CN106413237A - Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card - Google Patents
Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card Download PDFInfo
- Publication number
- CN106413237A CN106413237A CN201610925891.0A CN201610925891A CN106413237A CN 106413237 A CN106413237 A CN 106413237A CN 201610925891 A CN201610925891 A CN 201610925891A CN 106413237 A CN106413237 A CN 106413237A
- Authority
- CN
- China
- Prior art keywords
- plasma
- amplitude
- probe
- computer
- bias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 title claims abstract description 39
- 238000002405 diagnostic procedure Methods 0.000 title claims 2
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 16
- 238000003745 diagnosis Methods 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000005070 sampling Methods 0.000 abstract description 6
- 230000008021 deposition Effects 0.000 abstract description 5
- 238000010183 spectrum analysis Methods 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000004364 calculation method Methods 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 22
- 150000002500 ions Chemical class 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 argon ions Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/0006—Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
- H05H1/0081—Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature by electric means
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
Abstract
本发明属于等离子体技术领域,一种基于数据采集卡的多振幅交流偏置探针等离子体诊断方法,本发明基于数据采集卡产生交流偏置信号,经功率放大器驱动,再经过取样电阻加在置于等离子体中的探针上,同时,计算机指令的数据采集卡的差分模拟输入端口采集取样电阻上的电压信号送入计算机,并由计算机换算成电流信号;经过频谱分析再进行最小二乘法拟合及进一步计算得到准确的电子温度值和离子密度值。本发明解决了现有的固定振幅交流偏置探针的诊断技术测量电子温度和离子密度不准确的问题,能够诊断等离子体特别是绝缘沉积环境等离子体,并能够自动完成等离子体诊断过程,输出准确的电子温度值和离子密度值。
The invention belongs to the field of plasma technology, and relates to a multi-amplitude AC bias probe plasma diagnosis method based on a data acquisition card. The invention generates an AC bias signal based on a data acquisition card, which is driven by a power amplifier and then added to the Placed on the probe in the plasma, at the same time, the differential analog input port of the data acquisition card commanded by the computer collects the voltage signal on the sampling resistor and sends it to the computer, which is converted into a current signal by the computer; after the spectrum analysis, the least square method is carried out Fitting and further calculations yield accurate electron temperature values and ion density values. The invention solves the problem of inaccurate measurement of electron temperature and ion density by the existing fixed-amplitude AC bias probe diagnostic technology, can diagnose plasma, especially plasma in insulating deposition environment, and can automatically complete the plasma diagnosis process, output Accurate electron temperature values and ion density values.
Description
技术领域technical field
本发明属于等离子体技术领域,涉及到一种基于数据采集卡的多振幅交流偏置探针等离子体诊断方法,用于诊断等离子体,特别是绝缘沉积环境等离子体,获得电子温度和离子密度。The invention belongs to the field of plasma technology, and relates to a multi-amplitude AC bias probe plasma diagnosis method based on a data acquisition card, which is used for diagnosing plasma, especially plasma in an insulating deposition environment, and obtaining electron temperature and ion density.
背景技术Background technique
现有的探针技术用于诊断等离子体参数,有多种类型。最常用的单探针是把一个小金属电极即探针置于等离子体中,在探针与等离子体接地电极之间加上扫描偏置电压,然后测量探针电流随扫描偏置电压的变化,得到伏安特性曲线,再通过分析伏安特性曲线得到等离子体的参数。除此之外还有双探针、三探针等类型,这些探针技术的一个共同之处是都需要在探针上加直流偏置电压,而这所带来的问题是:当所诊断的等离子体环境中有绝缘沉积发生时,探针表面会被沉积物质覆盖,从而失去导电性而无法工作。Existing probe technologies for diagnosing plasma parameters are of various types. The most commonly used single probe is to place a small metal electrode, the probe, in the plasma, apply a scanning bias voltage between the probe and the plasma ground electrode, and then measure the change of the probe current with the scanning bias voltage , to obtain the volt-ampere characteristic curve, and then obtain the plasma parameters by analyzing the volt-ampere characteristic curve. In addition, there are double-probe, three-probe and other types. A common feature of these probe technologies is that they all need to add a DC bias voltage to the probe, and the problem that this brings is: when the diagnosed When insulating deposition occurs in a plasma environment, the surface of the probe will be covered by deposited substances, which will lose its conductivity and fail to work.
解决上述问题一个现有技术是用信号发生器产生一个固定振幅V0的交流偏置电压加在探针上,测量探针电流信号,然后利用频谱分析仪对探针电流信号进行分析,得到的一次谐波振幅i1ω和二次谐波振幅i2ω,然后用公式i1ω/i2ω=I1(eV0/T*)/I2(eV0/T*)计算出T*作为电子温度,再用公式计算出n*作为离子密度,上面两公式中,e是电子电量,I0(eV0/T*)、I1(eV0/T*)和I2(eV0/T*)分别是eV0/T*的零阶、一阶和二阶虚宗量贝塞尔函数,A和M分别是探针表面积和离子质量。由于交流电流能够以位移电流的形式穿过探针表面的绝缘层,这种技术即使在探针表面被绝缘物质覆盖的情况下也能使用,因而能够诊断绝缘沉积环境的等离子体。A prior art for solving the above-mentioned problem is to use a signal generator to generate an AC bias voltage with a fixed amplitude V 0 to add to the probe, measure the probe current signal, and then use a spectrum analyzer to analyze the probe current signal to obtain the First harmonic amplitude i 1ω and second harmonic amplitude i 2ω , then use the formula i 1ω /i 2ω =I 1 (eV 0 /T*)/I 2 (eV 0 /T*) to calculate T* as the electron temperature , and then use the formula Calculate n* as the ion density. In the above two formulas, e is the electron charge, and I 0 (eV 0 /T*), I 1 (eV 0 /T*) and I 2 (eV 0 /T*) are eV The zero-order, first-order and second-order imaginary volume Bessel functions of 0 /T*, A and M are the probe surface area and ion mass, respectively. Since alternating current can pass through the insulating layer on the probe surface in the form of displacement current, this technique can be used even when the probe surface is covered with insulating substances, thus enabling the diagnosis of plasmas in insulating deposition environments.
但是上述现有技术得到的T*和n*并不是准确的电子温度和离子密度。这是因为上述现有的固定振幅交流偏置探针的诊断技术其理论依据是无限大平面电极模型,假定电流信号幅度与交流偏置电压的振幅无关,而实际使用的探针都是很小的,不能看做是无限大平面电极,电流信号幅度与交流偏置电压的振幅是有关的。这使得利用现有技术获得的电子温度和离子密度数值随所选的交流偏置电压振幅的变化而变化,现有的固定振幅交流偏置探针的诊断技术不能准确获得等离子体的电子温度值和离子密度值。However, T* and n* obtained by the above prior art are not accurate electron temperature and ion density. This is because the theoretical basis of the above-mentioned existing fixed-amplitude AC bias probe diagnostic technology is an infinite planar electrode model. It cannot be regarded as an infinite planar electrode, and the amplitude of the current signal is related to the amplitude of the AC bias voltage. This makes the electron temperature and ion density values obtained by the existing technology vary with the selected AC bias voltage amplitude, and the existing fixed-amplitude AC bias probe diagnostic technology cannot accurately obtain the plasma electron temperature and ion density. Ion density value.
另一方面,现有的固定振幅交流偏置探针的诊断技术利用信号发生器和频谱分析仪,不能自动完成等离子体诊断过程,输出结果。On the other hand, the existing fixed-amplitude AC bias probe diagnosis technology uses signal generators and spectrum analyzers, which cannot automatically complete the plasma diagnosis process and output results.
发明内容Contents of the invention
本发明提供一种基于数据采集卡的多振幅交流偏置探针等离子体诊断方法,以解决现有的固定振幅交流偏置探针的诊断技术测量电子温度和离子密度不准确的问题,并能够自动完成等离子体诊断过程,输出准确的电子温度值和离子密度值。The invention provides a multi-amplitude AC bias probe plasma diagnosis method based on a data acquisition card to solve the problem of inaccurate measurement of electron temperature and ion density by the existing fixed-amplitude AC bias probe diagnostic technology, and can Automatically complete the plasma diagnosis process, and output accurate electron temperature values and ion density values.
本发明技术方案是:Technical scheme of the present invention is:
(a)计算机指令数据采集卡的模拟输出端口逐次产生振幅分别为V=Vj(j=1,2,...)的交流偏置信号,经功率放大器驱动,再经过取样电阻加在置于等离子体中的探针上,同时,计算机指令数据采集卡的差分模拟输入端口采集取样电阻上的电压信号送入计算机,并由计算机换算成电流信号。(a) The computer instructs the analog output port of the data acquisition card to successively generate AC bias signals with the amplitudes of V=V j (j=1,2,...), which are driven by the power amplifier, and then added to the set by the sampling resistor On the probe in the plasma, at the same time, the computer instructs the differential analog input port of the data acquisition card to collect the voltage signal on the sampling resistor and send it to the computer, and the computer converts it into a current signal.
(b)计算机对各个振幅交流偏置电压V=Vj(j=1,2,...)下的探针电流信号进行频谱分析,得到一次谐波振幅i1ωj(j=1,2,...)和二次谐波振幅i2ωj(j=1,2,...)并计算出它们的比值Pj=i1ωj/i2ωj(j=1,2,...)。(b) The computer performs frequency spectrum analysis on the probe current signals under each amplitude AC bias voltage V=V j (j=1,2,...), and obtains the first harmonic amplitude i 1ωj (j=1,2, . . . ) and the second harmonic amplitude i 2ωj (j=1,2,...) and calculate their ratio P j =i 1ωj /i 2ωj (j=1,2,...).
(c)计算机对数据点(Pj,Vj)(j=1,2,...)用以T为变量的函数I1(eVj/T)/I2(eVj/T)进行最小二乘法拟合(其中e是电子电量,I1(eVj/T)和I2(eVj/T)分别是eVj/T的一阶和二阶虚宗量贝塞尔函数),输出满足最小二乘法拟合的T值T=Te,Te即是准确的电子温度值。(c) The computer uses the function I 1 (eV j /T)/I 2 (eV j /T) for the data points (P j , V j ) (j=1, 2,...) with T as the variable Least squares fitting (where e is the electron charge, I 1 (eV j /T) and I 2 (eV j /T) are the first-order and second-order virtual parity Bessel functions of eV j /T, respectively), The output satisfies the T value T=T e fitted by the least square method, and T e is an accurate electronic temperature value.
(d)计算机利用Vj(j=1,2,...)、i1ωj(j=1,2,...)和Te数据代入公式计算得到nj(j=1,2,...),式中A和M分别是探针表面积和离子质量,I0(eVj/Te)是eVj/Te的零阶虚宗量贝塞尔函数,然后对数据点(nj,Vj)(j=1,2,...)进行线性拟合并延拓至V=0,输出拟合直线在V=0的值n0,n0即是准确的离子密度值。(d) The computer uses V j (j=1,2,...), i 1ωj (j=1,2,...) and T e data to substitute into the formula Calculate n j (j=1,2,...), where A and M are the probe surface area and ion mass, respectively, and I 0 (eV j /T e ) is the zero-order virtual parameter of eV j /T e Measure the Bessel function, then perform linear fitting on the data points (n j ,V j )(j=1,2,...) and extend to V=0, and output the value of the fitted line at V=0 n 0 , n 0 is the exact ion density value.
本发明的有益效果是:The beneficial effects of the present invention are:
能够诊断等离子体特别是绝缘沉积环境等离子体,自动完成等离子体诊断过程,输出准确的电子温度值和离子密度值。It can diagnose plasma, especially the plasma in insulating deposition environment, automatically complete the plasma diagnosis process, and output accurate electron temperature and ion density values.
附图说明Description of drawings
图1是利用本发明方法诊断等离子体的示意图。Fig. 1 is a schematic diagram of plasma diagnosis using the method of the present invention.
图2是利用本发明方法得到的数据点(Pj,Vj)(j=1,2,...)并用函数I1(eVj/T)/I2(eVj/T)对其进行最小二乘法拟合的结果,以及利用本发明方法得到的数据点(nj,Vj)(j=1,2,...)并对其进行线性拟合并延拓至V=0的结果。Fig. 2 is the data point (P j , V j ) (j=1,2,...) obtained by the method of the present invention and its function I 1 (eV j /T)/I 2 (eV j /T) Carry out the result of least square method fitting, and utilize the data point (n j , V j ) (j=1,2,...) obtained by the method of the present invention and carry out linear fitting to it and extend to V=0 the result of.
图中:1探针;2氩等离子体;3计算机;4指令数据采集卡;5模拟输出端口;6功率放大器;7取样电阻;8差分模拟输入端口。In the figure: 1 probe; 2 argon plasma; 3 computer; 4 instruction data acquisition card; 5 analog output port; 6 power amplifier; 7 sampling resistor; 8 differential analog input port.
具体实施方式detailed description
下面结合技术方案和附图详细叙述本发明的具体实施例。Specific embodiments of the present invention will be described in detail below in conjunction with technical solutions and accompanying drawings.
在图1中,探针1是一个面积为0.15cm2的金属丝,置于氩等离子体2中。计算机3指令数据采集卡4的模拟输出端口5逐次产生振幅分别为V=Vj(j=1,2,...)的交流偏置信号,经功率放大器6驱动,再经过取样电阻7加在置于等离子体2中的探针1上,同时,计算机3指令数据采集卡4的差分模拟输入端口8采集取样电阻7上的电压信号送入计算机3,由计算机3换算成电流信号。In Fig. 1, the probe 1 is a metal wire with an area of 0.15 cm 2 placed in the argon plasma 2. The computer 3 instructs the analog output port 5 of the data acquisition card 4 to successively generate AC bias signals whose amplitudes are respectively V=V j (j=1, 2,...), driven by the power amplifier 6, and then added by the sampling resistor 7. On the probe 1 placed in the plasma 2, at the same time, the computer 3 instructs the differential analog input port 8 of the data acquisition card 4 to collect the voltage signal on the sampling resistor 7 and send it to the computer 3, which converts it into a current signal.
图2中,Pj=i1ωj/i2ωj(j=1,2,...)是计算机3对各个振幅交流偏置电压V=Vj(j=1,2,...)下的探针电流信号进行频谱分析得到的一次谐波振幅i1ωj(j=1,2,...)和二次谐波振幅i2ωj(j=1,2,...)的比值。各Pj和对应的Vj构成数据点(Pj,Vj)(j=1,2,...)用标记“○”表示在图中。In Fig. 2, P j =i 1ωj /i 2ωj (j=1,2,...) is the AC bias voltage V=V j (j=1,2,...) for each amplitude of the computer 3 The ratio of the first harmonic amplitude i 1ωj (j=1,2,...) to the second harmonic amplitude i 2ωj (j=1,2,...) obtained by spectrum analysis of the probe current signal. Each P j and the corresponding V j constitute a data point (P j , V j ) (j=1, 2, . . . ) indicated by a mark "○" in the figure.
计算机3对数据点(Pj,Vj)(j=1,2,...)用以T为变量的函数I1(eVj/T)/I2(eVj/T)进行最小二乘法拟合(其中e是电子电量,I1(eVj/T)和I2(eVj/T)分别是eVj/T的一阶和二阶虚宗量贝塞尔函数)。当T=2.35eV时的函数I1(eVj/T)/I2(eVj/T)(图2中的实曲线)满足对数据点(Pj,Vj)(j=1,2,...)的最小二乘法拟合,输出Te=2.35eV为准确的电子温度值。The computer 3 uses the function I 1 (eV j /T)/I 2 (eV j /T) with T as the variable to perform the least square Multiplicative fitting (where e is the electron charge, and I 1 (eV j /T) and I 2 (eV j /T) are the first and second order imaginary parity Bessel functions of eV j /T, respectively). When T=2.35eV, the function I 1 (eV j /T)/I 2 (eV j /T) (solid curve in Fig. 2) satisfies the data point (P j , V j ) (j=1,2 ,...) by the least square method fitting, the output T e =2.35eV is the accurate electron temperature value.
在图2中,nj(j=1,2,...)是计算机利用Vj(j=1,2,...)、i1ωj(j=1,2,...)数据和Te=2.35eV代入公式计算的结果(式中A=0.15cm2是探针表面积和M=6.68×10-26kg是氩离子质量)。各nj和对应的Vj构成数据点(nj,Vj)(j=1,2,...)用标记“Δ”表示在图中。In Fig. 2, n j (j=1,2,...) is the computer using V j (j=1,2,...), i 1ωj (j=1,2,...) data and T e = 2.35eV into the formula Calculated results (where A=0.15 cm 2 is the surface area of the probe and M=6.68×10 −26 kg is the mass of argon ions). Each n j and the corresponding V j constitute a data point (n j , V j ) (j=1, 2, . . . ) indicated in the figure by a mark "Δ".
计算机对数据点(nj,Vj)(j=1,2,...)进行线性拟合并延拓至V=0(图2中虚直线),拟合直线在V=0的值n0=9.1×109cm-3,输出n0=9.1×109cm-3为准确的离子密度值。The computer performs linear fitting on the data points (n j , V j ) (j=1,2,...) and extends them to V=0 (dashed straight line in Figure 2), and the value of the fitted straight line at V=0 n 0 =9.1×10 9 cm -3 , output n 0 =9.1×10 9 cm -3 as the accurate ion density value.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610925891.0A CN106413237A (en) | 2016-10-31 | 2016-10-31 | Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610925891.0A CN106413237A (en) | 2016-10-31 | 2016-10-31 | Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106413237A true CN106413237A (en) | 2017-02-15 |
Family
ID=58012331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610925891.0A Pending CN106413237A (en) | 2016-10-31 | 2016-10-31 | Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106413237A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105704900A (en) * | 2016-04-19 | 2016-06-22 | 陈兆权 | Positive and negative amplitude-modulation pulse driven electrostatic probe and data acquisition and analysis integrated device |
CN106851953A (en) * | 2017-02-22 | 2017-06-13 | 大连理工大学 | A kind of convex-concave probe and its plasma diagnostic method |
CN106888543A (en) * | 2017-03-24 | 2017-06-23 | 大连理工常州研究院有限公司 | A kind of automatically scanning emitting probe device |
CN108667506A (en) * | 2018-04-26 | 2018-10-16 | 北京空间飞行器总体设计部 | A kind of satellite electric propulsion system, which modulates signal of communication, influences test system and method |
CN110740558A (en) * | 2019-10-18 | 2020-01-31 | 南昌大学 | A method for measuring non-extensive parameters of plasma electrons |
CN112888128A (en) * | 2021-01-18 | 2021-06-01 | 南昌大学 | Method for measuring plasma ion non-extensive parameter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04184898A (en) * | 1990-11-16 | 1992-07-01 | Nippon Koshuha Kk | Triple probe plasma measuring device with purifying function |
CN1380811A (en) * | 2002-04-19 | 2002-11-20 | 大连理工大学 | Composite probe for plasma diagnosis |
CN101170865A (en) * | 2007-11-28 | 2008-04-30 | 东北大学 | Plasma Suspended Reference Probe |
CN101650230A (en) * | 2009-09-09 | 2010-02-17 | 大连理工大学 | Multifunctional probe for plasma diagnosis |
CN102156001A (en) * | 2011-03-17 | 2011-08-17 | 大连理工大学 | Method for diagnosing self-biased probe of radio-frequency discharge plasma |
JP2011210715A (en) * | 2010-03-12 | 2011-10-20 | Nissin Electric Co Ltd | Ion current density measuring method, ion current density measuring device, plasma treating device, recording medium, and program |
-
2016
- 2016-10-31 CN CN201610925891.0A patent/CN106413237A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04184898A (en) * | 1990-11-16 | 1992-07-01 | Nippon Koshuha Kk | Triple probe plasma measuring device with purifying function |
CN1380811A (en) * | 2002-04-19 | 2002-11-20 | 大连理工大学 | Composite probe for plasma diagnosis |
CN101170865A (en) * | 2007-11-28 | 2008-04-30 | 东北大学 | Plasma Suspended Reference Probe |
CN101650230A (en) * | 2009-09-09 | 2010-02-17 | 大连理工大学 | Multifunctional probe for plasma diagnosis |
JP2011210715A (en) * | 2010-03-12 | 2011-10-20 | Nissin Electric Co Ltd | Ion current density measuring method, ion current density measuring device, plasma treating device, recording medium, and program |
CN102156001A (en) * | 2011-03-17 | 2011-08-17 | 大连理工大学 | Method for diagnosing self-biased probe of radio-frequency discharge plasma |
Non-Patent Citations (3)
Title |
---|
BAI YUJING等: "Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density", 《PLASMA SCIENCE AND TECHNOLOGY》 * |
MIN-HYONG LEE等: "Floating probe for electron temperature and ion density measurement applicable to processing plasmas", 《JOURNAL OF APPLIED PHYSICS》 * |
YU-JING BAI等: "Influence of the bias signal amplitude and frequency on the harmonic probe measurements in plasma diagnostics", 《PHYSICS OF PLASMAS》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105704900A (en) * | 2016-04-19 | 2016-06-22 | 陈兆权 | Positive and negative amplitude-modulation pulse driven electrostatic probe and data acquisition and analysis integrated device |
CN106851953A (en) * | 2017-02-22 | 2017-06-13 | 大连理工大学 | A kind of convex-concave probe and its plasma diagnostic method |
CN106851953B (en) * | 2017-02-22 | 2018-12-21 | 大连理工大学 | A kind of convex-concave probe and its plasma diagnostic method |
CN106888543A (en) * | 2017-03-24 | 2017-06-23 | 大连理工常州研究院有限公司 | A kind of automatically scanning emitting probe device |
CN106888543B (en) * | 2017-03-24 | 2019-04-16 | 大连理工常州研究院有限公司 | A kind of automatically scanning emitting probe device |
CN108667506A (en) * | 2018-04-26 | 2018-10-16 | 北京空间飞行器总体设计部 | A kind of satellite electric propulsion system, which modulates signal of communication, influences test system and method |
CN108667506B (en) * | 2018-04-26 | 2020-11-20 | 北京空间飞行器总体设计部 | System and method for testing influence of satellite electric propulsion system on communication signal modulation |
CN110740558A (en) * | 2019-10-18 | 2020-01-31 | 南昌大学 | A method for measuring non-extensive parameters of plasma electrons |
WO2021073056A1 (en) * | 2019-10-18 | 2021-04-22 | 南昌大学 | Method for measuring plasma electron non-extensive parameter |
CN112888128A (en) * | 2021-01-18 | 2021-06-01 | 南昌大学 | Method for measuring plasma ion non-extensive parameter |
WO2022151982A1 (en) * | 2021-01-18 | 2022-07-21 | 南昌大学 | Method for measuring plasma ion non-extensive parameter |
CN112888128B (en) * | 2021-01-18 | 2023-04-07 | 南昌大学 | Method for measuring plasma ion non-extensive parameter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106413237A (en) | Plasma diagnostic method of multi-amplitude AC bias probe based on data acquisition card | |
CN1157103C (en) | Composite probe for plasma diagnosis | |
CN110837057B (en) | Battery impedance spectrum measuring system and measuring method | |
CN103675023B (en) | Detection circuit and detection method of TDS | |
CN112731179B (en) | Battery health state rapid detection method, device, detector and storage medium | |
CN106371029A (en) | Lithium battery AC impedance spectrum online synchronous test method and device | |
CN103558257B (en) | Pesticide multiresidue detector based on array sensors | |
CN104330623B (en) | Sine wave parameter measuring method and system in electric power system | |
CN108804774B (en) | Method for analyzing ideal factor of solar cell based on electrochemical impedance spectrum test | |
CN108845194A (en) | Harmonic contributions quantization method based on amplitude fluctuations amount kurtosis detection principle | |
Popkirov et al. | Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy | |
Suresh et al. | Rapid impedance spectroscopy using dual phase shifted chirp signals for electrochemical applications | |
CN107728036A (en) | Hall effect tester and method of testing | |
CN103149441B (en) | Be applied to portable Impedance Analysis instrument and the Impedance Analysis method of electrochemical measurement | |
CN102156001A (en) | Method for diagnosing self-biased probe of radio-frequency discharge plasma | |
CN207528866U (en) | Hall effect tester | |
CN202256659U (en) | Charging pile direct-current electric energy meter calibration device | |
KR101386344B1 (en) | The real-time monitoring device of fourier transform electrochemical impedance and method. | |
CN105021886A (en) | Harmonic source positioning device based on latent root estimation | |
CN114200381B (en) | Intelligent ammeter reliability detection system and method | |
CN203798901U (en) | Voltage signal detection device | |
CN100557436C (en) | New Air Ion Static Measurement Method and Air Ion Static Test System | |
CN104678180B (en) | The detection means and method of a kind of soil conductivity | |
CN108572277B (en) | Multi-frequency signal measuring method and system | |
CN103105533A (en) | Intelligent analysis method and intelligent analysis system of sub-synchronous oscillation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170215 |
|
WD01 | Invention patent application deemed withdrawn after publication |