CN106436276A - 一种增强静电纺丝薄膜力学性能的试剂及方法 - Google Patents
一种增强静电纺丝薄膜力学性能的试剂及方法 Download PDFInfo
- Publication number
- CN106436276A CN106436276A CN201610697414.3A CN201610697414A CN106436276A CN 106436276 A CN106436276 A CN 106436276A CN 201610697414 A CN201610697414 A CN 201610697414A CN 106436276 A CN106436276 A CN 106436276A
- Authority
- CN
- China
- Prior art keywords
- electrostatic spinning
- solvent
- spinning film
- film
- reagent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/01—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
- D06M11/05—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/08—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with halogenated hydrocarbons
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/11—Compounds containing epoxy groups or precursors thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/144—Alcohols; Metal alcoholates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/184—Carboxylic acids; Anhydrides, halides or salts thereof
- D06M13/188—Monocarboxylic acids; Anhydrides, halides or salts thereof
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/402—Amides imides, sulfamic acids
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/22—Polymers or copolymers of halogenated mono-olefins
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/24—Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/32—Polyesters
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明提供一种增强静电纺丝薄膜力学性能的试剂,其由薄膜材料的溶剂和非溶剂混合组成;所述溶剂为能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物,所述非溶剂为不能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物;所述溶剂与非溶剂的混合比例为在一定量的非溶剂中不断增加溶剂的量,直至所述静电纺丝薄膜材料发生溶胀,纤维间接触的部分发生溶胀后会结合更为紧密,在溶剂挥发后薄膜力学性能得到极大提高。本发明提供的增强静电纺丝薄膜力学性能的试剂及方法,可以实现静电纺丝薄膜的弹性模量、断裂强度和韧性同时增强。
Description
技术领域
本发明涉及高分子加工领域,尤其涉及一种增强静电纺丝薄膜力学性能的试剂及方法。
背景技术
静电纺丝是生产高分子纳米纤维的常见方法,其所制备的纤维在收集板上不断堆砌则形成微孔纤维膜。该工艺生产的薄膜通常情况下力学性能较差,其应用受到一定限制。对于静电纺丝方法制备的薄膜的力学性能增强的方法主要有:与其他高分子材料共混纺丝,加入碳纳米管等无机纳米材料以及热处理等。第一种方法可选择材料有限且增强效果不明显,第二种方法碳纳米管等无机纳米材料成本昂贵且工艺实施繁琐,第三种方法增强效果明显但是极其容易破坏纤维结构从而影响其应用。
发明内容
本发明的目的是提供一种增强静电纺丝薄膜力学性能的试剂及方法,增强静电纺丝薄膜的弹性模量、断裂强度和韧性。
为了解决上述技术问题,本发明提供的增强静电纺丝薄膜力学性能的试剂及方法是这样实现的:
一种增强静电纺丝薄膜力学性能的试剂,溶剂和非溶剂混合;所述溶剂为能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物,所述非溶剂为不能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物;所述溶剂与非溶剂的混合比例为在一定量的非溶剂中不断增加溶剂的量,直至所述静电纺丝薄膜产生溶胀现象。
可选的,所述静电纺丝薄膜为聚乳酸静电纺丝薄膜时,所述溶剂为:卤化烃,所述非溶剂为水、乙醇或乙酸。
可选的,所述静电纺丝薄膜为聚碳酸酯静电纺丝薄膜时,所述溶剂为:四氢呋喃、二甲基甲酰胺或四氢呋喃与二甲基甲酰胺的混合物,所述非溶剂为水、乙醇或水与乙醇的混合物。
可选的,所述静电纺丝薄膜为聚己内酯静电纺丝薄膜时,所述溶剂为三氯甲烷,所述非溶剂为水;或所述溶剂为乙酸,所述非溶剂为乙醇。
可选的,所述静电纺丝薄膜为聚乙烯醇静电纺丝薄膜时,所述溶剂为水、乙醇或水与乙醇的混合物,所述非溶剂为氯仿、二氯甲烷或氯仿与二氯甲烷的混合物。
可选的,所述静电纺丝薄膜为聚偏二氟乙烯静电纺丝薄膜时,所述溶剂为丙酮,所述非溶剂为水。
一种增强静电纺丝薄膜力学性能的方法,制备权利要求1中所述的试剂;将所述试剂浇洒于静电纺丝薄膜表面,然后密封静置;静置完毕后,解除密封使溶液自然挥发或解除密封加热使溶液挥发。
可选的,所述浇洒试剂的量为1~10ml/cm2静电纺丝薄膜。
可选的,所述密封静置的时间为30min。
可选的,所述加热的温度低于所述静电纺丝薄膜材料的熔点或所述静电纺丝薄膜材料的玻璃化转变温度。
本发明提供的增强静电纺丝薄膜的试剂,溶剂与非溶剂达到一定比例混合,浇洒到薄膜表面,使得薄膜处于即将溶解但未溶解的溶胀状态,使得静电纺丝薄膜纤维表面发生软化但不致破坏,软化的部分接触时会产生新的粘结点同时原有的粘结点的粘结程度也会进一步提高,当粘结进行的比较充分的时候通风或者加热升温,使浇洒到薄膜上的溶液挥发,将软化的粘结点固化,从而提高整个薄膜的弹性模量、断裂强度、增加断裂伸长率和韧性等力学性能。相对于现有技术来说,本发明成本低廉,增强效果好,所使用的溶液待其挥发后可重新冷凝回收,操作工序简便、可控性高,并且能够较好地保持该纤维膜的多孔结构;对设备和场地要求简单,仅需要简单的通风和升温装置即可,且处理效率极高;此外本发明在增加强度的同时增加韧性。本发明增强效果明显,在不破坏纤维结构的情况下通过电子显微镜观测纤维微观形貌确定,强度、弹性模量等力学指标均提升300%左右。
附图说明
图1是静电纺丝薄膜加入不同配比试剂的微观纤维形貌变化图。
具体实施方式
为了使本发明的目的、技术方案优点更加清楚明白,以下实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明增强静电纺丝薄膜力学性能的试剂,溶剂和非溶剂混合;溶剂为能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物,非溶剂为不能溶解静电纺丝薄膜的一种物质或两种物质的混合物;溶剂与非溶剂的混合比例为在一定量的非溶剂中不断增加溶剂的量,直至所述静电纺丝薄膜发生溶胀。制备好试剂后,将试剂浇洒于静电纺丝薄膜表面,然后密封静置;静置完毕后,解除密封使溶液自然挥发或解除密封加热使溶液挥发。静电纺丝薄膜的溶胀现象是静电纺丝薄膜处于即将溶解但未溶解的状态。将解除密封溶液自然挥发或加热使溶液挥发后的静电纺丝薄膜使用电子显微镜拍照,如图1所示,加入试剂后,溶剂比重从1:9增加到3:7时,纤维未见明显溶解迹象较好地保持了原有形貌,此时可认为纤维仅发生了溶胀而未溶解。当溶剂比重增加到4:6及以上时,可以明显地看到纤维发生了溶解,因此确定溶剂与非溶剂的最佳比例为3:7,3:7的比例下静电纺丝薄膜处于溶胀状态。图1中所示静电纺丝薄膜微观结构变化图,所使用溶剂为四氢呋喃,非溶剂为水。
实施例一
本实施例通过增强PLA静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。
首先:通过静电纺丝技术制备聚乳酸(PLA,polylactic acid)静电纺丝薄膜;其次:选择氯仿作为溶剂,水作为非溶剂;然后确定氯仿与水的混合比例:将1:9至5:5配比的氯仿和水的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使氯仿和水挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入氯仿和水的比例为4:6;然后将PLA静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PLA静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PLA的熔点或者玻璃化转变温度。
本实施例试剂中的溶剂和非溶剂还可以选择表一中所示物质,静置时间、加入试
剂与静电纺丝薄膜的比例、加热温度与上述描述一致;溶剂与非溶剂的混合比例,本领域技
术人员可以根据本实施例提供的方法确定。
试剂序列 | 溶剂 | 非溶剂 |
1 | 氯仿 | 乙醇 |
2 | 氯仿 | 乙酸 |
3 | 二氯甲烷 | 水 |
4 | 二氯甲烷 | 乙醇 |
5 | 二氯甲烷 | 乙酸 |
6 | 三氯甲烷 | 水 |
7 | 三氯甲烷 | 乙醇 |
8 | 三氯甲烷 | 乙酸 |
表一
实施例二
本实施例通过增强聚碳酸酯(PC,Polycarbonate)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。
首先:通过静电纺丝技术制备PC静电纺丝薄膜;其次:选择四氢呋喃作为溶剂,水作为非溶剂;然后确定四氢呋喃与水的混合比例:将1:9至5:5配比的四氢呋喃和水的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使四氢呋喃和水挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入四氢呋喃和水的比例为3:7;然后将PC静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PC静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PC的熔点或者玻璃化转变温度。
本实施例试剂中的溶剂和非溶剂还可以选择表二中所示物质静置时间、加入试剂
与静电纺丝薄膜的比例、加热温度与上述描述一致;溶剂与非溶剂的混合比例,本领域技术
人员可以根据本实施例提供的方法确定。
试剂序列 | 溶剂 | 非溶剂 |
9 | 四氢呋喃 | 水 |
10 | 四氢呋喃 | 乙醇 |
11 | 二甲基甲酰胺 | 水 |
12 | 二甲基甲酰胺 | 乙醇 |
表二
实施例三
本实施例通过增强聚碳酸酯(PC,Polycarbonate)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。本实施例选择四氢呋喃和二甲基甲酰胺的混合物作为溶剂,水和乙醇的混合物作为非溶剂;其中四氢呋喃和二甲基甲酰胺的混合比例为任意比例,本实施例选择比例为6:4,,水和乙醇的混合比例为任意比例,本实施例选择比例为:5:5
确定溶剂与非溶剂的混合比例:将1:9至5:5配比的溶剂和非溶剂的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使溶剂和非溶剂挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入溶剂和非溶剂的比例为3:7;然后将PC静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PC静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PC的熔点或者玻璃化转变温度。
实施例四
本实施例通过增强聚己内酯(PCL,Polycaprolactone)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。本实施例选择溶剂为三氯甲烷,非溶剂为水。
首先:通过静电纺丝技术制备PCL静电纺丝薄膜;其次:选择三氯甲烷作为溶剂,水作为非溶剂;然后确定三氯甲烷与水的混合比例:将1:9至5:5配比的三氯甲烷和水的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使三氯甲烷和水挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入三氯甲烷和水的比例为3:7;然后将PCL静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PLA静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PCL的熔点或者玻璃化转变温度。
实施例五
本实施例通过增强聚己内酯(PCL,Polycaprolactone)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。本实施例选择溶剂为乙酸,非溶剂为乙醇。
首先:通过静电纺丝技术制备PCL静电纺丝薄膜;其次:选择乙酸作为溶剂,乙醇作为非溶剂;然后确定乙酸与乙醇的混合比例:将1:9至5:5配比的乙酸和乙醇的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使乙酸和乙醇挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入乙酸和乙醇的比例为2:8;然后将PCL静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PCL静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PCL的熔点或者玻璃化转变温度。
实施例六
本实施例通过增强聚乙烯醇(PVA,polyvinyl alcohol,vinylalcohol polymer)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。
首先:通过静电纺丝技术制备PVA静电纺丝薄膜;其次:选择水作为溶剂,氯仿作为非溶剂;然后确定水与氯仿的混合比例:将1:9至5:5配比的水和氯仿的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使水和氯仿挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入水和氯仿的比例为3:7;然后将PVA静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PVA静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PVA的熔点或者玻璃化转变温度。
本实施例试剂中的溶剂和非溶剂还可以选择表三中所示物质,静置时间、加入试
剂与静电纺丝薄膜的比例、加热温度与上述描述一致;溶剂与非溶剂的混合比例,本领域技
术人员可以根据本实施例提供的方法确定。
试剂序列 | 溶剂 | 非溶剂 |
16 | 水 | 氯仿 |
17 | 水 | 二氯甲烷 |
18 | 乙醇 | 氯仿 |
19 | 乙醇 | 二氯甲烷 |
表三
实施例七
本实施例通过增强聚乙烯醇(PVA,polyvinyl alcohol,vinylalcohol polymer)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。溶剂选择水和乙醇的混合物,非溶剂选择氯仿和二氯甲烷;其中,溶剂水和乙醇的混合比例可以选择任意比例,本实施例选择比例为6:4;非溶剂氯仿和二氯甲烷的混合比例可以选择任意比例,本实施例选择比例为5:5。
首先:通过静电纺丝技术制备PVA静电纺丝薄膜;其次:选择水和乙醇的混合物作为溶剂,氯仿和二氯甲烷的混合物作为非溶剂;然后确定溶剂与非溶剂的混合比例:将1:9至5:5配比的确定溶剂与非溶剂的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使确定溶剂与非溶剂挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入确定溶剂与非溶剂的比例为3:7;然后将PVA静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PVA静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PVA的熔点或者玻璃化转变温度。
实施例八
本实施例通过增强聚偏二氟乙烯(PVDF,polyvinylidene difluoride)静电纺丝薄膜的力学性能说明本发明提供的增强静电纺丝薄膜力学性能的试剂及方法。
首先:通过静电纺丝技术制备PVDF静电纺丝薄膜;其次:选择丙酮作为溶剂,水作为非溶剂;然后确定丙酮与水的混合比例:将1:9至5:5配比的确定丙酮与水的混合物浇洒到薄膜表面,静置30min,待其充分作用,随后使确定丙酮与水挥发,将挥发后的薄膜进行扫描电子显微镜观测,发现纤维溶解迹象的比例舍去不要,未发生溶解的比例选取最高值作为最优比例;本实施例中加入丙酮和水的比例为4:6;然后将PVDF静电纺丝薄膜置于容器内,按照试剂与静电纺丝薄膜1~10ml/cm2的量将试剂浇洒于PVDF静电纺丝薄膜上;然后盖上容器的盖子静置30min;静置完毕后,打开盖子使溶液自然挥发或者加热使溶液挥发,挥发完即可使用。加热的温度低于PVDF的熔点或玻璃化转变温度。
需要说明的是:本发明所述水均为去离子水,本发明中所述比例均为质量比。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种增强静电纺丝薄膜力学性能的试剂,其特征在于,溶剂和非溶剂混合;所述溶剂为能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物,所述非溶剂为不能溶解所述静电纺丝薄膜的一种物质或两种物质的混合物;所述溶剂与非溶剂的混合比例为在一定量的非溶剂中不断增加溶剂的量,直至所述静电纺丝薄膜发生溶胀。
2.根据权利要求1所述的增强静电纺丝薄膜力学性能的试剂,其特征在于,所述静电纺丝薄膜为聚乳酸静电纺丝薄膜时,所述溶剂为:卤化烃,所述非溶剂为水、乙醇或乙酸。
3.根据权利要求1所述的增强静电纺丝薄膜力学性能的试剂,其特征在于,所述静电纺丝薄膜为聚碳酸酯静电纺丝薄膜时,所述溶剂为:四氢呋喃、二甲基甲酰胺或四氢呋喃与二甲基甲酰胺的混合物,所述非溶剂为水、乙醇或水与乙醇的混合物。
4.根据权利要求1所述的增强静电纺丝薄膜力学性能的试剂,其特征在于,所述静电纺丝薄膜为聚己内酯静电纺丝薄膜时,所述溶剂为三氯甲烷,所述非溶剂为水;或所述溶剂为乙酸,所述非溶剂为乙醇。
5.根据权利要求1所述的增强静电纺丝薄膜力学性能的试剂,其特征在于,所述静电纺丝薄膜为聚乙烯醇静电纺丝薄膜时,所述溶剂为水、乙醇或水与乙醇的混合物,所述非溶剂为氯仿、二氯甲烷或氯仿与二氯甲烷的混合物。
6.根据权利要求1所述的增强静电纺丝薄膜力学性能的试剂,其特征在于,所述静电纺丝薄膜为聚偏二氟乙烯静电纺丝薄膜时,所述溶剂为丙酮,所述非溶剂为水。
7.一种增强静电纺丝薄膜力学性能的方法,其特征在于,制备权利要求1中所述的试剂;将所述试剂浇洒于静电纺丝薄膜表面,然后密封静置;静置完毕后,解除密封使溶液自然挥发或解除密封加热使溶液挥发。
8.根据权利要求7所述的增强静电纺丝薄膜力学性能的方法,其特征在于,所述浇洒试剂的量为1~10ml/cm2静电纺丝薄膜。
9.根据权利要求7或8所述的增强静电纺丝薄膜力学性能的方法,其特征在于,所述密封静置的时间为30min。
10.根据权利要求9所述的增强静电纺丝薄膜力学性能的方法,其特征在于,所述加热的温度低于所述静电纺丝薄膜材料的熔点或低于所述静电纺丝薄膜材料的玻璃化转变温度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610697414.3A CN106436276A (zh) | 2016-08-19 | 2016-08-19 | 一种增强静电纺丝薄膜力学性能的试剂及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610697414.3A CN106436276A (zh) | 2016-08-19 | 2016-08-19 | 一种增强静电纺丝薄膜力学性能的试剂及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106436276A true CN106436276A (zh) | 2017-02-22 |
Family
ID=58182485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610697414.3A Pending CN106436276A (zh) | 2016-08-19 | 2016-08-19 | 一种增强静电纺丝薄膜力学性能的试剂及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106436276A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200816A (ja) * | 1985-03-04 | 1986-09-05 | Toyobo Co Ltd | 中空糸型分離膜の製造法 |
JPH04257313A (ja) * | 1991-02-08 | 1992-09-11 | Mitsubishi Rayon Co Ltd | 炭素繊維前駆体繊維の製造方法 |
CN102489159A (zh) * | 2011-12-05 | 2012-06-13 | 北京碧水源科技股份有限公司 | 一种干态中空纤维膜的通量恢复方法 |
CN102517673A (zh) * | 2011-11-23 | 2012-06-27 | 浙江大学 | 一种混合相分离制备聚合物多孔纳米纤维的方法 |
CN103469602A (zh) * | 2013-09-13 | 2013-12-25 | 东华大学 | 一种芳纶纤维在超临界流体中拉伸取向提高力学性能的方法 |
CN103469486A (zh) * | 2013-09-02 | 2013-12-25 | 东华大学 | 一种PVA/MWNTs-OH导电复合膜的制备方法 |
-
2016
- 2016-08-19 CN CN201610697414.3A patent/CN106436276A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61200816A (ja) * | 1985-03-04 | 1986-09-05 | Toyobo Co Ltd | 中空糸型分離膜の製造法 |
JPH04257313A (ja) * | 1991-02-08 | 1992-09-11 | Mitsubishi Rayon Co Ltd | 炭素繊維前駆体繊維の製造方法 |
CN102517673A (zh) * | 2011-11-23 | 2012-06-27 | 浙江大学 | 一种混合相分离制备聚合物多孔纳米纤维的方法 |
CN102489159A (zh) * | 2011-12-05 | 2012-06-13 | 北京碧水源科技股份有限公司 | 一种干态中空纤维膜的通量恢复方法 |
CN103469486A (zh) * | 2013-09-02 | 2013-12-25 | 东华大学 | 一种PVA/MWNTs-OH导电复合膜的制备方法 |
CN103469602A (zh) * | 2013-09-13 | 2013-12-25 | 东华大学 | 一种芳纶纤维在超临界流体中拉伸取向提高力学性能的方法 |
Non-Patent Citations (3)
Title |
---|
于伟东等: "《纺织物理》", 30 September 2009, 东华大学出版社 * |
朱寅: ""高强高模聚乙烯醇纤维的制备及其过程中大分子缠结的研究",朱寅,《中国博士学位论文全文数据库 工程科技I辑》,第07期,第B016-15页", 《中国博士学位论文全文数据库 工程科技I辑》 * |
田仁平: ""电纺聚乳酸纤维结构调控及其应用",田仁平,《中国优秀硕士学位论文全文数据库 工程科技I辑》,第08期,第B016-272页", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rashid et al. | Mechanical properties of electrospun fibers—a critical review | |
Li et al. | Electrospinning of hyaluronic acid (HA) and HA/gelatin blends | |
Koosha et al. | Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers | |
Chen et al. | Fabrication of polylactic acid/polyethylene glycol (PLA/PEG) porous scaffold by supercritical CO 2 foaming and particle leaching | |
US9045601B2 (en) | Method for producing stereo complex crystals of polylactic acid, polylactic acid, and molded body, synthetic fiber, porous body and ion conductor comprising same | |
Zhou et al. | Alkali‐Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite Nanofibers for Tissue Scaffolding | |
Wang et al. | Self‐assembly‐driven electrospinning: the transition from fibers to intact beaded morphologies | |
de Cassan et al. | Blending chitosan‐g‐poly (caprolactone) with poly (caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications | |
CN107142610B (zh) | 一种高性能立构复合聚乳酸静电纺丝纳米纤维膜及其制备方法 | |
CN110079991B (zh) | 一种基于静电纺的超轻弹性聚合物纳米纤维基气凝胶隔热材料 | |
Chen et al. | Effect of fiber structure on the properties of the electrospun hybrid membranes composed of poly (ε‐caprolactone) and gelatin | |
CN105111704A (zh) | 一种聚乳酸/功能化石墨烯复合材料及其制备方法 | |
Quinn et al. | Preparation and characterization of crosslinked electrospun poly (vinyl alcohol) nanofibrous membranes | |
Wu et al. | Preparation of novel thermoplastic poly (vinyl alcohol) with improved processability for fused deposition modeling | |
Chen et al. | Core–shell structure PEO/CS nanofibers based on electric field induced phase separation via electrospinning and its application | |
Gu et al. | Natural lignin nanoparticles: a promising nano-crosslinker for constructing fluorescent photoswitchable supramolecular hydrogels | |
Chen et al. | Blend membranes prepared from cellulose and soy protein isolate in NaOH/thiourea aqueous solution | |
Buttaro et al. | Phase separation to create hydrophilic yet non‐water soluble PLA/PLA‐b‐PEG fibers via electrospinning | |
Thielke et al. | Electrospinning of crystallizable polypeptoid fibers | |
Zhang et al. | Functionalization of electrospun PLA fibers using amphiphilic block copolymers for use in carboxy-methyl-cellulose hydrogel composites | |
Bonakdar et al. | Highly porous biobased membranes via electrospinning of PBS and CTAB | |
Perez-Puyana et al. | Development of gelatin/chitosan membranes with controlled microstructure by electrospinning | |
Wang et al. | Hydro‐spinning: A novel technology for making alginate/chitosan fibrous scaffold | |
CN107286546A (zh) | 一种生物可降解高分子薄膜的制备方法 | |
Tomaszewski et al. | Simple methods influencing on properties of electrospun fibrous mats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170222 |
|
WD01 | Invention patent application deemed withdrawn after publication |