CN106398122A - 一种石墨烯环氧树脂复合泡沫材料及其制备方法 - Google Patents

一种石墨烯环氧树脂复合泡沫材料及其制备方法 Download PDF

Info

Publication number
CN106398122A
CN106398122A CN201610893243.1A CN201610893243A CN106398122A CN 106398122 A CN106398122 A CN 106398122A CN 201610893243 A CN201610893243 A CN 201610893243A CN 106398122 A CN106398122 A CN 106398122A
Authority
CN
China
Prior art keywords
epoxy resin
graphene
foam material
composite foam
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610893243.1A
Other languages
English (en)
Other versions
CN106398122B (zh
Inventor
任强
徐海进
黄力
张丽萍
李坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuzhou Siying Platinum Polymer Materials Co ltd
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201610893243.1A priority Critical patent/CN106398122B/zh
Publication of CN106398122A publication Critical patent/CN106398122A/zh
Application granted granted Critical
Publication of CN106398122B publication Critical patent/CN106398122B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供了一种环境友好且工艺简单的以单组份发泡制备石墨烯环氧树脂复合泡沫材料的方法,将N‑氨乙基哌嗪(AEP)与CO2反应得到潜伏型固化‑发泡剂(B‑AEP)。将环氧树脂与石墨烯先球磨,再55‑60℃超声分散30‑35min,冷却至室温加入固化‑发泡剂,稳泡剂搅拌得到单组份发泡料,倒入预热的模具中120‑125℃固化得到石墨烯环氧树脂复合泡沫。制备的发泡料有优异的储存稳定性,复合泡沫有良好的泡孔结构和优异的压缩性能且具有抗静电特性。

