CN106406333B - 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法 - Google Patents

一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法 Download PDF

Info

Publication number
CN106406333B
CN106406333B CN201611104821.5A CN201611104821A CN106406333B CN 106406333 B CN106406333 B CN 106406333B CN 201611104821 A CN201611104821 A CN 201611104821A CN 106406333 B CN106406333 B CN 106406333B
Authority
CN
China
Prior art keywords
dirigible
pitch
pitch angle
angle
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611104821.5A
Other languages
English (en)
Other versions
CN106406333A (zh
Inventor
张友安
雷军委
刘震霆
孙玉梅
苏凤
乔玉新
吴华丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Nanshan University
Naval Aeronautical Engineering Institute of PLA
Original Assignee
Yantai Nanshan University
Naval Aeronautical Engineering Institute of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Nanshan University, Naval Aeronautical Engineering Institute of PLA filed Critical Yantai Nanshan University
Priority to CN201611104821.5A priority Critical patent/CN106406333B/zh
Publication of CN106406333A publication Critical patent/CN106406333A/zh
Application granted granted Critical
Publication of CN106406333B publication Critical patent/CN106406333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0825Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using mathematical models

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法,采用测角陀螺测量平流层飞艇俯仰通道俯仰角信号,并与期望俯仰角指令进行比较,形成俯仰角误差信号eq=θ‑θd,利用俯仰角误差信息构造积分型终端滑模面构造俯仰通道姿态角稳定控制律从而实现平流层飞艇对给定俯仰角的跟踪。本发明的有益效果是能加快飞艇俯仰通道的姿态响应速度,能够增加姿态角跟踪的精度。

