CN106458718A - 具有降低由水凝结所致的光散射的特性的表面及其制造方法 - Google Patents

具有降低由水凝结所致的光散射的特性的表面及其制造方法 Download PDF

Info

Publication number
CN106458718A
CN106458718A CN201580011382.0A CN201580011382A CN106458718A CN 106458718 A CN106458718 A CN 106458718A CN 201580011382 A CN201580011382 A CN 201580011382A CN 106458718 A CN106458718 A CN 106458718A
Authority
CN
China
Prior art keywords
aggregation
time
carried out
wavelength
adhering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580011382.0A
Other languages
English (en)
Other versions
CN106458718B (zh
Inventor
昂里克·贝尔特兰塞拉
罗格·阿马德罗维拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Nanotechnology Ltd
Universitat Autonoma de Barcelona UAB
Original Assignee
Advanced Nanotechnology Ltd
Universitat Autonoma de Barcelona UAB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Nanotechnology Ltd, Universitat Autonoma de Barcelona UAB filed Critical Advanced Nanotechnology Ltd
Publication of CN106458718A publication Critical patent/CN106458718A/zh
Application granted granted Critical
Publication of CN106458718B publication Critical patent/CN106458718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/213SiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/258Ti, Zr, Hf
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/257Refractory metals
    • C03C2217/26Cr, Mo, W
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/75Hydrophilic and oleophilic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/345Surface crystallisation

Abstract

本发明涉及具有降低由水凝结所致的光散射的特性的表面,其中除雾方式由附着于所述表面并且分散在其上的原子簇组成,其中所述簇选自过渡金属和硅。本发明还涉及用于制造这样的表面的方法,所述表面针对100nm至50微米范围内的所选波长具有降低由水凝结所致的散射的特性,所述方法包括以下步骤:选择波长、获得已进行光学抛光的玻璃或聚合物表面以及使原子簇附着至所述表面,所述簇选自过渡金属和硅并且彼此间隔所选波长量级或更短的距离。以此方式,本发明可用于获得耐久的除雾表面。

