大约20keV(MALDI的情况)解决射束聚焦到检测器上的问题,这对于低成本GC-MS仪器是不合需要的。还可以通过使用透镜系统解决该问题,然而,这在聚焦具有大发射度的宽且发散离子包时增加显著的时间展度。
为了降低碎片离子总发射度以及按照最小时间展度处理空间聚焦,我们公开了在碎裂之前将母离子空间聚焦成大约2mm大小的小尺寸射束。随后,碎片离子的发射度降低60mm*mrad(与没有所公开的聚焦的情况下的200mm*mrad相比)。为了在母离子聚焦步骤处减小球面偏差,在这里我们公开下列中的任一个:(a)使用具有内置透镜的后台离子镜,其补偿球面偏差;或者(b)使用在加速器内具有空间聚焦的so-EI加速级,其与方法(a)的离子轨迹和场的一半相似。由于反射离子镜允许靠近源设置中间时间聚焦以及从而使用法向加速场(100-200V/mm)以在500amu下使回转时间减小至7ns,因此反射离子镜是优选的。
由于下列的组合而产生第三个问题:(a)穿过so-EI源的母离子包的宽能量展度(先前描述为被估计为100-150eV);以及(b)PSD方法中的延长衰变路径。亚稳态衰变增加20%的速度展度(参见表格2)。在第一TOF分支(TOF1)中的10cm飞行路径处,碎片将与母离子分开+/-1cm和+/-700ns的飞行时间,这将产生时间和能量展度的大乘积ΔT*ΔK以及从而将损害TOF2级处的分辨率。由于母离子包中的大能量展度,脉动后加速(聚束,广泛用于MALDI-TOF-TOF中)将变得无效。为了使MS-MS有效,必须在距时间焦面短得多的距离处以及靠近时间焦面布置碎裂。在这里,我们提出在升高的气体压力下设置短(5-10mm)CID单元以缩短碎裂路径。为了引起单次碰撞(平均),将单元气体压力调节至3-6mTor。单元开口应当为至少2-3mm大小以使早先估计为聚焦到2mm大小的离子束穿过。为了避免过度气体负载,我们公开了将CID单元连同so-EI源一起安装在第一抽吸级中。在具有后镜的实施例中,so-EI源本身可以作为CID单元工作。替换地,我们公开了使用在滑动碰撞时工作的通过SID单元。为了提高碎片离子的时间能量发射度的相同理由,我们公开了使用短长度(3-5mm)的SID单元。
因此,so-EI源的特异性(宽射束、大能量展度和到第一时间聚焦的短距离)需要空间和时间聚焦的另外解决方案,也需要布置短碎裂单元的另外解决方案。
具有SID单元的实施例
再次参照图11,所改进的MS-MS装置117包括先前描述的so-EI源2和TOF分析器3、短(3-5mm)SID单元118以及由脉冲发生器116驱动的TIS门114。优选地(尽管不一定),另外的脉冲发生器连接至狭缝14中的至少一个。用平行通道(其可以是例如0.5-1mm宽以及3-5mm长)形成SID单元118。尽管优选地通道与TOF轴成大约5-10度的角度倾斜,但可以不同于该范围。通道的几何结构被设置为提供30-50%的通过透射。在板17中的提取孔口27附近(20-30mm)放置SID单元118。优选地,SID单元118可拆卸,用于在仅MS与MS-MS机制之间切换。以及,优选地,为了减小SID碎裂时的电荷转移,用真空润滑油(诸如,用具有在1E-7Tor范围中或者以下的蒸汽压的长氟聚合物)涂敷SID单元118。
在一个操作模式中,在对反射极电极12施加喷射脉冲之前,通过对大约5-10μs的狭缝14施加负脉冲来关闭电子束。在延迟期间,对于50meV能量的500amu离子具有0.14mm/μs热速度(在so-EI源的实验研究中确定)的离子云将从1-1.5mm扩展到4-5mm。随后,速度变得与离子位置强烈地相关,以及可以将提取脉冲幅度降低至20-30V/mm(例如,以10mm加速隙使用200-300V脉冲幅度),同时对于500amu离子仍然维持7ns不相关回转时间。在板17的提取孔口27与SID单元118之间将离子加速至大约500eV,假设足以在使与通道表面的碰撞滑动5-10度时诱导SID碎裂。滑动碰撞时的表面诱导解离预计引起径向和轴向能量展度-两者都在1eV内。碎片预计以大约相同速度(在母离子速度的+/-10%内)移动。在SID单元118附近设置TIS门114(其可以例如包括已经描述的BN门)以使时间能量空间中的离子包展度最小化。穿过TIS门114将碎片离子加速至5kV能量以适配TOF分析器3的能量接受度。可选地,穿过SID单元118对碎片进行脉冲加速,用于时间聚焦到TOF检测器7上(例如,通过利用聚束方法)。
MS-MS装置117提供几个优于实施例111的改进。第一,它使焦面距离延长2倍-3倍(即,延长20-30mm)。第二,它使焦面与碎裂区域匹配。第三,它减小由于使用短单元引起的碎裂时的时间展度。第四,它减小由于时间聚焦到碎裂单元上引起的时间能量空间中的展度。由于碎片反冲,相对速度展度的最大值为+/-10%以及FWHM为10%。按照14mm/μs速度的射束在200ns内穿过3mmSID单元118以及20%的速度变化引起40ns时间展度(FWHM),该时间展度尽管很显著,但是与实施例111的中间漂移腔室112处的700ns展度相比仍然小得多。然而,MS-MS装置117远非最优。它不采用一次离子束的空间聚焦(由于用于空间聚焦的到SID单元118的距离太短)以及因此,它形成碎片离子的大空间发射度。在后加速之后,碎片离子的角度展度被估计为在CID单元内200mrad以及在TOF2分支中30mrad。假设全宽度(10mm)离子包,则空间发射度在TOF2分支中(在TOF分析器3内)为300mm*mrad,其即使对于单反射TOF也仍然很大以及显著地高于MR-TOF分析器的接受度(40-50mm*mrad)。此外,SID表面靠近热离子源引起另外的源污染危险。在下列描述的实施例中公开了那些问题的解决方案。
优选MS-MS实施例
参照图12,本公开的串联MS装置121的一个优选实施例包括半开放式(so-EI)源2、飞行时间质谱仪3、碎裂单元124(在图12中示出为CID单元)以及无栅空间聚焦离子镜123。so-EI源2电离体积(即,板12与17之间的空间)针对分析物分子的浓度具有0.1cm2与1cm2之间的总开口以及具有正偏置狭缝14,用于保留离子以及去除二次电子。所示CID单元124具有氦线路供应124g和时间离子选择器TIS双极网孔124s。单元优选地具有2-3mm开口、5-10mm长度以及用氦气填充至大约3-6mTor气体压力以平均布置一个离子-气体碰撞。单元位于由泵2P抽空的第一差动抽吸级内。来自CID单元的气体负载看起来与来自气相色谱仪的气流(1mL/min)相当。TOF MS 3可以是单反射TOF或者多反射TOF。TOF MS 3的漂移区5包括在CID单元124之后大约50-100mm设置的透镜。优选地,CID单元124的出口和漂移区5的入口形成弱聚焦加速透镜。
在操作中,在源2中累积离子之后,对顶板17施加推出脉冲(比方说按照10mm电离隙1000V幅度),这迫使离子以平均K=500eV能量以及按照大约ΔK=100eV的能量展度飞到镜123中。无栅离子镜123被设计用于焦面中X|X=0空间聚焦以及T|K=0时间每能量聚焦,该焦面与碎裂单元124的中心和双极网孔124s重合。由物理空间中的离子轨迹图示空间聚焦以及由具有距离-时间轴的图表122图示时间-能量聚焦。具有大初始X和零初始角的轨迹126聚焦到CID单元124的中心中(X|X=0)。轨迹127与零初始X和中等初始角a(先前在本公开中评估为在500eV下2a=15mrad)相对应。由于离子源2接近于CID单元124,因此最初发散轨迹将转换成平行光束,因为应归于反向轨迹的原理X|X=0(平行-点在反向轨迹中还意味着点-平行)。对于轨迹127的射束大小可以被估计为15mrad*100mm=1.5mm(假设100mm的源-镜盖距离)。轨迹126可以聚焦到非常紧的射束中但是在50mrad全发散下,该50mrad全发散被示出为与CID单元124中得到的全发散相当。与常规透镜相反,具有内置透镜的离子镜能够去除球面偏差(即,在T|x=0下,T|xx=0)。镜还补偿多个其它偏差,诸如T|k=0和T|kk=0、T|a=0。
由X-T图表122图示飞行时间聚焦。曲线128和129与起始于距电子束中心的极限X距离的离子相对应。因此,它们得到不同量的能量。曲线128和129的交叉与时间聚焦相对应(即T|k=0)。穿过源出现第一时间焦面以及在CID单元124的中心出现第二时间焦面。虚线指示X-T图表122与装置121中的位置之间的坐标X对应关系。图表中的插图围绕CID单元124的X放大。尽管初始轨迹128与129相交,但是新生碎片将具有由曲线130示出的稍微不同的速度。那些曲线130将源自初始曲线128和129。然而,尽管T-K相关性中出现一些扩散,但是可以通过使用短CID单元124(5-10mm)减小非相关时间展度。考虑碎片速度中+/-10%的差,非相关时间展度可以被评估为在CID单元124中花费的时间的20%以及被评估为20ns。因此,以20ns的准确度,CID单元124成为具有最小时间展度和大能量展度的有效发射器,已知其通过单反射TOF或者MR-TOF MS进行时间聚焦。可选地,对CID单元124施加聚束脉冲,用于压缩TOF检测器上的离子包。如我们早先描述的,谨慎设计的加速级可以提供具有最小球面偏差的空间聚焦。
参照图13,本公开的另一个优选串联MS 131实施例包括半开放式源2、飞行时间质量分析器3、碎裂单元134和空间聚焦透镜133。形成加速器的板12和17被设计为提供空间聚焦透镜,模拟离子镜的一半。串联MS 131与非常类似的装置121的不同仅在于使用不同的空间聚焦装置-装置121利用具有内置透镜123的镜以及串联MS 131利用具有内置透镜133的加速器。
再次参照图13,本公开的另一个串联MS 132实施例包括半开放式源2、飞行时间质量分析器3、透镜133、具有由氟聚合物涂敷的探测器134P的表面诱导解离单元134和时间选择门134s。
在操作中,对板17施加推出脉冲,用于朝SID单元134发送离子包。时间选择门134s利用双极导线门选择离子包,该双极导线门打开较短时间同时允许母离子以及随后用于使中等频带的碎片离子穿过。尽可能靠近SID单元134表面设置时间选择门134s。母体选择基于如在WO2013192161(通过引用合并于此)中描述的变化轴向能量。在强减速度下,轴向能量的不足使得离子反射或者至少强烈地转向。在母离子击中表面以及形成慢速碎片离子之后大约1-2μs延迟之后,对电极SID单元134和探测器134P施加加速脉冲,发射碎片离子。串联MS 131具有非常有限的质量选择能力,以满足母离子和透射碎片离子的选择两者。在一个实际示例中,门可以充当低质量截止,其对于在存在主要形成低质量离子的强烃基质时提取MS-MS谱仍然很有用。
本发明人的WO2013192161申请(通过引用合并于此)描述了在MR-TOF分析器内布置SID碎裂的多个先进方案。在这里,我们公开了当使用如图12-13所示的一次离子束的空间聚焦方案时,所有那些MR-TOF-SID-MR-TOF方案将大大得益于使用so-EI源代替标准开放式源。
参照图14,本公开的实施例141包括MR-TOF串联,具有外部so-EI源142和通过弯曲等时入口143和146耦合至MR-TOF分析器144的外部SID单元149。WO2013192161通过引用合并于此。
在操作中,除TIS门147上的非冗余采样和SID脉冲发生的时间编码延迟以外,在这里我们公开了通过外部so-EI源142的频繁脉冲发生的另一个维度的编码-编码。较高维度的编码增加较高程度的非冗余度以及还允许较高工作比的串联。
使用外部so-EI源142与开放式源相比大大增大离子源的亮度。本公开中公开的空间再聚焦的新方案(参见,例如图12-13)还提高MR-TOF分析器与so-EI源的相容性。
参照图15,串联MS的实施例151包括内置到MR-TOF分析器33中的so-EI源2和碎裂单元152。so-EI源2由差动抽吸壁包围以及由泵2P抽空。如先前描述的以及在图3中图示的,源是倾斜的。实施例151与装置3的差别在于使用碎裂单元152。为了减小气体负载,包围CID单元152的护罩连接至第一差动抽吸级2P。护罩和CID单元152的离子光学方案被优化用于提高离子传输。入口部分提供到单元中心上的局部空间聚焦以及出口部分提供发散包到近平行射束的转换。
除所描述的示例性MS-MS系统以外,可以基于此处公开的so-EI-MR-TOF组合系统构建其它TOF-TOF串联。这种系统通常包括下列组的若干元件:(i)定时离子选择器,用于选择越过离子源的母离子;(ii)so-EI源2后面的无栅离子镜,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iii)内置到so-EI源2中的弯曲场加速器,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iv)表面诱导解离SID单元,面向一次离子包;(v)表面诱导解离SID,相对于母离子包轨迹以滑动角布置;(vi)具有在气体压力P下不到1cm的长度L的短CID单元内的碰撞诱导解离CID,被调节以将乘积P*L维持在1cm*mTor与5cm*mTor之间,与母离子的单次平均碰撞相对应;(vii)碰撞诱导解离CID单元,通过选择0.1cm2与0.3cm2之间的源开口以布置在源2内;(viii)越过碎裂单元的脉动加速器;(ix)越过碎裂单元的空间聚焦透镜;(x)越过碎裂单元的碎片离子包的后加速;(xi)越过碎裂单元的转向装置。
尽管本说明书包括许多细节,但是这些不应该看作对本公开的范围或者可以要求的范围的限制,而是应看作对本公开特定实现特有的特性的描述。还可以在单个实现中的组合中实现本说明书中描述的单独实现的上下文中的某些特性。相反地,还可以单独地在多个实现中或者在任何合适的子组合中实现单个实现的上下文中描述的各种特性。另外,尽管上面可能将特性描述为在某些组合中起作用并且甚至最初要求这样,但是在一些情况下来自所要求的组合的一个或者多个特性可以从组合中删除,并且所要求的组合可以指向子组合或者子组合的变型。
类似地,尽管在附图中以特定顺序对操作进行了描绘,但是这不应该被理解为要求以所示特定顺序或者连续顺序执行这种操作,或者执行所有图示的操作以实现期望结果。在某些环境中,多任务和并行处理可以是有利的。另外,上面描述的实施例中各种系统组件的分离不应当被理解为在所有实施例中需要这种分离,而应当理解所描述的程序组件和系统通常可以在单个软件产品中集成在一起或者封装到多个软件产品中。
已经描述了若干实现。尽管如此,应当理解可以在不背离本公开精神和范围的情况下作出各种修改。相应地,其它实现在下列权利要求的范围内。例如,权利要求中叙述的动作可以以不同顺序执行以及仍然实现期望结果。

Claims (37)

1.一种色谱质谱仪,包括:
单级或者双级气相色谱仪;
半开放式EI源,限定具有在大约(0.1至1)平方厘米之间的面积的源开口以及用于电子束的正偏置狭缝,其中所述源布置在单独的差动抽吸级中、提供所述电子束中的离子存储以及提供累积离子的脉动喷射;
多反射飞行时间分析器,具有周期透镜以及飞行时间检测器;以及
接口,包括一组聚焦和偏转离子-光学元件,使所述离子源与所述分析器耦合,使得所述离子源的空间发射度与所述分析器的接受度匹配以及由于所述空间发射度的离子信号的时间变宽在所述检测器处至少被消除至一阶泰勒展开。
2.根据权利要求1所述的质谱仪,为了通过频繁编码脉冲发生增大动态范围,还包括:(i)同步时钟,能够按照编程的非均匀时间间隔以不超过10ns的时间增量触发;(ii)脉冲发生器,能够按照至少30kHz的平均频率进行脉冲发生;以及(iii)数据系统,用于谱解码。
3.根据权利要求1或者2所述的质谱仪,其中从由下列组成的组选择所述接口:(i)差动抽吸室,容纳所述离子源以及放置在所述离子镜之间;(ii)一组等时弯曲静电扇区,用于所述源的外部安装;(iii)一组等时弯曲静电扇区,用于使离子轨迹移位;(iv)能量过滤器,由静电扇区或者与空间聚焦透镜组合的偏转器组成;(v)具有脉动电力供应的透镜偏转器,用于使氦离子偏转或者用于粗略的质量选择;(vi)无栅离子镜,放置在所述离子源后面;(vii)弯曲场加速器,内置到所述源中,用于等时空间聚焦;(viii)差动孔口,放置在空间聚焦的平面处以及接着是空间聚焦透镜;(ix)伸缩透镜系统,用于以加宽角度展度为代价减小空间包大小;以及(x)它们的组合。
4.根据权利要求1至3所述的质谱仪,其中从由下列组成的组选择所述MR-TOF分析器的参数:(i)在0.5m与1.5m之间的盖至盖距离;(ii)具有5mm与20mm之间的透镜间距的周期透镜;(iii)在7与30m之间的离子飞行路径;(iv)在3keV与10keV之间的加速电压;以及(v)它们的组合。
5.根据权利要求1至4所述的质谱仪,其中所述MR-TOF分析器具有平面或圆柱对称性。
6.根据权利要求1至5所述的质谱仪,还包括离子转移光学器件,用于将外部离子引入到所述so-EI源中以及从由下列组成的组选择的一个源中:(i)化学电离源;(ii)光化学电离源;以及(iii)具有调节的等离子体的离子源。
7.根据权利要求1至6所述的质谱仪,还包括用于来自从由下列组成的组选择的一个源的分析物分子的外部传送的入口:(i)分子束发生器;(ii)分子分离器,用于分离氦流和分析物流;以及(iii)它们的组合。
8.根据权利要求1至7所述的质谱仪,其中所述检测器包括磁性离子至电子转换器、由导电网孔覆盖的闪烁器以及具有延长使用寿命的光电倍增器。
9.根据权利要求1至8所述的质谱仪,用以提供MS-MS能力,还包括从由下列组成的组选择的至少一个装置:(i)定时离子选择器,用于选择穿过所述离子源的母离子;(ii)所述so-EI源后面的无栅离子镜,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iii)内置到所述so-EI源中的弯曲场加速器,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iv)表面诱导解离SID单元,面向一次离子包;(v)表面诱导解离SID,相对于母离子包轨迹以滑动角布置;(vi)气体压力为P的具有不到1cm的长度L的短CID单元内的碰撞诱导解离CID,为在与母离子的单次平均碰撞相对应的1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)碰撞诱导解离CID单元,通过选择0.1与0.3cm2之间的所述源开口来布置在所述源内;(viii)在碎裂单元之后的脉动加速器;(ix)在碎裂单元之后的空间聚焦透镜;以及(x)在碎裂单元之后的碎片离子包的后加速;(xi)在碎裂单元之后的转向装置;以及(xii)它们的组合。
10.根据权利要求1至9所述的质谱仪,还包括在所述源之后的脉冲发生器,用于从由下列组成的组选择的目的:(i)调节从所述源脉冲喷射的离子包的时间焦面;(ii)调节从所述源脉冲喷射的离子包的能量或者能量展度;以及(iii)将所述源之后的连续流转换成离子包,接着进行所述离子包的能量过滤。
11.一种色谱质谱分析的方法,包括下列步骤:
通过单级或者双级气相色谱法分离分析物混合物;
将分析物分子注入到具有在大约(0.1至1)cm2之间的开口的电离室中,用于提高分析物分子对比化学本底之间的比率;
通过穿过狭缝的电子束电离分析物分子,所述狭缝相对于围绕电离体积的电极正偏置,用于保留分析物离子以及去除二次电子;
脉动喷射离子包;
调节空间展度以及过滤所述离子包的能量展度以匹配之后的质谱分析的接受度;
调节所述离子包的时间波前倾斜度以在离子检测器处达到离子信号的最小时间展度;
离子包的脉动或者连续转向,用于对准;
在由无场区域分隔的无栅离子镜的电场之间的多次等时反射时在时间上分离离子包,以及由放置在所述无场区域中的周期聚焦透镜将所述离子包空间限制在漂移方向上;
用飞行时间检测器检测所述离子包以形成波形信号;以及
分析所述信号以提取质谱以及色谱-质谱信息。
12.根据权利要求11所述的方法,其中为了增大所述分析的动态范围,按照与所述时间分离步骤处的离子飞行时间相比至少小10倍的周期布置所述离子喷射步骤;以及其中所述方法还包括:
按照不小于离子包时间宽度的时间增量对相邻脉冲之间具有通常唯一的时间间隔的喷射脉冲进行编码;以及
对与所述谱分析步骤处的多个喷射脉冲相对应的部分交叠信号进行解码。
13.根据权利要求11或者12所述的方法,其中所述离子再聚焦和在所述离子电离步骤之后对准离子包的步骤包括从由下列组成的组选择的至少一个步骤:(i)容纳所述离子镜之间的所述电离室以及对围绕所述室的壳体进行差动抽吸以使离子包转向最小化;(ii)在所述离子镜外部容纳所述电离室以及通过一组等时弯曲静电扇区的电场转移离子包;(iii)用一组弯曲等时静电扇区的电场使离子轨迹移位;(iv)在静电扇区内或者通过使所述离子包在空间上聚焦和偏转来对离子包进行能量过滤;(v)使在某个预设质量阈值以下的氦离子或者离子脉动偏转;(vi)通过放置在所述电离室后面的无栅离子镜进行离子包的等时空间聚焦;(vii)利用布置在所述电离室内以及所述电离室之后的等时弯曲场对离子包进行脉冲加速;(viii)将离子包空间聚焦到差动孔口中,接着穿过所述孔口空间聚焦以形成基本上平行的离子轨迹;(ix)所述离子包的伸缩聚焦,用于以加宽离子包角度展度为代价减小空间包大小;以及(x)它们的组合。
14.根据权利要求11至13所述的方法,其中所述离子时间分离的步骤特征在于下列中的至少一个:(i)以0.4与1.5m之间的盖至盖距离布置所述离子镜;(ii)按照5mm与20mm之间的周期在漂移方向上布置所述周期空间聚焦;(iii)布置7与30m之间的离子飞行路径;(iv)通过3与10keV之间的电压对所注入离子包进行加速;以及(v)它们的组合。
15.根据权利要求11至14所述的方法,其中离子镜的电场具有平面或圆柱对称性。
16.根据权利要求11至15所述的方法,还包括:
在所述电离室外部形成分析物离子,以5eV与100eV之间的离子能量将外部形成的离子的连续离子束转移到所述电离室中;
将所述连续离子束的一部分脉冲加速到飞行时间分离器中;以及
对于飞行时间分离步骤使如此形成的离子包转向以对准它们的轨迹,其中从由下列组成的组选择所述外部电离方法:(i)化学电离;(ii)光化学电离;以及(iii)利用调节的等离子体的电离。
17.根据权利要求11至16所述的方法,其中所述离子注入到所述电离室中的步骤包括下列中的一个:(i)利用超音速气体射流的准直在差动抽吸系统内形成振动冷分析物分子的引导分子束;(ii)在差动抽吸系统内分离色谱气流和分析物分子流的一部分;以及(iii)它们的组合。
18.根据权利要求11至17所述的方法,其中所述检测步骤包括:
在平行于离子包时间波前的表面处的离子-电子转换;
通过所述转换表面与所述无场区域之间的电势差使电子加速;
使二次电子在30度与180度之间进行磁转向;
将所述二次电子加速至由导电网孔覆盖的闪烁器以用于去除静电带电,从而每单个电子产生多个光子;以及用光电倍增器检测所述光子。
19.根据权利要求11至18所述的方法,为了提供另外的MS-MS能力,还包括从由下列组成的组选择的步骤:(i)在所述电离步骤之后的母离子的定时离子选择;(ii)按照相反方向将离子喷射到放置在所述电离室后面的无栅离子镜的静电场中以及将一次离子包同时时间和空间聚焦到在所述电离室内部形成或者在所述电离室之后放置的碎裂单元中;(iii)将一次离子同时时间和空间聚焦到在所述电离室内以及在所述电离室之后的加速器的弯曲场内的碎裂单元中;(iv)在与平行于所述离子包的时间波前放置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的延迟脉动提取;(v)在与相对于母离子轨迹以滑动角布置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的静态或者脉动加速;(vi)布置在气体压力为P的具有在1cm以下的长度L的单元内的碰撞诱导解离,为与母离子的单次平均碰撞相对应的1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)通过在来自所述色谱仪的1ml/min气流下选择0.1与0.3cm2之间的所述室开口而布置在所述电离室内的碰撞诱导解离;(viii)在碎裂步骤之后的脉动加速;(ix)在碎裂步骤之后的空间聚焦;(x)在碎裂步骤之后的碎片离子包的后加速;(xi)在碎裂步骤之后进行转向;以及(xii)它们的组合。
20.根据权利要求11至19所述的方法,还包括:
针对从由下列组成的组选择的目的对离子包进行脉动加速:(i)在所述离子喷射步骤之后调节离子包的时间焦面;(ii)在所述离子喷射步骤之后调节离子包的能量或者能量展度;(iii)对所述电离室之后的连续流或者准连续流进行转换,接着进行所述脉动加速离子包的能量过滤步骤;以及(iv)它们的组合。
21.根据权利要求11至20所述的方法,其中所述离子包再聚焦步骤包括利用在2与5之间的转换因子将宽(7-10mm)以及低发散离子包(<5-6mrad)转换为大小较小(3-5mm)以及较宽发散(15-20mrad)包的步骤。
22.根据权利要求11至21所述的方法,其中为了提高所述分析的动态范围,所述方法包括使离子包强度(增益)在离子喷射之间交替以及记录与不同增益相对应的分开数据集的步骤,以及其中所述强度交替方法包括从由下列组成的组选择的一个:(i)使推出脉冲的持续时间交替以改变电子束电离的持续时间;(ii)使任何阶段处的离子包的空间聚焦交替,较早阶段的离子转移优先;(iii)使检测器增益交替;(v)使离子路径在宽开口与较小面积孔口之间交替;以及(v)它们的组合。
23.根据权利要求11至22所述的方法,还包括提高抽吸系统的分析物分子与化学本底的比率的步骤,从由下列组成的组选择的一个步骤:(i)用电子电离步骤处采用的多孔磁体的无电镀镍封闭或者覆盖;(ii)在源壳体的涡轮抽吸之后引入另外的气流以避免油从机械泵扩散;(iii)选择小尺寸的0.5至1L/s的机械泵以在机械抽吸线路中维持足够粘性的流动,从而阻止油扩散;以及(iv)它们的组合。
24.一种质谱仪,包括:
半开放式EI源,限定0.1与1平方厘米之间的源开口以及适合于提供累积离子的脉动喷射;
具有飞行时间检测器的飞行时间分析器;
碎裂单元,为了MS-MS能力并入所述TOF分析器中;以及
从由下列组成的组选择用于增强质谱仪的所述MS-MS能力的装置:(i)定时离子选择器,用于选择穿过所述离子源的母离子;(ii)所述so-EI源后面的无栅离子镜,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iii)内置到所述so-EI源中的弯曲场加速器,用于将一次离子同时时间和空间聚焦到碎裂单元中;(iv)表面诱导解离SID单元,面向一次离子包;(v)表面诱导解离SID,相对于母离子包轨迹以滑动角布置;(vi)气体压力为P的具有在1cm以下的长度L的短CID单元内的碰撞诱导解离CID,为在与母离子的单次平均碰撞相对应的1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)碰撞诱导解离CID单元,通过选择0.1与0.3cm2之间的所述源开口而布置在所述源内;(viii)在碎裂单元之后的脉动加速器;(ix)在碎裂单元之后的空间聚焦透镜;以及(x)在碎裂单元之后的碎片离子包的后加速;(xi)在碎裂单元之后的转向装置;以及(xii)它们的组合。
25.根据权利要求24所述的质谱仪,其中所述TOF分析器是从由下列组成的组选择的一个:(i)线性TOF;(ii)单反射TOF;(iii)包括至少一个静电扇区的TOF;(iv)多反射TOF分析器。
26.根据权利要求24或者25所述的质谱仪,还包括在所述源之后的脉冲发生器,用于从由下列组成的组选择的目的:(i)调节从所述源脉冲喷射的离子包的时间焦面;(ii)调节从所述源脉冲喷射的离子包的能量或者能量展度;以及(iii)将穿过所述源的连续流转换成离子包,接着进行所述离子包的能量过滤;以及(iv)它们的组合。
27.根据权利要求24至26所述的质谱仪,为了通过频繁编码脉冲发生增大动态范围,还包括:(i)同步时钟,具有按照编程的非均匀的时间间隔以不超过10ns的时间增量触发的能力;(ii)脉冲发生器,具有按照至少30kHz的平均频率进行脉冲发生的能力;以及(iii)数据系统,用于谱解码。
28.根据权利要求24至27所述的质谱仪,还包括从由下列组成的组选择的接口:(i)差动抽吸室,容纳所述离子源以及放置在所述离子镜之间;(ii)一组等时弯曲静电扇区,用于所述源的外部安装;(iii)一组等时弯曲静电扇区,用于使离子轨迹移位;(iv)能量过滤器,由静电扇区或者与空间聚焦透镜组合的偏转器组成;(v)具有脉动电力供应的透镜偏转器,用于使氦离子偏转或者用于粗略的质量选择;(vi)无栅离子镜,放置在所述离子源后面;(vii)弯曲场加速器,内置到所述源中,用于等时空间聚焦;(viii)差动孔口,放置在空间上聚焦的平面处以及接着是空间聚焦透镜;(ix)伸缩透镜系统,用于以加宽角度展度为代价减小空间包大小;以及(x)它们的组合。
29.根据权利要求24至28所述的质谱仪,其中从由下列组成的组选择所述MR-TOF分析器的参数:(i)在0.5m与1.5m之间的盖至盖距离;(ii)具有5mm与20mm之间的透镜间距的周期透镜;(iii)在7与30m之间的离子飞行路径;(iv)在3keV与10keV之间的加速电压;以及(v)它们的组合。
30.根据权利要求24至29所述的质谱仪,其中所述MR-TOF分析器具有平面或圆柱对称性。
31.根据权利要求24至30所述的质谱仪,还包括离子转移光学器件,用于将外部离子引入到所述so-EI源中以及从由下列组成的组选择的一个源中:(i)化学电离源;(ii)光化学电离源;以及(iii)具有调节的等离子体的离子源。
32.根据权利要求24至31所述的质谱仪,还包括用于来自从由下列组成的组选择的一个源的分析物分子的外部传送的入口:(i)分子束发生器;(ii)分子分离器,用于分离氦流和分析物流;以及(iii)它们的组合。
33.根据权利要求24至32所述的质谱仪,其中所述检测器包括磁性离子至电子转换器、由导电网孔覆盖的闪烁器以及具有延长使用寿命的光电倍增器。
34.一种色谱质谱分析方法,包括下列步骤:
通过穿过电离室的狭缝的电子束电离分析物分子,所述狭缝相对于围绕电离体积的电极正偏置,用于保留分析物离子以及去除二次电子;
脉冲喷射离子包;
飞行时间分析器中的离子分离;
用于MS-MS分析的离子碎裂;以及
从由下列组成的组选择的增强所述MS-MS的至少一个步骤:(i)在所述电离步骤之后母离子的定时离子选择;(ii)按照相反方向将离子喷射到放置在所述电离室后面的无栅离子镜的静电场中以及将一次离子包同时时间和空间聚焦到在所述电离室内部形成或者在所述电离室之后放置的碎裂单元中;(iii)将一次离子同时时间和空间聚焦到在所述电离室内以及在所述电离室之后的加速器的弯曲场内的碎裂单元中;(iv)在与平行于所述离子包的时间波前放置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的延迟脉动提取;(v)在与相对于母离子轨迹以滑动角布置的表面碰撞时使离子包碎裂,接着进行如此形成的碎片离子的静态或者脉动加速;(vi)布置在气体压力为P的具有1cm以下的长度L的单元内的碰撞诱导解离,为与母离子的单次平均碰撞相对应的1cm*mTor与5cm*mTor之间的P*L乘积而被调节;(vii)通过在来自色谱仪的1ml/min气流下选择0.1与0.3cm2之间的所述电离室开口而布置在所述电离室内的碰撞诱导解离;(viii)在碎裂步骤之后的脉动加速;(ix)在碎裂步骤之后的空间聚焦;(x)在碎裂步骤之后的碎片离子包的后加速;(xi)在碎裂步骤之后进行转向;以及(xii)它们的组合。
35.根据权利要求34所述的方法,还包括:
针对从由下列组成的组选择的目的对离子包进行脉动加速:(i)在所述离子喷射步骤之后调节离子包的时间焦面;(ii)在所述离子喷射步骤之后调节离子包的能量或者能量展度;(iii)对所述电离室之后的连续流或者准连续流进行转换,接着进行所述脉动加速离子包的能量过滤步骤;以及(iv)它们的组合。
36.根据权利要求34-35所述的方法,其中所述离子包再聚焦步骤包括利用在2与5之间的转换因子将宽(7-10mm)以及低发散离子包(<5-6mrad)转换为大小较小(3-5mm)以及较宽发散(15-20mrad)包的步骤。
37.根据权利要求34至36所述的方法,其中所述飞行时间分离步骤包括下列组的静电场中的时间分离:(i)线性无场TOF分析器;(ii)至少一个离子镜;(ii)两个离子镜的平面场;(iv)至少一个静电扇区;以及(v)它们的组合。
CN201580024231.9A 2014-03-31 2015-03-31 具有改进的检测极限的gc‑tof ms Pending CN106461621A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461973090P 2014-03-31 2014-03-31
US61/973,090 2014-03-31
PCT/US2015/023640 WO2015153644A1 (en) 2014-03-31 2015-03-31 Gc-tof ms with improved detection limit

Publications (1)

Publication Number Publication Date
CN106461621A true CN106461621A (zh) 2017-02-22

Family

ID=54241227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580024231.9A Pending CN106461621A (zh) 2014-03-31 2015-03-31 具有改进的检测极限的gc‑tof ms

Country Status (6)

Country Link
US (2) US10416131B2 (zh)
JP (1) JP6430531B2 (zh)
CN (1) CN106461621A (zh)
DE (1) DE112015001570T5 (zh)
GB (1) GB2546355A (zh)
WO (1) WO2015153644A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331597A (zh) * 2017-06-23 2017-11-07 江苏天瑞仪器股份有限公司福建分公司 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法
CN108760638A (zh) * 2018-07-13 2018-11-06 金华职业技术学院 一种研究分子光异构化的方法
CN109461642A (zh) * 2018-12-07 2019-03-12 中国烟草总公司郑州烟草研究院 一种离子引发电子轰击电离源
CN110854009A (zh) * 2019-11-13 2020-02-28 上海裕达实业有限公司 宽范围质量测量离子源的质谱装置及其质谱方法
CN111164731A (zh) * 2017-08-06 2020-05-15 英国质谱公司 进入多通道质谱分析仪的离子注入
CN112242292A (zh) * 2019-07-19 2021-01-19 株式会社岛津制作所 质量分析器和质谱仪
CN112424902A (zh) * 2018-05-18 2021-02-26 珀金埃尔默健康科学加拿大股份有限公司 电离源以及使用电离源的系统和方法
CN113649360A (zh) * 2021-08-16 2021-11-16 上海交通大学 一种消除物体表面沾污的方法及装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2533671B (en) * 2013-04-23 2021-04-07 Leco Corp Multi-reflecting mass spectrometer with high throughput
JP6323362B2 (ja) * 2015-02-23 2018-05-16 株式会社島津製作所 イオン化装置
GB201507363D0 (en) 2015-04-30 2015-06-17 Micromass Uk Ltd And Leco Corp Multi-reflecting TOF mass spectrometer
GB201520134D0 (en) * 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520130D0 (en) 2015-11-16 2015-12-30 Micromass Uk Ltd And Leco Corp Imaging mass spectrometer
GB201520540D0 (en) 2015-11-23 2016-01-06 Micromass Uk Ltd And Leco Corp Improved ion mirror and ion-optical lens for imaging
JP2017098142A (ja) * 2015-11-26 2017-06-01 株式会社島津製作所 イオン照射装置及び該装置を用いた表面分析装置
GB201613988D0 (en) 2016-08-16 2016-09-28 Micromass Uk Ltd And Leco Corp Mass analyser having extended flight path
WO2018138801A1 (ja) * 2017-01-25 2018-08-02 住友重機械工業株式会社 粒子加速システム及び粒子加速システムの調整方法
GB2567794B (en) 2017-05-05 2023-03-08 Micromass Ltd Multi-reflecting time-of-flight mass spectrometers
GB2563571B (en) 2017-05-26 2023-05-24 Micromass Ltd Time of flight mass analyser with spatial focussing
WO2019030474A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov IONIC MIRROR WITH PRINTED CIRCUIT WITH COMPENSATION
US11239067B2 (en) 2017-08-06 2022-02-01 Micromass Uk Limited Ion mirror for multi-reflecting mass spectrometers
WO2019030473A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov FIELDS FOR SMART REFLECTIVE TOF SM
US11817303B2 (en) 2017-08-06 2023-11-14 Micromass Uk Limited Accelerator for multi-pass mass spectrometers
WO2019030475A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov MASS SPECTROMETER WITH MULTIPASSAGE
WO2019030471A1 (en) 2017-08-06 2019-02-14 Anatoly Verenchikov ION GUIDE INSIDE PULSED CONVERTERS
GB201806507D0 (en) 2018-04-20 2018-06-06 Verenchikov Anatoly Gridless ion mirrors with smooth fields
GB201807605D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
GB201807626D0 (en) 2018-05-10 2018-06-27 Micromass Ltd Multi-reflecting time of flight mass analyser
WO2019217541A1 (en) * 2018-05-11 2019-11-14 Leco Corporation Two-stage ion source comprising closed and open ion volumes
GB201808459D0 (en) * 2018-05-23 2018-07-11 Thermo Fisher Scient Bremen Gmbh Ion front tilt correction for time of flight(tof) mass spectrometer
GB201808530D0 (en) 2018-05-24 2018-07-11 Verenchikov Anatoly TOF MS detection system with improved dynamic range
GB201808949D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808892D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
GB201808912D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808894D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
EP3803950A1 (en) 2018-05-31 2021-04-14 Micromass UK Limited Mass spectrometer
GB201808890D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808936D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
US11373849B2 (en) 2018-05-31 2022-06-28 Micromass Uk Limited Mass spectrometer having fragmentation region
US10679841B2 (en) * 2018-06-13 2020-06-09 Thermo Finnigan Llc Method and apparatus for improved mass spectrometer operation
GB201810573D0 (en) 2018-06-28 2018-08-15 Verenchikov Anatoly Multi-pass mass spectrometer with improved duty cycle
CN108760637B (zh) * 2018-07-13 2023-11-21 金华职业技术学院 一种研究分子光异构化的装置
GB201901411D0 (en) 2019-02-01 2019-03-20 Micromass Ltd Electrode assembly for mass spectrometer
US11469091B1 (en) 2021-04-30 2022-10-11 Perkinelmer Health Sciences Canada, Inc. Mass spectrometer apparatus including ion detection to minimize differential drift

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833300A (zh) * 2003-03-19 2006-09-13 萨默费尼根有限公司 在离子总体中获取多个母离子的串联质谱分析数据
CN1853255A (zh) * 2003-06-21 2006-10-25 莱克公司 多反射飞行时间质谱仪及使用方法
JP2008535164A (ja) * 2005-03-22 2008-08-28 レコ コーポレイション 等時性湾曲イオンインタフェースを備えた多重反射型飛行時間質量分析計
US7838824B2 (en) * 2007-05-01 2010-11-23 Virgin Instruments Corporation TOF-TOF with high resolution precursor selection and multiplexed MS-MS
CN102969218A (zh) * 2012-11-05 2013-03-13 聚光科技(杭州)股份有限公司 多通道混合电离源及其工作方法
JP2013525986A (ja) * 2010-04-30 2013-06-20 レコ コーポレイション 符号化された高頻度パルスによる静電式質量分析計
WO2013110588A2 (en) * 2012-01-27 2013-08-01 Thermo Fisher Scientific (Bremen) Gmbh Multi-reflection mass spectrometer
JP2013539590A (ja) * 2010-08-19 2013-10-24 レコ コーポレイション 蓄積式電子衝撃イオン源を有する飛行時間型質量分析計
WO2013163530A2 (en) * 2012-04-26 2013-10-31 Leco Corporation Electron impact ion source with fast response
WO2013192161A2 (en) * 2012-06-18 2013-12-27 Leco Corporation Tandem time-of-flight mass spectrometry with non-uniform sampling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450463A (en) * 1992-12-25 1995-09-12 Olympus Optical Co., Ltd. X-ray microscope
US6888130B1 (en) * 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
CN102648511B (zh) * 2009-05-06 2015-05-06 Mks仪器公司 静电离子陷阱
GB2476964A (en) * 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
GB2478300A (en) * 2010-03-02 2011-09-07 Anatoly Verenchikov A planar multi-reflection time-of-flight mass spectrometer
DE102011053684B4 (de) * 2010-09-17 2019-03-28 Wisconsin Alumni Research Foundation Verfahren zur Durchführung von strahlformstossaktivierter Dissoziation im bereits bestehenden Ioneninjektionspfad eines Massenspektrometers
US9984863B2 (en) * 2014-03-31 2018-05-29 Leco Corporation Multi-reflecting time-of-flight mass spectrometer with axial pulsed converter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833300A (zh) * 2003-03-19 2006-09-13 萨默费尼根有限公司 在离子总体中获取多个母离子的串联质谱分析数据
CN1853255A (zh) * 2003-06-21 2006-10-25 莱克公司 多反射飞行时间质谱仪及使用方法
JP2008535164A (ja) * 2005-03-22 2008-08-28 レコ コーポレイション 等時性湾曲イオンインタフェースを備えた多重反射型飛行時間質量分析計
US7838824B2 (en) * 2007-05-01 2010-11-23 Virgin Instruments Corporation TOF-TOF with high resolution precursor selection and multiplexed MS-MS
JP2013525986A (ja) * 2010-04-30 2013-06-20 レコ コーポレイション 符号化された高頻度パルスによる静電式質量分析計
JP2013539590A (ja) * 2010-08-19 2013-10-24 レコ コーポレイション 蓄積式電子衝撃イオン源を有する飛行時間型質量分析計
WO2013110588A2 (en) * 2012-01-27 2013-08-01 Thermo Fisher Scientific (Bremen) Gmbh Multi-reflection mass spectrometer
WO2013163530A2 (en) * 2012-04-26 2013-10-31 Leco Corporation Electron impact ion source with fast response
WO2013192161A2 (en) * 2012-06-18 2013-12-27 Leco Corporation Tandem time-of-flight mass spectrometry with non-uniform sampling
CN102969218A (zh) * 2012-11-05 2013-03-13 聚光科技(杭州)股份有限公司 多通道混合电离源及其工作方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331597B (zh) * 2017-06-23 2019-01-01 江苏天瑞仪器股份有限公司福建分公司 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法
CN107331597A (zh) * 2017-06-23 2017-11-07 江苏天瑞仪器股份有限公司福建分公司 基质辅助激光解析电离飞行时间质谱仪的离子推斥方法
CN111164731A (zh) * 2017-08-06 2020-05-15 英国质谱公司 进入多通道质谱分析仪的离子注入
CN111164731B (zh) * 2017-08-06 2022-11-18 英国质谱公司 进入多通道质谱分析仪的离子注入
CN112424902B (zh) * 2018-05-18 2022-06-17 珀金埃尔默健康科学加拿大股份有限公司 电离源以及使用电离源的系统和方法
CN112424902A (zh) * 2018-05-18 2021-02-26 珀金埃尔默健康科学加拿大股份有限公司 电离源以及使用电离源的系统和方法
CN108760638A (zh) * 2018-07-13 2018-11-06 金华职业技术学院 一种研究分子光异构化的方法
CN108760638B (zh) * 2018-07-13 2023-11-24 金华职业技术学院 一种研究分子光异构化的方法
CN109461642A (zh) * 2018-12-07 2019-03-12 中国烟草总公司郑州烟草研究院 一种离子引发电子轰击电离源
CN109461642B (zh) * 2018-12-07 2024-04-02 中国烟草总公司郑州烟草研究院 一种离子引发电子轰击电离源
CN112242292A (zh) * 2019-07-19 2021-01-19 株式会社岛津制作所 质量分析器和质谱仪
US11942318B2 (en) 2019-07-19 2024-03-26 Shimadzu Corporation Mass analyzer with 3D electrostatic field
CN110854009A (zh) * 2019-11-13 2020-02-28 上海裕达实业有限公司 宽范围质量测量离子源的质谱装置及其质谱方法
CN113649360A (zh) * 2021-08-16 2021-11-16 上海交通大学 一种消除物体表面沾污的方法及装置
CN113649360B (zh) * 2021-08-16 2023-08-08 上海交通大学 一种消除物体表面沾污的方法及装置

Also Published As

Publication number Publication date
GB201616446D0 (en) 2016-11-09
JP2017511578A (ja) 2017-04-20
US20170168031A1 (en) 2017-06-15
DE112015001570T5 (de) 2017-01-12
WO2015153644A1 (en) 2015-10-08
US10794879B2 (en) 2020-10-06
JP6430531B2 (ja) 2018-11-28
US10416131B2 (en) 2019-09-17
GB2546355A (en) 2017-07-19
US20190360981A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
CN106461621A (zh) 具有改进的检测极限的gc‑tof ms
US9984863B2 (en) Multi-reflecting time-of-flight mass spectrometer with axial pulsed converter
Downard Mass spectrometry: a foundation course
CA2103038C (en) Tandem time-of-flight mass spectrometer
CN1853255B (zh) 多反射飞行时间质谱仪及使用方法
US8642951B2 (en) Device, system, and method for reflecting ions
US9048080B2 (en) Time-of-flight mass spectrometer with accumulating electron impact ion source
US6744040B2 (en) Means and method for a quadrupole surface induced dissociation quadrupole time-of-flight mass spectrometer
US5696375A (en) Multideflector
US5986258A (en) Extended Bradbury-Nielson gate
CN107851549A (zh) 多反射tof质谱仪
US6781122B2 (en) Time of flight mass spectrometry apparatus
US20090101813A1 (en) Multiplexing daughter ion spectrum acquisition from maldi ionization
US5744797A (en) Split-field interface
Kaufmann et al. Secondary‐ion generation from large keV molecular primary ions incident on a stainless‐steel dynode
US11133171B2 (en) Method and apparatus for tandem mass spectrometry with MALDI-TOF ion source
Gale et al. The development of time-of-flight mass spectrometry
GB2361806A (en) Time of flight mass spectrometry apparatus
Nemirovskiy et al. Recent Advances in Magnet Sector Mass Spectrometry
Poppe-Schriemer Secondary ion time-of-flight mass spectrometry: peptides and Langmuir Blodgett films
Bentz Design of an Organic SIMS Instrument with Separate Triple Stage Quadrupole (TSQ) and Time-of-Flight (TOF) Spectrometers BL Bentz and RE Honig RCA Laboratories, Princeton, NJ 08540, USA
GB2406436A (en) A tandem time-of-flight mass spectrometer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222