Description

一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法
技术领域
本发明属于飞行器控制技术领域,涉及一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法。
背景技术
空天预警能力直接关系国家安全和未来战争胜负。空中平台的选择不仅决定了对目标的探测距离,而且直接影响着舰空导弹的制导精度。预警机、直升机和浮空器均可作为空中平台探测目标,传递目标探测信息。而平流层飞艇是一种成本低、定点滞空时间长、载荷能力大的浮空器,具有作为空中平台的独特优势。由于平流层飞艇这样的被控对象具有延迟大控制响应慢的特点,因此传统的PID 控制会使得飞艇俯仰角跟踪响应慢。终端滑模由于在机理上具有有限时间到达原点附近邻域的特性,比传统方式通过Lyapunov函数构造的滑模控制,以及PID 控制方式具有更快的收敛特性。
发明内容
本发明的目的在于提供一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法,解决了由于平流层飞艇这样的被控对象具有延迟大控制响应慢的特点,因此传统的PID控制会使得飞艇俯仰角跟踪响应慢的问题。
本发明所采用的技术方案是按照以下步骤进行:
步骤一:采用测角陀螺测量平流层飞艇俯仰通道俯仰角信号,并与期望俯仰角指令进行比较,形成俯仰角误差信号eq=θ-θd
飞艇俯仰角θ,期望俯仰角θd
步骤二:利用俯仰角误差信息构造积分型终端滑模面s
其中c1、c2与c3为正的常数,Ω为误差终端项,其表达式为
Ω=(θ-θd)1/3
为误差微分;
步骤三:设计飞艇俯仰通道期望俯仰角积分型终端滑模控制律u1a,从而实现平流层飞艇对给定俯仰角的跟踪:
其中u2为飞艇前向速度控制量;
项用于补偿前向速度控制量的变化,或飞艇速度变化对期望俯仰角控制通道的干扰;
其初始值选取为Γ4为正常数;
k0为正常数;q为飞艇俯仰角速度;
为自适应调节规律,其设计如下:
其初始值选取为Γ1为正常数,可初步选取为Γ1=0.001。
其初始值选取为Γ2为正常数;
其初始值选取为Γ3为正常数;
其初始值选取为Γ5为正常数;
其初始值选取为Γ6为正常数;
其最终期望俯仰角跟踪控制律u1设计如下:
进一步,根据飞艇俯仰通道的微分方程所建立的数学模型,近似模拟飞艇俯仰通道的特性,从而进行参数调整;其中飞艇俯仰通道的模型如下:
其中
而a11,a13,a22,a31,a33由计算M矩阵的逆阵而获得,即满足
而M矩阵有飞艇的质量与转动惯量所决定,其求取方法如下:
I3为3阶单位矩阵。
其中m为飞艇的质量,az为常量,m11、m33、m55由飞艇质量分布与转动惯量所决定:m11=km1Mr ,m33=km2Mr,m55=km3Iy,其中km1 = 0.1053; km2 =0.8260;km3 =0.1256 ;飞艇参数设计为Iy,Mr=ρV,其中ρ为大气密度,V为飞艇的体积;
Q为动压头,Q=0.5ρVf 2;Vf为飞艇的运动速度;
为飞艇的前向飞行加速度;为艇体坐标系中飞艇的前向飞行速度;
为飞艇的垂向飞行加速度;为艇体坐标系中飞艇的垂向飞行速度;
为飞艇的俯仰角加速度;q为飞艇的俯仰角速度;
为飞艇的俯仰角速度,θ为飞艇的俯仰角;
为发射坐标系中飞艇的前向飞行速度;x为飞艇的前向飞行距离;
为发射坐标系中飞艇的垂向飞行速度;z为飞艇的飞行高度;
kg1与kg2为舵效常数,为空气动力学系数;
CX1、CX2、Cz1、Cz2与Cz3为飞艇受力相关的空气动力系数,CM1、CM2、CM1为飞艇受力矩相关的空气动力系数。
进一步,所述步骤3中,Γ4=0.01,k0=8.5,Γ1=0.001,Γ3=0.001,Γ5=0.001,Γ6=0.001。
本发明的有益效果是能加快飞艇俯仰通道的姿态响应速度,能够增加期望俯仰角跟踪的精度。
附图说明
图1是本发明提供的一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法原理框图;
图2是本发明实施例提供的飞艇的前向运动速度曲线;
图3是本发明实施例提供的飞艇的垂向运动速度曲线;
图4是本发明实施例提供的给定20度俯仰角指令情况下的飞艇俯仰角跟踪曲线;
图5是本发明实施例提供的飞艇的俯仰角速率曲线;
图6是本发明实施例提供的飞艇的水平飞行距离曲线;
图7为本发明实施例提供的飞艇的飞行高度曲线;
图8为本发明实施例提供的飞艇的俯仰舵偏角曲线;
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明技术方案包括如下五步:
步骤一:采用测角陀螺测量平流层飞艇俯仰通道俯仰角信号,并与期望俯仰角指令进行比较,形成俯仰角误差信号eq
如图1所示,采用由测角陀螺仪测量飞艇俯仰角θ,期望俯仰角为θd,利用飞艇上控制计算机进行相减比较,得到俯仰角误差变量eq,即eq=θ-θd
步骤二:利用俯仰角误差信息构造积分型终端滑模面s
在飞艇上控制计算机中进行乘法与加法、积分与微分等运算,形成如下滑模面,其满足如下形式:
其中c1、c2与c3为正的常数。Ω为误差终端项,其表达式为
Ω=(θ-θd)1/3
为误差微分,由艇上计算机根据误差信号eq,采用近似微分算法求取。
步骤三:利用上述积分型终端滑模面,设计飞艇未知项的自适应估计规律,并考虑飞艇舵机偏角的饱和限制,构造最终期望俯仰角跟踪控制律u1,从而实现平流层飞艇对给定俯仰角的跟踪
设计飞艇俯仰通道期望俯仰角积分型终端滑模控制律u1a设计如下:
其中u2为飞艇前向速度控制量,用于稳定飞艇的前向运动速度,可采用简单的常值规律,或者PID控制规律。
项用于补偿前向速度控制量的变化,或飞艇速度变化对期望俯仰角控制通道的干扰。
设计如下:其初始值选取为Γ4为正常数,选取为Γ4=0.01。
k0为正常数,可选取为k0=8.5。s为滑模面,q为飞艇俯仰角速度。
为自适应调节规律,其设计如下:
其初始值选取为Γ1为正常数,可初步选取为Γ1=0.001。
其初始值选取为Γ2为正常数,可初步选取为Γ2=0.00。1
其初始值选取为Γ3为正常数,可初步选取为Γ3=0.001。
其初始值选取为Γ5为正常数,可初步选取为Γ5=0.001。
其初始值选取为Γ6为正常数,可初步选取为Γ6=0.001。
其最终期望俯仰角跟踪控制律u1设计如下:
其主要思路是将u1a通过饱和限幅,使得其不超过飞艇最大可用舵偏角30度的物理限制,57.3为度到弧的转换。
步骤四:利用计算机,根据如下飞艇俯仰通道的微分方程所建立的数学模型,近似模拟飞艇俯仰通道的特性。将步骤三所得的控制量代入建立的模型,通过不断调整控制参数,并观察飞艇各状态的数据,并画图,以获到满意的系统性能,从而最终确定飞艇控制参数。其中飞艇俯仰通道的模型如下:
其中
而a11,a13,a22,a31,a33由计算M矩阵的逆阵而获得,即满足
而M矩阵有飞艇的质量与转动惯量所决定,其求取方法如下:
I3为3阶单位矩阵。
其中m为飞艇的质量,az为常量,如某型飞艇可选为m=53345;az=16.8, m11、m33、m55由飞艇质量分布与转动惯量所决定:m11=km1Mr,m33=km2Mr, m55=km3Iy,其中km1=0.1053;km2=0.8260;km3=0.1256。如某型飞艇参数设计为 Iy=5.9*109,以上单位均为国际标准单位。Mr=ρV,其中ρ为大气密度,V为飞艇的体积。
Q为动压头,其计算方法为Q=0.5ρVf 2;Vf为飞艇的运动速度。
为飞艇的前向飞行加速度;为艇体坐标系中飞艇的前向飞行速度;
为飞艇的垂向飞行加速度;为艇体坐标系中飞艇的垂向飞行速度;
为飞艇的俯仰角加速度;q为飞艇的俯仰角速度;
为飞艇的俯仰角速度,θ为飞艇的俯仰角;
为发射坐标系中飞艇的前向飞行速度;x为飞艇的前向飞行距离;
为发射坐标系中飞艇的垂向飞行速度;z为飞艇的飞行高度;
kg1与kg2为舵效常数,为空气动力学系数,其数据来自于飞艇风洞试验。
CX1、CX2、Cz1、Cz2与Cz3为飞艇受力相关的空气动力系数,CM1、CM2、CM1为飞艇受力矩相关的空气动力系数,各型飞艇的计算方式略有不同,其数据来自于飞艇的风洞实验数据。
案例实施与计算机仿真模拟结果分析
首先采用常值规律使得飞艇前向速度基本稳定,如设定u2=5000时,飞艇前进速度大约保持在20m/s左右,如果设定u2=10000,则飞艇前进速度大约保持在30m/s左右。本例中选取u2=10000,在前向速度稳定在27m/s左右的基础上,进行俯仰通道给定俯仰角的跟踪控制器设计。选取参数k0=0.3,c1=1, c2=0.5,c3=0.01,Γ1=0.001,Γ2=0.005,Γ3=0.002,Γ4=0.001,Γ5=0.001,给定俯仰角θd=20/57.3,按照上述发明内容的步骤一至五,最终得到仿真结果如图2至图8所示。
通过以上仿真结果与曲线可以看出,由于本发明采用了积分型终端滑模方法,因此给定俯仰角跟踪的响应具有静差小响应快的优点。而且由于其仅需测量飞艇的期望俯仰角信号,从而控制方案实施容易,因此其特别有利于工程实现。本发明的优点还在于通过测角陀螺测量飞艇俯仰角,和飞艇期望俯仰角信号比较形成误差信号,然后利用艇上计算机生成误差积分信号、误差终端函数项以及误差微分信号,最终由上述四种信号组合为积分型终端滑模信号,在此基础上设计俯仰角跟踪控制器。本发明方法实现的前提是飞艇前向飞行速度基本稳定,一般可采用常值或PID控制规律来稳定飞艇的前向运动速率。终端滑模由于在机理上具有有限时间到达原点附近邻域的特性,比传统方式通过Lyapunov函数构造的滑模控制,以及PID控制方式具有更快的收敛特性。本发明采用了积分型的终端滑模控制方法,除了能加快飞艇俯仰通道的姿态响应速度外,同时由于积分的引入,能够增加期望俯仰角跟踪的精度,从而具有很高的工程应用价值。
以上所述仅是对本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。