Description

具有降低由水凝结所致的光散射的特性的表面及其制造方法
技术领域
本发明涉及具有降低由水凝结引起的漫射光的特性的表面,其确保了高耐久性和高防雾效率。
背景技术
设置有防雾方式的表面,即设置有降低由水凝结引起的漫射的特性的表面是已知的。特别地,经与有机化合物组合的氧化物处理且透明的表面是已知的,其目的是将表面转变成超亲水性表面。这些氧化物一般作为涂层施加,涂层意指在期望提供有防雾能力的表面上形成由这些氧化物提供的薄层。
然而,例如,如US 2007166513中所描述的,该类型的涂层具有有限的寿命,因为其是基于有机的,并且其制备过程还非常复杂,这使得其对于工业大规模应用是不实用的。
发明内容
为了克服现有技术的缺点,本发明提出了具有降低由水凝结引起的漫射光(“散射”)的特性的表面,其包含附着至所述表面并且分散在所述表面上的原子聚集体,其中所述聚集体选自硅和满足以下条件的过渡金属:
Yc>4Ys
其中:
γc是所述过渡金属的表面能;
γs是所述表面的表面能;
原子聚集体意指形成具有纳米级或亚微米尺寸的致密核的一组集合原子。
因此,根据本发明,代替向表面添加涂层(如现有技术中所进行的),使提及的聚集体(纳米颗粒、核、簇、纳米形成物)附着或嵌入并隔开而不形成涂层,而是保持为分散在整个表面上的核。
这些聚集体或核的作用是导致表面对直径大于核或聚集体之间距离的液滴具有超亲水性。这防止形成具有凸面的尺寸大于一定尺寸的液滴G,所述一定尺寸根据波长选择,期望阻止大于所述波长的光的漫射或散射。即,不允许大于一定尺寸的凸面液滴“存活”,而是替代地通过使接触角(图5中α的补角)接近0°而使所述液滴附着至表面。
在绝大多数的防雾涂层中,使用透明的化合物,使得其作为防雾方式的使用不涉及降低透光率,明显地期望所述透光率不受影响。
然而,本发明人已注意到尽管所选元素具有高光学吸收,但是其根据本发明的应用极轻微地降低表面的整体透光率,原因是只需要附着或嵌入防止形成大于一定尺寸的液滴所必需的间隔结构(纳米颗粒、簇或聚集体),即,无需进行连续涂覆(图1),并且大部分表面将仍保持透明。图2示出了通过扫描电子显微镜(scanning electron microscopy,SEM)产生的显微图,其对应于电子级的沉积在具有原生氧化硅层的经抛光结晶硅基底(SiO2/c-Si)上的Ti和W纳米颗粒的样品。该类型的基底有利于观察纳米颗粒。
特别地,所述过渡金属和硅具有大于约2J/m的高表面能,这使得其特别地适用于亲水功能。
在化学上,高表面能有时与形成间隔结构的原子的大量可能氧化态(尤其是两种或更多种)有关,一些提及的元素正是如此。
所述聚集体可选自W、Os、Re、Ti、Cr和Ru或者其组合,例如W和Ti的组合。本发明人已注意到这些元素和所述组合提供了具有优异防雾特性的表面。
所述聚集体还可选自Mo和V。但是使用这些元素获得较不显著的防雾性能。
还可使用Pd、Zr以及金属碳化物和金属氮化物(例如WC和ZrN),但是防雾效果较不显著。
有利地,所述聚集体间隔的最大距离为微米级。
更有利地,所述表面是透明基底的自由表面,并且优选地基底由玻璃或聚合物制成且预先已进行光学抛光以实现清晰图像的透射或反射所需的光学功能并防止光的散射或漫射。
更有利地,所述表面是金属基底的自由表面,所述金属基底已进行光学抛光以实现反射清晰图像所需的光学功能并防止光的散射或漫射。
更有利地,所述表面是由沉积在基底上的一个或更多个层的介电结构形成的表面,所述基底已进行光学抛光以实现清晰图像的透射或反射所需的光学功能并防止光的散射或漫射。
最后,所述聚集体覆盖表面的至多5%,超过所述百分比,由聚集体引起的透光率降低可变得过高。当寻求装置的高透明度时,情况明显如此。现在如果不是这种情况,例如可具有非常低的透光率的镜子、太阳镜或具有滤光片的眼镜,当期望不损失图像清晰度时应用本发明也将是有利的。
本发明还涉及用于获得表面的方法,所述表面针对选自100nm至50微米范围内的波长具有降低由水凝结引起的漫射光的特性,所述方法包括以下步骤:
a)选择100nm至50微米的波长,对于所述波长寻求由所述表面进行的由水凝结引起的漫射降低;
b)获得已进行光学抛光的玻璃或聚合物表面;
c)使原子聚集体附着至所述表面,所述原子聚集体选自过渡金属和硅,它们之间的间隔小于所选择波长或具有所选择波长的量级。
优选地,所述聚集体选自W、Ti、Cr、Os、Re和Ru及其组合。所述聚集体还可选自Mo和V,但是在此情况下,结果较不显著。
根据第一变化方案,步骤c)是在光学表面上通过溅射进行的物理气相沉积处理,其中靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
根据第二变化方案,步骤c)是在光学表面上通过蒸镀金属进行的物理气相沉积处理,所述金属由任意上述可蒸镀的元素及其合金构成,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
根据第三变化方案,步骤c)是在光学表面上的化学气相沉积处理,由基于任意上述原子及其组合的有机金属化合物进行,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