Description

一种石墨烯环氧树脂复合泡沫材料及其制备方法
技术领域
本发明属于环氧树脂泡沫材料制备技术领域,具体涉及一种单组份发泡石墨烯环氧树脂复合泡沫材料及其制备方法。
背景技术
环氧树脂泡沫材料由于其质轻、强度高、热稳定性能好以及良好的化学稳定性在夹心复合材料、交通运输、高强度漂浮材料、泡沫封装等领域有广泛的应用。现有的环氧树脂泡沫通常是通过加入物理发泡剂或者化学发泡剂来制备,常见的如三氯氟甲烷以及偶氮二甲酰胺等。这些发泡剂本生来源就是石化原料,不仅加重了石化能源开采负担并且对大气环境有一定的破坏。现阶段采用环境友好的发泡剂成为主流,CO2由于其便于采集且无毒无害的特性在材料发泡中广受关注,超临界CO2为CO2发泡提供了很好的方法。但是超临界CO2大部分用于热塑性塑料,并不适用于热固性塑料,这是由于超临界CO2与热固性塑料工艺不匹配。中国专利CN104530463A公开了一种以水为发泡剂的环氧树脂泡沫制备方法,包括以下步骤:将100份环氧树脂预热到50-70℃,加入0.2-5.0份发泡剂、0.2-3.0份稳泡剂、0.5-2.0份抗氧剂、1.7-7.7份的固化剂,搅拌均匀的预聚物,将预聚物在搅拌情况下加热至100-120℃,当预聚物有发起现象时导入预热的模具发泡成型,这种方法还是需要双组份发泡,即在环氧树脂中分别添加发泡剂与固化剂。在发泡时要精确计算并称量发泡剂与固化剂的用量,工艺复杂,不利于现场发泡。
由于石墨烯具有高的导电率和比表面积特性,石墨烯加入到环氧树脂中可有效降低材料的电阻率,达到抗静电或导电要求,同时还能进一步提高材料的力学性能。现代科技对于抗静电或导电泡沫材料的需求日益增加,低电阻率泡沫材料在抗静电夹心板材、抗静电泡沫封装、电磁屏蔽封装方面有广泛应用。
发明内容
石墨烯分散在环氧树脂中常用的方法是溶剂分散法,但由于在制备石墨烯环氧树脂复合泡沫材料的过程中石墨烯与发泡固化剂需要一起加入,在较高温度除溶剂时发泡固化剂容易分解,且溶剂难以完全除尽,在密闭发泡时会损坏发泡材料的泡孔结构,影响发泡材料的性能。
本发明的目的是将石墨烯加入到环氧树脂中,以石墨烯为成核剂在体系中造成异相成核,极大地促进气泡成核及生长,且提供一种以CO2为发泡剂的单组份固化-发泡剂,用于以石墨烯为发泡成核剂的石墨烯环氧树脂复合泡沫材料的制备,解决了石墨烯环氧树脂发泡工艺中发泡剂有毒有害,且要以双组份形式发泡的问题。同时,为了配合发泡固化剂的加入,采用先球磨使石墨烯分散,然后再超声打碎石墨烯片层,使石墨烯在环氧树脂中分布更均匀,然后再加入发泡固化剂进行高速分散的制备方法,所得的泡沫材料密度低,泡孔结构良好,力学性能优异,且具有抗静电性能。
本发明解决其技术问题所采用的技术方案是:一种单组份石墨烯环氧树脂复合泡沫材料,按质量份数计,该材料具有如下组份:环氧树脂100份;固化-发泡剂25-35份;石墨烯0.2-2份;稳泡剂0.5-1份。其中,固化-发泡剂的合成按质量份数计,其组份为:无水乙醇100份;N-氨乙基哌嗪20-25份;CO2通入流量为40-50ml/min。
其中,所述环氧树脂的环氧值在0.41-0.51eq/100g之间。
所述稳泡剂为环氧乙烷-环氧丙烷三嵌段共聚物,分子量2700-2800。
所述石墨烯比表面积在700-800m2/g之间。
此外,本发明还提供了单组份石墨烯环氧树脂复合泡沫材料的制备方法,其具体制备工艺步骤如下:
(1)固化-发泡剂的合成:按质量份数计,将无水乙醇、N-氨乙基哌嗪混合后,通入CO2鼓泡反应11-12h,过滤干燥得到固体固化-发泡剂。
(2)石墨烯环氧树脂分散相的制备:按质量份数计,称取环氧树脂,石墨烯,在行星式球磨机上以450r/min球磨1h,然后在55-60℃下超声30-35min,超声完毕冷却至室温,得石墨烯环氧树脂分散相。
(3)石墨烯环氧树脂复合泡沫材料的制备:在石墨烯环氧树脂分散相中加入步骤(1)所得固化-发泡剂,稳泡剂,在转速1500-2000r/min下搅拌5-6min,倒入预热的模具中,迅速将模具密封,120-125℃下固化1-1.2h后冷却至室温出模。
本发明有益效果:本发明将N-氨乙基哌嗪与CO2反应之后,得到以CO2为发泡剂的潜伏型环氧树脂固化-发泡剂,该固化-发泡剂在常温下与环氧树脂混合能保持长期稳定,3个月不会出现固化现象,采用该固化-发泡剂可以实现对环氧树脂进行单组份发泡,从而降低了现场发泡的复杂性并且节约运输成本,该方法有利于环境保护并简化了发泡工艺。