Claims (3)

1.一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法,其特征在于按照以下步骤进行:
步骤一:采用测角陀螺测量平流层飞艇俯仰通道俯仰角信号,并与期望俯仰角指令进行比较,形成俯仰角误差信号eq=θ-θd,飞艇俯仰角θ,期望俯仰角θd
步骤二:利用俯仰角误差信息构造积分型终端滑模面s
其中c1、c2与c3为正的常数,Ω为误差终端项,其表达式为
Ω=(θ-θd)1/3
为误差微分;
步骤三:设计飞艇俯仰通道期望俯仰角积分型终端滑模控制律u1a,从而实现平流层飞艇对给定俯仰角的跟踪:
其中u2为飞艇前向速度控制量;
项用于补偿前向速度控制量的变化,或飞艇速度变化对期望俯仰角控制通道的干扰;
其初始值选取为Γ4为正常数;
k0为正常数;q为飞艇俯仰角速度;
为自适应调节规律,其设计如下:
其初始值选取为Γ1为正常数,可初步选取为Γ1=0.001。
其初始值选取为Γ2为正常数;
其初始值选取为Γ3为正常数;
其初始值选取为Γ5为正常数;
其初始值选取为Γ6为正常数;
其最终期望俯仰角跟踪控制律u1设计如下:
2.按照权利要求1所述一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法,其特征在于:根据飞艇俯仰通道的微分方程所建立的数学模型,近似模拟飞艇俯仰通道的特性,从而进行参数调整;其中飞艇俯仰通道的模型如下:
其中
而a11,a13,a22,a31,a33由计算M矩阵的逆阵而获得,即满足
而M矩阵有飞艇的质量与转动惯量所决定,其求取方法如下:I3为3阶单位矩阵。
其中m为飞艇的质量,az为常量,m11、m33、m55由飞艇质量分布与转动惯量所决定:m11=km1Mr , m33 =km2Mr , m55=km3Iy,其中km1 =0.1053 ; km2 =0.8260 ; km3 = 0.1256 ;飞艇参数设计为Iy,Mr=ρV,其中ρ为大气密度,V为飞艇的体积;
Q为动压头,Q=0.5ρVf 2;Vf为飞艇的运动速度;
为飞艇的前向飞行加速度;为艇体坐标系中飞艇的前向飞行速度;
为飞艇的垂向飞行加速度;为艇体坐标系中飞艇的垂向飞行速度;
为飞艇的俯仰角加速度;q为飞艇的俯仰角速度;
为飞艇的俯仰角速度,θ为飞艇的俯仰角;
为发射坐标系中飞艇的前向飞行速度;x为飞艇的前向飞行距离;
为发射坐标系中飞艇的垂向飞行速度;z为飞艇的飞行高度;
kg1与kg2为舵效常数,为空气动力学系数;
CX1、CX2、Cz1、Cz2与Cz3为飞艇受力相关的空气动力系数,CM1、CM2、CM1为飞艇受力矩相关的空气动力系数。
3.按照权利要求1所述一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法,其特征在于:所述步骤3中,Γ4=0.01,k0=8.5,Γ1=0.001,Γ3=0.001,Γ5=0.001,Γ6=0.001。
CN201611104821.5A 2016-12-05 2016-12-05 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法 Active CN106406333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611104821.5A CN106406333B (zh) 2016-12-05 2016-12-05 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611104821.5A CN106406333B (zh) 2016-12-05 2016-12-05 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法

Publications (2)

Publication Number Publication Date
CN106406333A CN106406333A (zh) 2017-02-15
CN106406333B true CN106406333B (zh) 2019-04-05

Family

ID=58084857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611104821.5A Active CN106406333B (zh) 2016-12-05 2016-12-05 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法

Country Status (1)