根据第四变化方案,步骤c)是在光学表面上通过有机金属化合物的喷射沉积和热解进行的表面处理,所述有机金属化合物基于任意上述原子及其组合,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
根据第五变化方案,步骤c)是在光学表面上通过由离子枪自靶材溅射进行的物理气相沉积处理,其中所述靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
根据第六变化方案,步骤c)是在光学表面上通过由等离子体枪自靶材溅射进行的物理气相沉积处理,其中所述靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
附图说明
为了更好地理解已概括的内容,附有一些附图,在附图中示意性地并且仅仅通过非限制性实例的方式,对本发明潜在的原理进行阐述。
图1是聚集体或核在表面上的分布的示意性平面图。
图2对应于沉积在具有原生氧化物层的结晶硅基底(SiO2/c-Si)上的Ti和W纳米颗粒的样品在扫描电子显微镜(SEM)下的显微图。
图3是显示以下的示意性截面,直径小于聚集体之间间距的水滴不受影响,但是由于小于波长,其在光学上无显著影响(所产生漫射光的百分比低)。
图4和5是显示直径具有聚集体之间间距的量级的水滴所发生的情况的示意性截面。该水滴的接触角和凸度减小至极小的值,因此由水滴所致的漫射光降低并且透射的图像的清晰度显著增加。
具体实施方式
如图1中可见,本发明涉及具有降低由水凝结引起的漫射光的特性的表面,其特征在于,其包含附着至所述表面并且散布在所述表面上的原子聚集体,其中所述聚集体选自硅和过渡金属,所述过渡金属优选地满足以下条件:
Yc>4Ys
其中:
γc是所述过渡金属的表面能;
γs是所述表面的表面能;
由于它们是亲水性元素,因此当沉积尺寸小于聚集体之间间距的水滴G时,如图3中所示,什么也不会发生。但是由于所述水滴是直径小于所要避免漫射的波长的液滴,其不会导致明显的光漫射。
替代地,如图4中所示,如果沉积直径大约为聚集体之间的平均间隔的液滴,则对于与所述平均间隔对应的波长λ会发生明显的漫射。然而,当将核的间隔选择为波长的量级时,这些核“捕获”液滴G,阻止其原样存留,使得其如图5中所示附着于表面,其中观察到接触角“西塔”θ接近0°,使得液滴形成不导致或者几乎不导致漫射的膜。
下面是其中呈现了在聚集体不存在下或存在下测量的接触角的表格,特别对于W、Ti以及这些以不同顺序的组合:
基底 原子聚集体组成 接触角(°) 透光率
玻璃1 - 107±1 92%
玻璃1 W 12±1 90%
玻璃2 - 96±1 92%
玻璃2 Ti 50±1 90%
玻璃3 - 78±1 92%
玻璃3 Ti/W 54±1 90%
玻璃4 - 76±1 92%
玻璃4 W/Ti 3±1 90%
玻璃5 - 76±1 92%
玻璃5 SiO2/W/Cr 2±1 90%
应指出,所使用的玻璃不同,因此在对其进行防雾处理之前接触角不同。可使用干净玻璃、硅烷化玻璃、Teflon或聚苯乙烯。还可使用SiO2-方石英、SiO2-石英或纯SiO2玻璃。
本发明还涉及用于获得该表面,特别是具有在选自100nm至50微米范围内的波长λ下漫射降低的特性的表面的方法,包括以下步骤:
a)选择100nm至50微米的波长λ,对于所述波长寻求由所述表面进行的由凝结引起的漫射降低;
b)获得已进行光学抛光的玻璃或聚合物表面;
c)使原子聚集体附着至所述表面,所述原子聚集体选自满足以下的过渡金属:
Yc>4Ys
特别是W、Ti、Ru、Cr、Mo或V或硅,其中所述原子聚集体之间的间隔小于所选波长λ或具有所选波长λ的量级;
根据所述方法的一个优选实施方案,其中步骤c)是在光学表面上通过溅射进行的物理气相沉积处理,其中靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着且分布的聚集体的表面。
用于获得具有W原子聚集体的玻璃表面的方法的描述
通过用由RF电源(13.56MHz)激发的磁控管进行溅射来沉积W。
预先用氧化溶液PIRANHA对玻璃基底进行脱脂,并且玻璃具有透光率为92%的光学抛光。
沉积物的布置如下:
W(0.28nm)/玻璃。
其中厚度表示如果沉积物制成层将获得的厚度。
在沉积W之前,反应器的预真空达到3.1×10-4Pa。
为了进行沉积,引入20sccm纯度为99.999%的氩。用设置有电容式压力传感器和电动阀的反馈系统使反应器压力在沉积期间在1.03Pa保持恒定。
阴极(靶材)到样品的距离为8cm。靶材的直径为3",并且阴极用水冷却。
向阴极供应的功率为30W(直射)和0W(反射)。自极化电压为-82V。
沉积时间为6.4秒。
获得的样品具有相当高的防雾效率。经证实,在两年之后,效果继续存在。
用于获得具有W和Ti原子聚集体的玻璃表面的方法的描述
通过用由RF电源(13.56MHz)激发的磁控管进行溅射来沉积W和Ti。
预先用氧化溶液PIRANHA对玻璃基底进行脱脂,并且玻璃具有透光率为92%的光学抛光。
沉积物的布置如下:
W(0.28nm)/Ti(0.28nm)/玻璃。
其中厚度表示如果沉积物制成层将获得的厚度。
反应器的预真空在沉积Ti之前达到5.3×10-4Pa,在沉积W之前达到1.3×10-3Pa。
为了进行沉积,引入20sccm纯度为99.999%的氩。用设置有电容式压力传感器和电动阀的反馈系统使反应器压力在沉积期间在1.03Pa保持恒定。
阴极(靶材)到样品的距离为8cm。靶材的直径为3",并且阴极用水冷却。
向阴极供应的功率对Ti为100W(正向)和9W(反射),对W为30W(正向)和0W(反射)。自极化电压为-90V(Ti)和-85.5V(W)。
沉积时间为2.43秒(Ti)和6.4秒(W)。
获得的样品具有非常高的防雾效率,甚至大于前述情况中的W/玻璃。还检测到,在两年之后,该效率得以维持,甚至在用醇擦拭表面之后也如此。
W/Ti组合的作用产生比仅使用两种金属之一时远远更显著的结果。
用于获得涂覆有SiO 2 超薄层的具有W和Cr原子聚集体的玻璃表面的方法的描述
通过用由RF电源(13.56MHz)激发的磁控管进行溅射来沉积W和Ti。
预先用氧化溶液PIRANHA对玻璃基底进行脱脂,并且玻璃具有透光率为92%的光学抛光。
沉积物的布置如下:
SiO2(10nm)/W(0.28nm)/Cr(0.28nm)/玻璃。
其中厚度表示如果沉积物制成层将获得的厚度。
反应器的预真空在沉积Cr之前达到4.0×10-4Pa,在沉积W之前达到3.0×10-3Pa,在沉积SiO2之前达到3.2×10-3Pa。
为了进行沉积,引入20sccm纯度为99.999%的氩。用设置有电容式压力传感器和电动阀的反馈系统使反应器压力在沉积期间在1.03Pa保持恒定。对于SiO2沉积,使用Ar和O2气体的混合物来产生化学计量的氧化硅。
阴极(靶材)到样品的距离为8cm。靶材的直径为3",并且阴极用水冷却。
向阴极供应的功率对Cr为100W(正向)和0W(反射),对W为30W(正向)和0W(反射)。自极化电压为-145V(Cr)和-85.5V(W)。
沉积时间为5秒(Cr)、6.4秒(W)和60秒(SiO2)。
所获得的样品在所有产生的样品中显示出最高的防雾效率。SiO2/W/Cr组合的效果是所研究的情况中最高的。
一旦进行表面结构化处理,在处理之后立即测量的接触角一般小于5°,即为超亲水状态。
然而,已观察到,经处理的表面由于空气污染、污物、灰尘等而随时间丧失防雾作用。这种失活与以下影响有关:a)纳米结构的腐蚀或生锈,b)自由键减少,或c)形成掩盖纳米结构的污染沉积物。在所有三种情况下,均显示接触角增加至20°至30°的值,其通常稳定在该处。超亲水状态是能量活化且不稳定的状态,并且在暴露于水分、氧、环境污染、污物等下自然地趋向于能量失活的状态。可通过多种方法用恢复小接触角来重新活化防雾作用。能量活化状态的重置可以以数种方式来实现:
a)用非氧化的酸溶液(例如,HCl、HF、乙酸、柠檬酸等)进行化学还原或用正磷酸进行蚀刻。
b)通过擦抹来机械地清洁表面。
c)用溅射、等离子体暴露或暴露于电离辐射(UV、RX等)来重构悬挂键。
d)添加活化物质作为表面活性剂或亲水性物质。
此外,存在多种快速地重新活化纳米结构化表面的方法:
1.用植物油或动物油的薄层浸渍表面;
2.用甘油的薄层浸渍表面;
3.使用表面活性剂(例如Lutensol或月桂酸酯)浸渍在表面上;
4.或者简单地用手指擦抹。该方法具有双重效果:一方面,其机械地清洁了表面,另一方面由于出汗而使表面被脂质层、盐和多种有机化合物浸渍。
用于浸渍的方法可用纤维素纸、毛巾或海绵来进行。还可在其重新活化之前用肥皂和水对其进行清洗以增强效果。
经处理的表面具有随时间持续的防雾作用(取决于环境污染或污物)。然而,该表面纳米结构在至少三年中是耐久的并且在此期间可反复地重新活化。该作用的极限由表面纳米结构的附着和磨损来标示。
在所有情况下均观察到纳米结构化表面上的防雾作用的重新活化。
基于Langmuir-Blodgett技术的其他表面纳米结构化方法
进行了由通过将纳米颗粒(直径为200nm至400nm)的致密单层转移到固体基底上来进行结构表面化而引起的防雾作用的研究。该转移操作通过公知的Langmuir-Blodgett技术[1]来进行。随后,进行了使基底纹理化的表面溅射。这种镌刻工艺赋予了表面适于防雾作用的形态。
该作用由于上述三种机制而随时间退化,但氧化除外,原因是SiO2颗粒已经处于较为稳定的氧化态。此外,可通过上述相同方法使其回到初始的能量活化状态。这允许反复地使防雾作用再生并且减小表面接触角。
尽管已参照本发明的三个具体实施方案,但是对本领域技术人员明显的是,所述表面和方法易进行多种变化和修改并且提及的所有细节均可被其他技术上的等同方案替代,而不偏离所附权利要求书限定的保护范围。
参考文献
[1]EJ Cabrera,LM Jaller,R Amade,SM Portal,E Pascual,E Bertran,Photonic Characteristics of Langmuir-Blodgett Self-Assembled Monolayers ofColloidal Silica Particles,Nanoscience and Nanotechnology Letters,2013,5,41-45

Claims (17)

1.一种表面,其具有降低由水凝结引起的漫射光的特性,其特征在于,所述表面包含附着至所述表面并且分散在所述表面上的原子聚集体,其中所述聚集体选自硅和满足以下条件的过渡金属:
γc>4γs
其中:
γc是所述过渡金属的表面能;
γs是所述表面的表面能。
2.根据权利要求1所述的表面,其中所述聚集体选自W、Ti、Cr、Os、Re和Ru或者其组合。
3.根据权利要求1所述的表面,其中所述聚集体选自Mo和V。
4.根据前述权利要求中任一项所述的表面,其中所述聚集体间隔的最大距离为微米级。
5.根据前述权利要求中任一项所述的表面,其是透明基底的自由表面。
6.根据前述权利要求所述的表面,其中所述基底由玻璃或聚合物制成。
7.根据前述权利要求中任一项所述的表面,其中所述表面已进行光学抛光。
8.根据前述权利要求中任一项所述的表面,其中所述聚集体覆盖所述表面的至多5%。
9.一种用于获得表面的方法,所述表面针对选自100nm至50微米范围内的波长具有降低由水凝结引起的漫射光的特性,所述方法包括以下步骤:
a)选择100nm至50微米的波长,以对于所述波长寻求由所述表面进行的由水凝结引起的漫射降低;
b)获得已进行光学抛光的玻璃或聚合物表面;
c)使原子聚集体附着至所述表面,所述原子聚集体选自满足以下条件的过渡金属和硅,
γc>4γs
其中所述聚集体之间的间隔小于所选择波长或具有所选择波长的量级。
10.根据权利要求9所述的方法,其中所述聚集体选自W、Ti、Cr、Os、Re和Ru或者其组合。
11.根据权利要求9所述的方法,其中所述聚集体选自Mo和V。
12.根据权利要求9所述的方法,其中步骤c)是在光学表面上通过溅射进行的物理气相沉积处理,其中靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
13.根据权利要求9所述的方法,其中步骤c)是在光学表面上通过蒸镀金属进行的物理气相沉积处理,所述金属由任意上述可蒸镀的元素及其合金构成,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
14.根据权利要求9所述的方法,其中步骤c)是在光学表面上的化学气相沉积处理,由基于任意上述原子及其组合的有机金属化合物进行,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
15.根据权利要求9所述的方法,其中步骤c)是在光学表面上通过有机金属化合物的喷射沉积和热解进行的表面处理,所述有机金属化合物基于任意上述原子及其组合,并且其中沉积时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
16.根据权利要求9所述的方法,其中步骤c)是在光学表面上通过由离子枪自靶材溅射进行的物理气相沉积处理,其中所述靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
17.根据权利要求9所述的方法,其中步骤c)是在光学表面上通过由等离子体枪自靶材溅射进行的物理气相沉积处理,其中所述靶材由提及的元素及其合金制成,并且其中放电时间经选择以获得包含在成核过程中形成的按时附着并分布的聚集体的表面。
CN201580011382.0A 2014-02-20 2015-02-20 具有降低由水凝结所致的光散射的特性的表面及其制造方法 Active CN106458718B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP201430230 2014-02-20
ES201430230A ES2473216B1 (es) 2014-02-20 2014-02-20 Superficie con propiedades de reducción de la luz difusa por condensación de agua y procedimiento de obtención de esta
PCT/ES2015/070116 WO2015124823A1 (es) 2014-02-20 2015-02-20 Superficie con propiedades de reducción de la luz difusa por condensación de agua y procedimiento de obtención de esta

Publications (2)

Publication Number Publication Date
CN106458718A true CN106458718A (zh) 2017-02-22
CN106458718B CN106458718B (zh) 2019-03-15

Family

ID=51014678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580011382.0A Active CN106458718B (zh) 2014-02-20 2015-02-20 具有降低由水凝结所致的光散射的特性的表面及其制造方法

Country Status (5)

Country Link
US (1) US10807907B2 (zh)
EP (1) EP3109211B1 (zh)
CN (1) CN106458718B (zh)
ES (2) ES2473216B1 (zh)
WO (1) WO2015124823A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579672A (zh) * 2008-05-16 2009-11-18 3M创新有限公司 用于提高亲水性/透射率的二氧化硅涂层
WO2010063440A1 (en) * 2008-12-01 2010-06-10 Eth Zurich Process for providing super-hydrophilic properties to a substrate
CN102803127A (zh) * 2009-05-08 2012-11-28 加州大学评议会 超亲水纳米结构
US20130171413A1 (en) * 2010-09-13 2013-07-04 Saif A. Khan Process for altering the wetting properties of a substrate surface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618525A (en) * 1985-06-03 1986-10-21 Minnesota Mining And Manufacturing Company Coated glass microbubbles and article incorporating them
US5494743A (en) * 1992-08-20 1996-02-27 Southwall Technologies Inc. Antireflection coatings
JP2003522092A (ja) * 2000-02-11 2003-07-22 デングラス テクノロジーズ エルエルシー. 膜が酸化セリウムを有する防反射性uv遮断多層コーティング
JP3711063B2 (ja) * 2001-11-08 2005-10-26 大日本印刷株式会社 防塵装置付きフォトマスク及びこれを用いた露光方法
US7274458B2 (en) * 2005-03-07 2007-09-25 3M Innovative Properties Company Thermoplastic film having metallic nanoparticle coating
US20100015193A1 (en) * 2006-10-16 2010-01-21 Nippon Sheet Glass Company, Limited Antibacterial Substrate and Method of Manufacturing the Same
US7968804B2 (en) * 2006-12-20 2011-06-28 3M Innovative Properties Company Methods of patterning a deposit metal on a substrate
US9932267B2 (en) * 2010-03-29 2018-04-03 Vitro, S.A.B. De C.V. Solar control coatings with discontinuous metal layer
FR2998564B1 (fr) * 2012-11-23 2016-12-23 Saint Gobain Substrat muni d'un empilement a couche metallique partielle, vitrage, utilisation et procede.
FR3009833B1 (fr) * 2013-08-20 2015-10-16 Saint Gobain Procede d'obtention d'un substrat muni d'un revetement comprenant une couche mince metallique discontinue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101579672A (zh) * 2008-05-16 2009-11-18 3M创新有限公司 用于提高亲水性/透射率的二氧化硅涂层
WO2010063440A1 (en) * 2008-12-01 2010-06-10 Eth Zurich Process for providing super-hydrophilic properties to a substrate
CN102803127A (zh) * 2009-05-08 2012-11-28 加州大学评议会 超亲水纳米结构
US20130171413A1 (en) * 2010-09-13 2013-07-04 Saif A. Khan Process for altering the wetting properties of a substrate surface

Also Published As

Publication number Publication date
ES2473216B1 (es) 2015-06-02
WO2015124823A1 (es) 2015-08-27
ES2914279T3 (es) 2022-06-08
US10807907B2 (en) 2020-10-20
US20170166475A1 (en) 2017-06-15
CN106458718B (zh) 2019-03-15
ES2473216A1 (es) 2014-07-03
EP3109211B1 (en) 2022-02-16
EP3109211A4 (en) 2017-08-16
EP3109211A1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US8741158B2 (en) Superhydrophobic transparent glass (STG) thin film articles
US9771656B2 (en) Superhydrophobic films and methods for making superhydrophobic films
JP2011032159A (ja) 機能性表面の製造方法
WO2012044522A1 (en) Mechanically stable nanoparticle thin film coatings and methods of producing the same
TW201721282A (zh) Euv保護膜及其製造方法
WO2007092746A2 (en) Transparent articles having hydrophobic or super-hydrophobic surfaces
JP2008233850A (ja) 反射防止構造体及びその製造方法並びに光学部材の製造方法
TWI626161B (zh) 透明導電性膜
KR101451790B1 (ko) 내구성을 갖는 저반사 표면체의 제조 방법 및 그 저반사 표면체
JP5685350B2 (ja) 基板の特定の場所に蒸着するための転写マスク及び当該転写マスクを製造するための方法
Wahab et al. Fundamentals of antifogging strategies, coating techniques and properties of inorganic materials; a comprehensive review
WO2012020295A1 (en) Optical elements having long-lasting hydrophilic and anti-fog properties and method for their preparation
CN113167928A (zh) 电介质多层膜、其制造方法和使用其的光学构件
Zhang et al. Superhydrophilic and highly transparent TiO2 films prepared by dip coating for photocatalytic degradation of methylene blue
TWI693142B (zh) 蛾眼轉印模具、蛾眼轉印模具之製造方法及蛾眼結構之轉印方法
CN106458718A (zh) 具有降低由水凝结所致的光散射的特性的表面及其制造方法
CN112225171A (zh) 薄膜的制造方法
JP2020128054A (ja) 導電性フィルムおよびタッチパネル
JP7335556B2 (ja) 光学素子の製造方法及び光学素子
US11773010B2 (en) High transparency, high haze nanostructured structures
CN110306159A (zh) 基于超薄四面体碳膜修饰Al纳米结构的表面增强拉曼衬底及其制备方法
JP2006239495A (ja) 防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被覆物品の製造方法
JP2015227267A (ja) 親水性部材およびその製造方法並びに親水性部材のメンテナンス方法
US11384012B2 (en) Atomized anti-scratching nano-coating for glass surface and method of manufacturing thereof
WO2021261225A1 (ja) 親水性膜の製造方法、親水性膜及び光学部材

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant