CN106449859A - 一种砷化镓量子点增强的红外探测器及其制备方法 - Google Patents

一种砷化镓量子点增强的红外探测器及其制备方法 Download PDF

Info

Publication number
CN106449859A
CN106449859A CN201611082048.7A CN201611082048A CN106449859A CN 106449859 A CN106449859 A CN 106449859A CN 201611082048 A CN201611082048 A CN 201611082048A CN 106449859 A CN106449859 A CN 106449859A
Authority
CN
China
Prior art keywords
layer
gallium arsenide
graphene
electrode
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611082048.7A
Other languages
English (en)
Inventor
庞倩桃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611082048.7A priority Critical patent/CN106449859A/zh
Publication of CN106449859A publication Critical patent/CN106449859A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明涉及一种砷化镓量子点增强的石墨烯/碲镉汞红外探测器及其制备方法,该石墨烯/碲镉汞红外探测器自下而上依次有衬底、导电镀膜层、碲镉汞层、石墨烯层及砷化镓量子点层,所述的红外探测器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在石墨烯层上。其制备方法如下:先在衬底上沉积导电镀膜层,再沉积碲镉汞层;然后将石墨烯转移至碲镉汞层上;在石墨烯层上制备砷化镓量子点层;最后在石墨烯层及导电镀膜层上分别制作电极,获得红外探测器。本发明的砷化镓量子点增强的石墨烯/碲镉汞红外探测器利用砷化镓量子点引入的光生掺杂效应来获得具有高转化效率的石墨烯/碲镉汞红外探测器。

Description

一种砷化镓量子点增强的红外探测器及其制备方法
技术领域
本发明涉及一种新型红外探测器及其制造方法,尤其涉及砷化镓量子点增强的石墨烯/碲镉汞红外探测器及其制备方法,属于红外探测器技术领域。
背景技术
光电探测器是指由辐射引起被照射材料电导率改变的一种物理现象。光电探测器在军事和国民经济的各个领域有广泛用途。在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。
光电探测器能把光信号转换为电信号。根据器件对辐射响应的方式不同或者说器件工作的机理不同,光电探测器可分为两大类:一类是光子探测器;另一类是热探测器。根据器件结构可以分为光电导型和结型光电探测器。光电导性是由于光子在半导体中被吸收时,产生可移动的载流子所造成的。目前纳米半导体光电探测器大多都是基于光电导型结构,由于电极间的载流子传输时间的限制,其速度、响应时间等性能都较差。光电探测器的响应速度决定了其跟随光学信号快速转换的能力,在光波通讯及光通讯中有着极其重要的作用。较慢的响应速度将严重限制了光电探测器在光电器件集成电路中的应用。
自石墨烯材料发现以来,其在电学、光学、磁学以及力学方面表现出的优异性质如极高的载流子迁移率、高透光新、高的杨氏模量等引发了石墨烯在诸多领域应用的憧憬。其中石墨烯在红外探测器领域的应用研究为石墨烯在能源领域的应用打开了大门。目前,已有研究者利用石墨烯以及碲镉汞做成红外探测器,且在很大程度上简化了传统红外探测器制造工艺,可以大大降低生产制造成本。对于红外探测器应用来说,碲镉汞具有较合适的禁带宽度,也是直接带隙材料,预期可以获得更高的转化效率。石墨烯/碲镉汞红外探测器的研究到目前为止还未有报道,在此基础上,本发明提出了砷化镓量子点增强的石墨烯/碲镉汞红外探测器,砷化镓量子点薄膜层的加入可以大大提升石墨烯/碲镉汞红外探测器的转化效率。
发明内容
本发明的目的在于提供一种光转化效率高且制备工艺简单的砷化镓量子点增强的石墨烯/碲镉汞红外探测器及其制备方法。
本发明的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,自下而上依次有衬底、导电镀膜层、碲镉汞层、石墨烯层及砷化镓量子点层,所述的红外探测器还设有第一电极和第二电极,第一电极设置在导电镀膜层上,第二电极设置在石墨烯层上。
所述的导电镀膜层可以为金属、ITO、FTO、n型掺杂砷化镓或p型掺杂砷化镓。
所述的石墨烯层中的石墨烯通常为1-10层。
所述的砷化镓量子点层可以为砷化镓量子点薄膜,所述的砷化镓量子点直径为1nm-1μm。
所述的衬底可以为刚性衬底或柔性衬底。
所述的第一电极和第二电极均可为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
制备上述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器的方法,包括如下步骤:
1)在洁净的衬底上生长导电镀膜层;
2)在导电镀膜层上沉积碲镉汞层,并在导电镀膜层表面预留生长第一电极的面积;
3)将硼掺杂石墨烯转移至碲镉汞层上;
4)在石墨烯层上制作砷化镓量子点层,并在石墨烯层表面预留生长第二电极的面积;
5)在导电镀膜层上沉积第一电极,并在石墨烯层上沉积第二电极。
本发明与现有技术相比具有的有益效果是:本发明的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,通过向石墨烯/碲镉汞红外探测器中加入砷化镓量子点薄膜层,可起到光掺杂作用,使得该红外探测器的光电转化效率在原基础上提升15%左右,此外,与传统红外探测器制造工艺相比,本发明的红外探测器的制备工艺简单,成本较低,便于推广。
附图说明
图1图1为砷化镓量子点增强的石墨烯/碲镉汞红外探测器的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
参照图1,本发明的砷化镓量子点增强的石墨烯/碲镉汞红外探测器自下而上依次有衬底1、导电镀膜层2、碲镉汞层3、石墨烯层4及砷化镓量子点层6,所述的红外探测器还设有第一电极5和第二电极7,第一电极5设置在导电镀膜层2上,第二电极7设置在石墨烯层4上。
实施例1:
1)将聚酰亚胺柔性衬底在去离子水中清洗干净并吹干;
2)在聚酰亚胺柔性衬底上利用磁控溅射沉积40纳米厚的掺铟氧化锡;
3)在掺铟氧化锡层上利用物理气相沉积技术沉积6微米厚的碲镉汞层,并在ITO层上预留生长第一电极的面积;
4)将单层石墨烯转移至碲镉汞层上;
5)在石墨烯上旋涂砷化镓量子点溶液,并在石墨烯上预留生长第二电极的面积;所述砷化镓量子点直径为1nm-1μm;
6)在石墨烯预留面积处以及ITO层上预留面积处涂覆银浆并烘干;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。
红外照射情况下在砷化镓量子点和碲镉汞层中产生的电子均向石墨烯中注入,而碲镉汞层收集空穴,从而产生电势差,由于砷化镓量子点层的光掺杂作用可显著提高红外探测器的光电转化效率。
实施例2:
1)将玻璃衬底在去离子水中清洗干净并吹干;
2)在玻璃衬底上利用磁控溅射沉积200纳米厚的掺氟氧化锡;
3)在掺氟氧化锡层上利用物理气相沉积技术沉积8微米厚的碲镉汞层,并在FTO层上预留生长第一电极的面积;
4)将三层石墨烯转移至碲镉汞层上;
5)在石墨烯上喷涂砷化镓量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述砷化镓量子点直径为1nm-1μm;
6)在石墨烯层预留面积处以及掺氟氧化锡层上预留面积处热蒸发金电极;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。
实施例3:
1)将陶瓷衬底在去离子水中清洗干净并吹干;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;
3)在镍金属层上利用化学水浴法沉积5微米厚的碲镉汞层,并在镍金属层上预留生长第一电极的面积;
4)将10层石墨烯转移至碲镉汞层上;
5)在石墨烯上制备砷化镓量子点薄膜,并在石墨烯层上预留生长第二电极的面积;
6)在石墨烯层预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。
实施例4:
1)将陶瓷衬底在去离子水中清洗干净并烘干;
2)在陶瓷衬底上利用电子束蒸发沉积60纳米厚的镍金属;
3)在镍金属层上利用化学水浴法沉积5微米厚的碲镉汞层,并在镍金属层上预留生长第一电极的面积;
4)将10层石墨烯转移至碲镉汞层上;
5)在石墨烯上滴涂砷化镓量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述砷化镓量子点直径为1nm-1μm;
6)在石墨烯上预留面积处以及镍金属层上预留面积处丝网印刷银电极;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。
实施例5:
1)将聚对苯二甲酸乙二醇酯衬底在去离子水中清洗干净并吹干;
2)在聚对苯二甲酸乙二醇酯衬底上利用脉冲激光沉积100纳米厚的掺铝砷化镓;
3)在掺铝砷化镓层上利用蒸汽压沉积技术沉积10微米厚的碲镉汞层,并在掺铝砷化镓上预留生长第一电极的面积;
4)将8层石墨烯转移至碲镉汞层上;
5)在石墨烯上旋涂砷化镓量子点溶液,并在石墨烯层上预留生长第二电极的面积;所述砷化镓量子点直径为1nm-1μm;
6)在石墨烯层预留面积处以及掺铝砷化镓层预留面积处热蒸发钯、银、钛复合电极;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。
实施例6:
1)将碳化硅衬底在去离子水中清洗干净并吹干;
2)在碳化硅衬底上利用金属有机化学气相沉积150纳米厚的掺铝砷化镓;
3)在掺铝砷化镓层上利用蒸汽压沉积技术沉积3微米厚的碲镉汞层,并在掺铝砷化镓层上预留生长第一电极的面积;
4)将6层石墨烯转移至碲镉汞层上;
5)在石墨烯上制备砷化镓量子点薄膜,并在石墨烯层上预留生长第二电极的面积;
6)在石墨烯层预留面积处以及掺铝砷化镓层预留面积处热蒸发铬、镍复合电极;得到砷化镓量子点增强的石墨烯/碲镉汞红外探测器。

Claims (7)

1.一种砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于自下而上依次有衬底(1)、导电镀膜层(2)、碲镉汞层(3)、石墨烯层(4)及砷化镓量子点层(6),所述的红外探测器还设有第一电极(5)和第二电极(7),第一电极(5)设置在导电镀膜层(2)上,第二电极(7)设置在石墨烯层(4)上。
2.根据权利要求1所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于所述的导电镀膜层(2)为金属、ITO、FTO、n型掺杂砷化镓或p型掺杂砷化镓。
3.根据权利要求1所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于所述的石墨烯层(4)中的石墨烯为1-10层。
4.根据权利要求1所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于所述的砷化镓量子点层(6)为砷化镓量子点层,所述的砷化镓量子点直径为1nm-1μm。
5.根据权利要求1所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于所述的衬底(1)为刚性衬底或柔性衬底。
6.根据权利要求1所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器,其特征在于所述的第一电极(5)为金、钯、银、钛、铬和镍中的一种或几种的复合电极,所述的第二电极(7)为金、钯、银、钛、铬和镍中的一种或几种的复合电极。
7.制备如权利要求1~6任一项所述的砷化镓量子点增强的石墨烯/碲镉汞红外探测器的方法,其特征在于包括如下步骤:
1)在洁净的衬底(1)上生长导电镀膜层(2);
2)在导电镀膜层(2)上沉积碲镉汞层(3),并在导电镀膜层(2)表面预留生长第一电极(5)的面积;
3)将石墨烯转移至碲镉汞层(3)上;
4)在石墨烯层(4)上制作砷化镓量子点层(6),并在石墨烯层(4)表面预留生长第二电极(7)的面积;
5)在导电镀膜层(2)上沉积第一电极(5),并在石墨烯层(4)上沉积第二电极(7)。
CN201611082048.7A 2016-11-30 2016-11-30 一种砷化镓量子点增强的红外探测器及其制备方法 Pending CN106449859A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611082048.7A CN106449859A (zh) 2016-11-30 2016-11-30 一种砷化镓量子点增强的红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611082048.7A CN106449859A (zh) 2016-11-30 2016-11-30 一种砷化镓量子点增强的红外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106449859A true CN106449859A (zh) 2017-02-22

Family

ID=58223687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611082048.7A Pending CN106449859A (zh) 2016-11-30 2016-11-30 一种砷化镓量子点增强的红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106449859A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256436A (zh) * 2018-09-03 2019-01-22 中国电子科技集团公司第十研究所 一种石墨烯红外探测单元及其制备方法
CN113571600A (zh) * 2021-07-01 2021-10-29 深圳先进技术研究院 一种短波红外探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
CN102903783A (zh) * 2012-10-23 2013-01-30 昆明物理研究所 非晶态碲镉汞/晶态硅异质结红外探测器及其制造方法
CN103730523A (zh) * 2014-01-06 2014-04-16 山东师范大学 一种石墨烯基碲镉汞复合薄膜材料及其制备方法
CN104576788A (zh) * 2014-12-29 2015-04-29 浙江大学 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021715A1 (ja) * 2009-08-20 2011-02-24 日本電気株式会社 基板、基板の製造方法、半導体素子および半導体素子の製造方法
CN102903783A (zh) * 2012-10-23 2013-01-30 昆明物理研究所 非晶态碲镉汞/晶态硅异质结红外探测器及其制造方法
CN103730523A (zh) * 2014-01-06 2014-04-16 山东师范大学 一种石墨烯基碲镉汞复合薄膜材料及其制备方法
CN104576788A (zh) * 2014-12-29 2015-04-29 浙江大学 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
史衍丽: "第三代红外探测器的发展与选择", 《红外技术》 *
甘媛媛 等: "太阳能电池作为光探测器性能测试实验", 《光源与照明》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109256436A (zh) * 2018-09-03 2019-01-22 中国电子科技集团公司第十研究所 一种石墨烯红外探测单元及其制备方法
CN113571600A (zh) * 2021-07-01 2021-10-29 深圳先进技术研究院 一种短波红外探测器及其制备方法
CN113571600B (zh) * 2021-07-01 2023-08-18 深圳先进技术研究院 一种红外探测器及其制备方法

Similar Documents

Publication Publication Date Title
Li et al. Photodetectors based on inorganic halide perovskites: Materials and devices
CN104576788B (zh) 一种硒化镉增强的石墨烯/碲化镉太阳电池及其制备方法
CN105470320A (zh) 一种二硫化钼/半导体异质结光电探测器及其制造方法
CN106449858A (zh) 一种氧化锌量子点增强的紫外探测器及其制备方法
CN106784122A (zh) 基于石墨烯/掺硼硅量子点/硅的光电探测器及制备方法
CN101853894B (zh) 一种纳米线异质结阵列基紫外光探测器及其制备方法
Arora et al. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors
CN104779352A (zh) 基于石墨烯与纳米结构钙钛矿材料的光探测器及制备方法
CN110085688A (zh) 基于石墨烯-氧化镓相结的自供电型光电探测结构、器件及制备方法
Kim et al. ITO nanowires-embedding transparent NiO/ZnO photodetector
CN106409984B (zh) 一种“三明治”型超快光电探测金属超结构的制作方法
CN107706308A (zh) 一种钙钛矿太阳能电池及制备方法
WO2023116124A1 (zh) 一种有机无机杂化的短波红外光电探测器及其所构成的阵列,以及相关制备方法
CN107154438A (zh) 一种以氟化氮掺杂石墨烯为吸收层的紫外雪崩光电探测器
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
CN108258117A (zh) 一种稳定的高性能钙钛矿光电探测器及其制备方法
CN110911568A (zh) 一种银铋硫薄膜光电探测器及其制备方法
CN106449859A (zh) 一种砷化镓量子点增强的红外探测器及其制备方法
CN106057961A (zh) 一种基于氧化钛纳米带的异质结型光电探测器及制备方法
CN107808819A (zh) 一种液态石墨烯应用于GaN基材料及器件的方法
CN108231945A (zh) 石墨烯/六方氮化硼/石墨烯紫外光探测器及制备方法
US10332691B2 (en) Method for manufacturing HEMT/HHMT device based on CH3NH3PbI3 material
Wang et al. The effects of shell characteristics on the current-voltage behaviors of dye-sensitized solar cells based on ZnO/TiO2 core/shell arrays
CN207441751U (zh) 一种同质结钙钛矿薄膜太阳能电池
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222