Country Link
CN (1) CN106406333B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106886224B (zh) * 2017-03-21 2019-09-10 烟台南山学院 采用非线性超一型奇次滑模的蝶形飞行器姿态角控制方法
CN107065549B (zh) * 2017-04-14 2020-04-28 烟台南山学院 一种基于非线性变结构的电动舵机设计方法
CN110908389B (zh) * 2019-12-17 2021-07-27 燕山大学 一种针对不确定水下机器人的自适应快速速度跟踪控制方法
CN111650947B (zh) * 2020-07-06 2021-09-14 上海交通大学 一种平流层飞艇高度非线性控制方法
CN112180961B (zh) * 2020-09-30 2022-03-01 北京航空航天大学 一种全状态受限平流层飞艇轨迹跟踪控制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495633A (zh) * 2011-12-22 2012-06-13 中国人民解放军国防科学技术大学 一种平流层驻留飞艇姿态控制方法
CN104317300A (zh) * 2014-09-22 2015-01-28 北京航空航天大学 一种基于模型预测控制的平流层飞艇平面路径跟踪控制方法
CN104950898A (zh) * 2015-06-10 2015-09-30 北京理工大学 一种再入飞行器全阶非奇异终端滑模姿态控制方法
CN106094525A (zh) * 2016-07-08 2016-11-09 西安理工大学 一种基于分数阶微积分的终端滑模控制器及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495633A (zh) * 2011-12-22 2012-06-13 中国人民解放军国防科学技术大学 一种平流层驻留飞艇姿态控制方法
CN104317300A (zh) * 2014-09-22 2015-01-28 北京航空航天大学 一种基于模型预测控制的平流层飞艇平面路径跟踪控制方法
CN104950898A (zh) * 2015-06-10 2015-09-30 北京理工大学 一种再入飞行器全阶非奇异终端滑模姿态控制方法
CN106094525A (zh) * 2016-07-08 2016-11-09 西安理工大学 一种基于分数阶微积分的终端滑模控制器及控制方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Concept Design, Modeling and Station-keeping Attitude Control of an Earth Observation Platform;YANG Yueneng 等;《CHINESE JOURNAL OF MECHANICAL ENGINEERING》;20121130;第1245-1246页
基于新型快速Terminal滑模的高超声速飞行器姿态控制;刘宇超 等;《航空学报》;20141027;第2372-2380页
自主飞艇俯仰角姿态动力学建模及控制;方存光 等;《控制理论与应用》;20040425;第231-238页
自主飞艇姿态跟踪的终端滑模控制;杨跃能 等;《中国空间科学技术》;20120825;第29-36页
高超声速飞行器的干扰补偿Terminal滑模控制;曾宪法 等;《北京航空航天大学学报》;20121109;第1454-1458页
高超声速飞行器连续终端滑模姿态控制方法;王剑颖 等;《哈尔滨工程大学学报》;20151215;第187-191页

Also Published As

Publication number Publication date
CN106406333A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN106406333B (zh) 一种基于积分型终端滑模的平流层飞艇俯仰角跟踪方法
CN106527122B (zh) 平流层飞艇定高飞行非线性pid控制方法
CN109740198B (zh) 一种基于解析预测的滑翔飞行器三维再入制导方法
CN105159305B (zh) 一种基于滑模变结构的四旋翼飞行控制方法
CN106444807B (zh) 一种栅格舵与侧喷流的复合姿态控制方法
CN108490788B (zh) 一种基于双干扰观测的飞行器俯仰通道反演控制方法
CN106681348A (zh) 考虑全捷联导引头视场约束的制导控制一体化设计方法
CN111580535B (zh) 一种基于凸优化的再入轨迹三维剖面规划方法及系统
CN111399531B (zh) 高超声速飞行器滑翔段制导与姿态控制一体化设计方法
CN106896722B (zh) 采用状态反馈与神经网络的高超飞行器复合控制方法
CN107367941B (zh) 高超声速飞行器攻角观测方法
CN105652880B (zh) 用于飞行器大空域飞行的非线性抗饱和高度指令生成方法
CN105116914B (zh) 一种平流层飞艇解析模型预测路径跟踪控制方法
Zhu et al. Impact time and angle control guidance independent of time-to-go prediction
CN108132604A (zh) 基于四元数的四旋翼飞行器鲁棒姿态控制方法、装置及系统
CN104597911A (zh) 空中加油受油机自适应最优对接轨迹跟踪飞行控制方法
CN107844128A (zh) 一种基于复合比例导引的高超声速飞行器巡航段制导方法
CN112631316B (zh) 变负载四旋翼无人机的有限时间控制方法
CN107065544A (zh) 基于攻角幂函数的高超飞行器神经网络控制方法
CN108646557A (zh) 一种基于跟踪微分与柔化函数的飞行器攻角跟踪控制方法
CN106096091B (zh) 一种飞机运动模拟方法
CN110209192A (zh) 战斗机航向增稳控制系统设计方法
CN114020019A (zh) 飞行器的制导方法与装置
CN106774385A (zh) 一种采用自适应变结构的飞艇定点悬停控制方法
CN106681337B (zh) 基于奇次滑模的平流层飞艇定高飞行控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant