CN106449857A - 一种肖特基结的紫外光电探测器及其制备方法 - Google Patents

一种肖特基结的紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN106449857A
CN106449857A CN201611056804.9A CN201611056804A CN106449857A CN 106449857 A CN106449857 A CN 106449857A CN 201611056804 A CN201611056804 A CN 201611056804A CN 106449857 A CN106449857 A CN 106449857A
Authority
CN
China
Prior art keywords
titanium dioxide
nitrogen
nano tube
tube array
doped graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611056804.9A
Other languages
English (en)
Inventor
罗雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201611056804.9A priority Critical patent/CN106449857A/zh
Publication of CN106449857A publication Critical patent/CN106449857A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器及其制备方法,其特征是:以P‑型硅基底层作为衬底,在其上表面沿垂直方向生长有二氧化钛纳米管阵列,在二氧化钛纳米管阵列的上表面覆盖有绝缘层,绝缘层的面积为二氧化钛纳米管阵列的面积的1/4到1/3;在绝缘层上覆盖有双层或三层氮掺杂石墨烯,双层或三层氮掺杂石墨烯一部分与绝缘层接触,剩余部分覆盖在二氧化钛纳米管阵列上;在双层或三层氮掺杂石墨烯上设置有金属电极层。本发明工艺简单、适合大规模生产,可制备成本低、无污染、且光探测能力强的紫外光电探测器,为石墨烯和氧化锌纳米结构在紫外光电探测器的应用中奠定了基础。

Description

一种肖特基结的紫外光电探测器及其制备方法
技术领域
本发明涉及一种紫外光电探测器,更具体的说是涉及一种基于纳米材料肖特基结的紫外光电探测器。
背景技术
光电探测器是一种能够将光辐射转换成电量的器件,它利用这个特性可以进行显示及控制的功能。紫外光电探测器是探测紫外光一种器件,它在人们的日常生活甚至军事方面都起了很大的作用。在生活上,它可用于紫外净水处理中的紫外线测量、燃烧工程以及火焰探测等领域,而且在现代医学和生物等领域紫外探测器同样是必不可少的仪器。军事上,紫外探测器同样有着很大作用,紫外探测技术可用于紫外告警、紫外通讯、紫外制导、紫外干扰等领域。所以,很多国家都对紫外探测器进行了大量的研究,以防止在军事上受到威胁。
由于紫外光能量较其他的能量大,于是宽禁带半导体材料氧化锌具有卓越的物理特性和潜在的技术优势,用它们作为器件在高功率、高温、高频和短波长应用方面具有比硅、氮化镓等器件优越的多的特性,使得它们在紫外探测领域有更好的发展前景。但是氧化锌纳米结构的光电探测器受纳米结构表面载流子耗尽层影响从而导致探测速度会变慢。
石墨烯,一种由碳原子组成六角型呈蜂巢晶格的单原子层薄膜是目前最炙手可热的材料之一,由于它具有很多优良的物理性能,例如高导电性、超高迁移率和高透明性,所以石墨烯搭配各种氧化锌纳米结构已成功地制成了高效率的光伏器件、高灵敏度的气体传感器、透明和灵敏的场致发射体以及超级电容器。尽管这些方面有一定的进展,但石墨烯修饰氧化锌纳米结构的紫外光电探测器却没有被研究。。
发明内容
本发明是为避免上述现有技术所存在的不足之处,提供一种成本低、无污染、响应速度快、且光探测能力强的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器。
本发明为解决技术问题采用如下技术方案:
本发明基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特点是:以P-型硅基底层作为衬底,在所述P-型硅基底层的上表面沿垂直方向生长有二氧化钛纳米管阵列,在所述二氧化钛纳米管阵列的上表面覆盖有绝缘层,所述绝缘层的面积为所述二氧化钛纳米管阵列的面积的1/4到1/3,所述绝缘层的边界不超出所述二氧化钛纳米管阵列的边界;在所述绝缘层上覆盖有双层或三层氮掺杂石墨烯,所述双层或三层氮掺杂石墨烯一部分与所述绝缘层接触,剩余部分覆盖在所述二氧化钛纳米管阵列上,所述双层或三层氮掺杂石墨烯的边界不超出所述二氧化钛纳米管阵列的边界;在双层或三层氮掺杂石墨烯上设置有金属电极层,所述金属电极层与所述双层或三层氮掺杂石墨烯呈欧姆接触,所述金属电极层的边界不超出所述绝缘层的边界。
本发明基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特点也在于:所述金属电极层为银浆电极或金浆电极;所述金属电极层的厚度为10~30μm。
所述P-型硅基底层采用电阻率为0.0002~0.001Ω/cm的P-型重掺杂硅片。
所述绝缘层为绝缘胶带。
所述二氧化钛纳米管阵列中各二氧化钛纳米管的直径为200nm~1000nm。
本发明基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器的制备方法,其特点是按如下步骤进行:
a、取电阻率为0.0002~0.001Ω/cm的P-型重掺杂硅片作为P-型硅基底层,在真空管式炉中,在1000℃的温度条件下,以纯度为99.99%~99.999%的氧化锌粉末和纯度为99.9%~99.99%的石墨粉作为原料,在所述P-型硅基底层上制备二氧化钛纳米管阵列,自然冷却至室温后,取出生长有二氧化钛纳米管阵列的P-型硅基底层;
b、用绝缘胶带作为绝缘层粘贴覆盖步骤a生长的二氧化钛纳米管阵列面积的1/4到1/3;
c、在步骤b所制备的绝缘层上铺设双层或三层氮掺杂石墨烯,所述双层或三层氮掺杂石墨烯一部分与所述绝缘层接触,剩余部分覆盖在所述二氧化钛纳米管阵列上,所述双层或三层氮掺杂石墨烯的边界不超出所述二氧化钛纳米管阵列的边界;
d、在双层或三层氮掺杂石墨烯上涂抹金属电极层,所述金属电极层的边界不超出所述绝缘层的边界。
与已有技术相比,本发明有益效果体现在:
1、本发明设计了一种基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,成本低、无污染、光探测能力强,且工艺简单、适合大规模生产,为石墨烯和氧化锌纳米结构在紫外光电探测器领域中的应用奠定了基础;
2、本发明紫外光电探测器引入双层或三层氮掺杂石墨烯替代传统光电探测器中的金属薄层,避免了使用电子束镀膜以及磁控溅射等大型仪器设备,降低了制备成本;
3、本发明充分利用了二氧化钛纳米管阵列结构所具有的大的陷光效应的优势,克服了传统的采用薄膜的光电探测器的反射大缺点,避免了使用减反射层带来的额外成本的增加。
附图说明
图1为本发明基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器的结构示意图。
图中标号:1P-型硅基底层;2二氧化钛纳米管阵列;3绝缘层;4双层或三层氮掺杂石墨烯;5金属电极层。
具体实施方式
实施例1:
参见图1,本实施例基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器具有如下结构:以P-型硅基底层1作为衬底,在P-型硅基底层1的上表面沿垂直方向生长有二氧化钛纳米管阵列2,在二氧化钛纳米管阵列2的上表面覆盖有绝缘层3,绝缘层3的面积为二氧化钛纳米管阵列2的面积的1/4到1/3,绝缘层3的边界不超出二氧化钛纳米管阵列2的边界;在绝缘层3上覆盖有双层或三层氮掺杂石墨烯4,双层或三层氮掺杂石墨烯4一部分与绝缘层3接触,剩余部分覆盖在二氧化钛纳米管阵列2上,双层或三层氮掺杂石墨烯4的边界不超出二氧化钛纳米管阵列2的边界;在双层或三层氮掺杂石墨烯4上设置有金属电极层5,金属电极层5与双层或三层氮掺杂石墨烯4呈欧姆接触,金属电极层5的边界不超出绝缘层3的边界。
本实施例中基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器的制备方法是按如下步骤进行:
a、取电阻率为0.0005Ω/cm的P-型重掺杂硅片作为P-型硅基底层1,在真空管式炉中,在1000℃的温度条件下,以纯度为99.999%的氧化锌粉末和纯度为99.9%的石墨粉作为原料,在P-型硅基底层1上制备二氧化钛纳米管阵列2,自然冷却至室温后,取出生长有二氧化钛纳米管阵列2的P-型硅基底层1;二氧化钛纳米管阵列2中各二氧化钛纳米管的直径为400nm。
选择电阻率小的P-型重掺杂硅片是为了保证其与二氧化钛纳米管阵列形成欧姆接触,电阻率越小效果越好。0.0002~0.001Ω/cm的范围是综合考虑各因素的最优范围。
b、用绝缘胶带作为绝缘层3粘贴覆盖步骤a生长的二氧化钛纳米管阵列2面积的1/4;
c、在步骤b所制备的绝缘层3上铺设双层或三层氮掺杂石墨烯4,双层或三层氮掺杂石墨烯4的面积大于绝缘层3的面积,双层或三层氮掺杂石墨烯4一部分与绝缘层3接触,剩余部分覆盖在所述二氧化钛纳米管阵列2上,双层或三层氮掺杂石墨烯4的边界不超出所述二氧化钛纳米管阵列2的边界;双层或三层氮掺杂石墨烯与二氧化钛纳米管阵列2直接接触形成肖特基结。
d、在双层或三层氮掺杂石墨烯4上涂抹银浆电极,银浆电极的边界不超出绝缘层3的边界,此处也可涂抹金浆电极或其它与双层或三层氮掺杂石墨烯呈欧姆接触的电极作为金属电极层5。
绝缘层3的目的是保证金属电极层5不会透过双层或三层氮掺杂石墨烯4与二氧化钛纳米管阵列2接触,以导致器件失效。

Claims (6)

1.基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特征是:以P-型硅基底层(1)作为衬底,在所述P-型硅基底层(1)的上表面沿垂直方向生长有二氧化钛纳米管阵列(2),在所述二氧化钛纳米管阵列(2)的上表面覆盖有绝缘层(3),所述绝缘层(3)的面积为所述二氧化钛纳米管阵列(2)的面积的1/4到1/3,所述绝缘层(3)的边界不超出所述二氧化钛纳米管阵列(2)的边界;在所述绝缘层(3)上覆盖有双层或三层氮掺杂石墨烯(4),所述双层或三层氮掺杂石墨烯(4)一部分与所述绝缘层(3)接触,剩余部分覆盖在所述二氧化钛纳米管阵列(2)上,所述双层或三层氮掺杂石墨烯(4)的边界不超出所述二氧化钛纳米管阵列(2)的边界;在双层或三层氮掺杂石墨烯(4)上设置有金属电极层(5),所述金属电极层(5)与所述双层或三层氮掺杂石墨烯(4)呈欧姆接触,所述金属电极层(5)的边界不超出所述绝缘层(3)的边界。
2.根据权利要求1所述的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特征是:所述金属电极层(5)为银浆电极或金浆电极;所述金属电极层(5)的厚度为10~30μm。
3.根据权利要求1所述的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特征是:所述P-型硅基底层(1)采用电阻率为0.0002~0.001Ω/cm的P-型重掺杂硅片。
4.根据权利要求1所述的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特征是:所述绝缘层(3)为绝缘胶带。
5.根据权利要求1所述的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器,其特征是:所述二氧化钛纳米管阵列(2)中各二氧化钛纳米管的直径为200nm~1000nm。
6.一种权利要求1所述的基于双层或三层氮掺杂石墨烯/二氧化钛纳米管阵列肖特基结的紫外光电探测器的制备方法,其特征是按如下步骤进行:
a、取电阻率为0.0002~0.001Ω/cm的P-型重掺杂硅片作为P-型硅基底层(1),在真空管式炉中,在1000℃的温度条件下,以纯度为99.99%~99.999%的氧化锌粉末和纯度为99.9%~99.99%的石墨粉作为原料,在所述P-型硅基底层(1)上制备二氧化钛纳米管阵列(2),自然冷却至室温后,取出生长有二氧化钛纳米管阵列(2)的P-型硅基底层(1);
b、用绝缘胶带作为绝缘层(3)粘贴覆盖步骤a生长的二氧化钛纳米管阵列(2)面积的1/4到1/3;
c、在步骤b所制备的绝缘层(3)上铺设双层或三层氮掺杂石墨烯(4),所述双层或三层氮掺杂石墨烯(4)一部分与所述绝缘层(3)接触,剩余部分覆盖在所述二氧化钛纳米管阵列(2)上,所述双层或三层氮掺杂石墨烯(4)的边界不超出所述二氧化钛纳米管阵列(2)的边界;
d、在双层或三层氮掺杂石墨烯(4)上涂抹金属电极层(5),所述金属电极层(5)的边界不超出所述绝缘层(3)的边界。
CN201611056804.9A 2016-11-25 2016-11-25 一种肖特基结的紫外光电探测器及其制备方法 Pending CN106449857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611056804.9A CN106449857A (zh) 2016-11-25 2016-11-25 一种肖特基结的紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611056804.9A CN106449857A (zh) 2016-11-25 2016-11-25 一种肖特基结的紫外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN106449857A true CN106449857A (zh) 2017-02-22

Family

ID=58218920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611056804.9A Pending CN106449857A (zh) 2016-11-25 2016-11-25 一种肖特基结的紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106449857A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762517A (zh) * 2019-02-01 2019-05-17 浙江大学 一种紫外/可见光响应的石墨烯/二氧化钛/Si基板及其制备方法
CN109768111A (zh) * 2018-12-13 2019-05-17 华南理工大学 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN109920875A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN111048620A (zh) * 2019-11-20 2020-04-21 电子科技大学 基于二氧化钛纳米管和石墨烯异质结紫外光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856423A (zh) * 2012-09-19 2013-01-02 合肥工业大学 一种以二氧化钛纳米管阵列为基体的紫外光探测器及其制备方法
CN103346199A (zh) * 2013-07-10 2013-10-09 合肥工业大学 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
CN106057961A (zh) * 2016-06-28 2016-10-26 兰建龙 一种基于氧化钛纳米带的异质结型光电探测器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856423A (zh) * 2012-09-19 2013-01-02 合肥工业大学 一种以二氧化钛纳米管阵列为基体的紫外光探测器及其制备方法
CN103346199A (zh) * 2013-07-10 2013-10-09 合肥工业大学 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
CN106057961A (zh) * 2016-06-28 2016-10-26 兰建龙 一种基于氧化钛纳米带的异质结型光电探测器及制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109920875A (zh) * 2017-12-12 2019-06-21 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN109920875B (zh) * 2017-12-12 2021-12-17 中国科学院苏州纳米技术与纳米仿生研究所 日盲紫外探测器、其制作方法与应用
CN109768111A (zh) * 2018-12-13 2019-05-17 华南理工大学 一种GaAs纳米柱-石墨烯肖特基结太阳能电池及其制备方法
CN109762517A (zh) * 2019-02-01 2019-05-17 浙江大学 一种紫外/可见光响应的石墨烯/二氧化钛/Si基板及其制备方法
CN109762517B (zh) * 2019-02-01 2020-10-16 浙江大学 一种紫外/可见光响应的石墨烯/二氧化钛/Si基板及其制备方法
CN111048620A (zh) * 2019-11-20 2020-04-21 电子科技大学 基于二氧化钛纳米管和石墨烯异质结紫外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
Li et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application
Cao et al. High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN106449857A (zh) 一种肖特基结的紫外光电探测器及其制备方法
CN105023969B (zh) 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
Veeralingam et al. Enhanced carrier separation assisted high-performance piezo-phototronic self-powered photodetector based on core-shell ZnSnO3@ In2O3 heterojunction
Peng et al. Recent progress of flexible photodetectors based on low‐dimensional II–VI semiconductors and their application in wearable electronics
Noothongkaew et al. UV-Photodetectors based on CuO/ZnO nanocomposites
Abbas et al. Functional interlayer of In2O3 for transparent SnO2/SnS2 heterojunction photodetector
JP2011176225A (ja) 光学変換装置及び同装置を含む電子機器
Wang et al. Flexible, transparent and self-powered deep ultraviolet photodetector based on Ag NWs/amorphous gallium oxide Schottky junction for wearable devices
Athira et al. SnO2-NiO heterojunction based self-powered UV photodetectors
Tai et al. Ultraviolet photodetector based on p-borophene/n-ZnO heterojunction
Somvanshi et al. Pd/ZnO nanoparticles based Schottky ultraviolet photodiodes grown on Sn-coated n-Si substrates by thermal evaporation method
Dhyani et al. High speed MSM photodetector based on Ge nanowires network
Sun et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate
Kadir et al. Ultraviolet Photodetector Based on Poly (3, 4-Ethylenedioxyselenophene)/ZnO Core–Shell Nanorods pn Heterojunction
Ok et al. All oxide ultraviolet photodetectors based on a p-Cu2O film/n-ZnO heterostructure nanowires
Wu et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging
CN108550593A (zh) 一种基于复合结构的石墨烯-量子点双色光探测器及其制备方法
Choi Graphene-based vertical-junction diodes and applications
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
Huang et al. Self-powered ultraviolet photodetector based on CuGaO/ZnSO heterojunction
Reddy et al. All solution processed flexible p-NiO/n-CdS rectifying junction: Applications towards broadband photodetector and human breath monitoring

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170222