以石墨烯作为发泡成核剂引入到单组分环氧树脂发泡材料中,使泡孔基于石墨烯生长从而形成规则的泡孔结构,制备了石墨烯环氧树脂泡沫材料,并通过球磨的方法克服了石墨烯在环氧树脂材料中容易团聚的问题,提高了石墨烯在环氧树脂中的分散性,一方面使石墨烯与环氧树脂能够紧密结合,有外力作用存在时,施加的力能够得到有效迁移;另一方面克服了团聚的石墨烯会产生大的气孔的缺陷,导致发泡过程中泡孔不均匀,并且存在有极大的泡孔,导致压缩力存在的情况下容易破孔的情况。
以分散良好的石墨烯作为发泡成核剂,有利于形成规则的泡孔结构,所得石墨烯环氧树脂复合泡沫材料泡孔结构良好,强度较高,且具有抗静电的特性。
附图说明
图1本发明制备步骤的工艺流程图;
图2实施例1-1和1-2固化、发泡料的差示扫描量热(DSC)图;
AEP/E-51为固化料,B-AEP/E-51为固化-发泡料,其中,AEP为N-氨乙基哌嗪,E-51为环氧树脂,B-AEP为固化-发泡剂;
图3实施例1-1和1-2固化、发泡料的固化程度;
图4实施例1-2至1-6复合泡沫的压缩曲线;
图5实施例1-2的泡沫的扫面电镜图片;
图6实施例1-3的泡沫的扫面电镜图片;
图7对比实施例1的泡沫的扫描电镜图片;
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明不局限于下述实施例。
实施例1:
以下实施例所采用的N-氨乙基哌嗪来自Sigma-Aldrich;环氧树脂购买自台湾南亚,环氧值0.51eq/100g;稳泡剂环氧乙烷-环氧丙烷三嵌段共聚物来自Sigma-Aldrich,平均分子量2800;石墨烯来自常州江南石墨烯研究院,牌号GN-1。
一种单组份石墨烯环氧树脂复合泡沫材料的制备方法,其制备步骤的工艺流程如图1所示,制备方法的具体步骤如下:
(1)固化-发泡剂的合成:按质量份数计,将无水乙醇100份、N-氨乙基哌嗪25份混合后,加入CO2鼓泡反应11h,过滤干燥得到淡黄色固体固化-发泡剂。
(2)按质量份数计,称取环氧树脂,石墨烯,固化-发泡剂,稳泡剂,具体配方如表1所示。
表1
(3)将步骤(2)称取的环氧树脂,石墨烯在行星式球磨机上以450r/min球磨1h,然后在60℃下超声30min,超声完毕冷却至室温,得石墨烯环氧树脂分散相。
(4)向步骤(3)所得的石墨烯环氧树脂分散相中依次加入固化-发泡剂、稳泡剂,控制物料温度在25℃,在1500r/min的条件下搅拌5min后倒入预热的模具中,快速封闭模具,120℃下固化1h后冷却至室温,出模得到石墨烯环氧树脂复合泡沫材料。
材料的差示扫描量热测试及泡沫的压缩性能、表观形貌、表面电阻测试如图2、图4、图5、图6和表2所示。
由图2、图3可知,加入潜伏型固化-发泡剂后的发泡料115℃才开始固化,说明所合成的发泡固化剂具有优异的潜伏性。
由图4可知,石墨烯环氧树脂复合泡沫具有优异的压缩强度和压缩模量。
由图5和图6可知,加入石墨烯之后泡沫形状更加规则且泡孔相对较小。
由表2可知,石墨烯环氧树脂复合泡沫材料的表面电阻达到抗静电要求(106-109Ω)。
测试方法:
差示扫描量热测试:在TA仪器公司的DSC2910型仪器上进行,在N2氛围下,温度范围:0-250℃,升温速度:10℃/min,气体流量20mL/min。
压缩性能测试:采用WDT-30型电子万能试验机进行,样品为圆柱体,直径58mm,高30mm,压缩速度2mm/min。
表面电阻测试:将泡沫表面切成1mm厚的薄片,利用安杰尔4339B型高阻仪进行表面电阻测试结果如表2所示。
扫描电镜:采用日本JSM-6510型扫描电子显微镜观察,加速电压为15kv。
表2
其中,GNs为石墨烯。
对比实施例1:
一种单组份石墨烯环氧树脂泡沫材料的制备方法,其制备方法的具体步骤如下:
(1)固化-发泡剂的合成:按质量份数计,无水乙醇100份、N-氨乙基哌嗪25份混合后,加入CO2鼓泡反应11h,过滤干燥得到淡黄色固体固化-发泡剂。
(2)按质量份数计,称取环氧树脂100g,固化-发泡剂32g,石墨烯1g,稳泡剂1g。
(3)将1g石墨烯加入200ml丙酮中,超声分散30min,然后将100g环氧树脂,32g固化-发泡剂,1g稳泡剂倒入其中继续超声30min。超声完毕后倒入烧杯中50℃边搅拌边加热除去大部分溶剂,然后在50℃真空烘箱中放置12h除去剩余溶剂得预发泡料。
(4)将步骤(3)所得的预发泡料倒入预热的模具中,快速封闭模具,120℃下固化1h后冷却至室温,出模得到泡沫材料。
由图7可见,溶剂法添加石墨烯所得的泡沫泡孔很不规则,泡沫成型性能不好。

Claims (7)

1.一种单组份石墨烯环氧树脂复合泡沫材料,其特征在于:所述石墨烯环氧树脂复合泡沫材料按质量份数其组成为:环氧树脂100份,固化-发泡剂25-35份,石墨烯0.2-2份,稳泡剂0.5-1份,其中,固化-发泡剂的合成按质量份数其组成为:无水乙醇100份,N-氨乙基哌嗪20-25份,CO2通入流量为40-50ml/min。
2.根据权利要求1所述的单组份石墨烯环氧树脂复合泡沫材料,其特征在于:所述环氧树脂的环氧值在0.41-0.51eq/100g之间。
3.根据权利要求1所述的单组份石墨烯环氧树脂复合泡沫材料,其特征在于:所述稳泡剂为环氧乙烷-环氧丙烷三嵌段共聚物,分子量2700-2800。
4.根据权利要求1所述的单组份石墨烯环氧树脂复合泡沫材料,其特征在于:石墨烯比表面积在700-800m2/g之间。
5.根据权利要求1所述的单组份石墨烯环氧树脂复合泡沫材料的制备方法,其特征在于:所述制备方法具有如下步骤:
(1)固化-发泡剂的合成:按质量份数计,将无水乙醇、N-氨乙基哌嗪混合后,通入CO2鼓泡反应11-12h,过滤干燥得到固体固化-发泡剂;
(2)石墨烯环氧树脂分散相的制备:按质量份数计,称取环氧树脂、石墨烯,在行星式球磨机上以450r/min球磨1h,然后在55-60℃下超声30-35min,超声完毕冷却至室温,得石墨烯环氧树脂分散相;
(3)石墨烯环氧树脂复合泡沫材料的制备:在石墨烯环氧树脂分散相中加入步骤(1)所得固化-发泡剂和稳泡剂,在转速1500-2000r/min下搅拌5-6min,倒入预热的模具中,迅速将模具密封,固化后冷却至室温出模。
6.根据权利要求5所述的单组份石墨烯环氧树脂复合泡沫材料的制备方法,其特征在于:步骤(3)所述的模具预热温度为:110-120℃。
7.根据权利要求5所述的单组份石墨烯环氧树脂复合泡沫材料的制备方法,其特征在于:步骤(3)所述的固化温度为:120-125℃,固化时间为:1-1.2h。
CN201610893243.1A 2016-10-13 2016-10-13 一种石墨烯环氧树脂复合泡沫材料及其制备方法 Expired - Fee Related CN106398122B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610893243.1A CN106398122B (zh) 2016-10-13 2016-10-13 一种石墨烯环氧树脂复合泡沫材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610893243.1A CN106398122B (zh) 2016-10-13 2016-10-13 一种石墨烯环氧树脂复合泡沫材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106398122A true CN106398122A (zh) 2017-02-15
CN106398122B CN106398122B (zh) 2018-06-08

Family

ID=59229336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610893243.1A Expired - Fee Related CN106398122B (zh) 2016-10-13 2016-10-13 一种石墨烯环氧树脂复合泡沫材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106398122B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686635A (zh) * 2017-10-24 2018-02-13 厦门海莱照明有限公司 一种石墨烯/固体环氧树脂高导热复合材料的制备方法
CN110093037A (zh) * 2019-05-21 2019-08-06 苏州法思特新材料有限公司 一种硅橡胶基热失效防护材料及其制备方法与应用
CN112126197A (zh) * 2020-09-30 2020-12-25 贵州凯科特材料有限公司 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302304A (zh) * 2008-02-28 2008-11-12 上海应用技术学院 环氧树脂基发泡材料的制备方法
CN104530463A (zh) * 2014-12-26 2015-04-22 上海材料研究所 一种环氧树脂泡沫塑料的制备方法
CN105086375A (zh) * 2015-08-07 2015-11-25 西北工业大学 环氧树脂微孔材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101302304A (zh) * 2008-02-28 2008-11-12 上海应用技术学院 环氧树脂基发泡材料的制备方法
CN104530463A (zh) * 2014-12-26 2015-04-22 上海材料研究所 一种环氧树脂泡沫塑料的制备方法
CN105086375A (zh) * 2015-08-07 2015-11-25 西北工业大学 环氧树脂微孔材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686635A (zh) * 2017-10-24 2018-02-13 厦门海莱照明有限公司 一种石墨烯/固体环氧树脂高导热复合材料的制备方法
CN107686635B (zh) * 2017-10-24 2020-03-06 厦门海莱照明有限公司 一种石墨烯/固体环氧树脂高导热复合材料的制备方法
CN110093037A (zh) * 2019-05-21 2019-08-06 苏州法思特新材料有限公司 一种硅橡胶基热失效防护材料及其制备方法与应用
CN112126197A (zh) * 2020-09-30 2020-12-25 贵州凯科特材料有限公司 一种交替多层环氧树脂基导电复合微孔发泡材料的制备方法

Also Published As

Publication number Publication date
CN106398122B (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
Zhang et al. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method
CN103030974B (zh) 轻质柔性石墨烯/聚合物泡沫电磁屏蔽材料及制备和应用
CN102618107B (zh) 导电石墨乳及其制备方法
Gao et al. Absorption dominated high-performance electromagnetic interference shielding epoxy/functionalized reduced graphene oxide/Ni-chains microcellular foam with asymmetric conductive structure
CN106398122A (zh) 一种石墨烯环氧树脂复合泡沫材料及其制备方法
CN108770327B (zh) 一种梯度层状发泡吸波材料及其制备方法
CN105523549B (zh) 一种用于机械剥离法制备石墨烯的剥离剂及应用
CN104497483B (zh) 一种轻质环氧树脂微孔发泡材料及其制备方法
CN105271307B (zh) 一种普鲁士蓝衍生物Cd2[Fe(CN)6]纳米棒及其制备方法
CN106276911A (zh) 氮掺杂石墨烯的制造方法及其复合式散热片的制造方法
CN107283711A (zh) 一种热塑性聚合物发泡珠粒成型体及其制备方法
Wang et al. Expandable graphite encapsulated by magnesium hydroxide nanosheets as an intumescent flame retardant for rigid polyurethane foams
CN107722157A (zh) 一种轻质、导热绝缘聚合物硬质泡沫材料及其制备方法
CN103804709B (zh) 纳米复合发泡剂及其制备方法和发泡制品
KR101493434B1 (ko) 발포 폴리스티렌용 난연성 코팅제 조성물
TW201418286A (zh) 三維網狀材料的製造方法
Feng et al. Carbon nanotubes in microwave-assisted foaming and sinter molding of high performance polyetherimide bead foam products
CN114940829A (zh) 一种二维石墨烯/液态金属/pdms复合膜及其制备方法
CN107022345A (zh) 石墨烯/石墨粉复合材料的制备方法、复合材料及应用
Gao et al. Hierarchical structured epoxy/reduced graphene oxide/Ni-chains microcellular composite foam for high-performance electromagnetic interference shielding
CN113980468A (zh) 垂直取向三维膨胀石墨导热体的制备方法及其增强的导热聚合物基复合材料
CN110628033B (zh) 一种聚酰亚胺接枝聚乙二醇复合固固相变材料及其制备方法
CN108659251A (zh) 聚醚酰亚胺发泡粒子的制备方法
CN110978366A (zh) 一种用于提高发泡材料中的功能组分添加量的方法
Yan et al. Electrical conductivity of carbon black/single‐wall carbon nanotube/low‐density polyethylene ternary composite foam

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210406

Address after: 239000 east of Huzhou road Angu project, west of Liuzhou Road, south of Wenzhong Road, north of Jiuzi Avenue, Suchu modern industrial park, Chuzhou City, Anhui Province

Patentee after: Chuzhou Siying platinum polymer materials Co.,Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180608