CN106388859A - 一种新型超声阵元选通电路 - Google Patents

一种新型超声阵元选通电路 Download PDF

Info

Publication number
CN106388859A
CN106388859A CN201610751217.5A CN201610751217A CN106388859A CN 106388859 A CN106388859 A CN 106388859A CN 201610751217 A CN201610751217 A CN 201610751217A CN 106388859 A CN106388859 A CN 106388859A
Authority
CN
China
Prior art keywords
array element
voltage switch
data
input
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610751217.5A
Other languages
English (en)
Other versions
CN106388859B (zh
Inventor
朱振超
项四平
徐惠泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI HAIYING ELECTRONIC MEDICAL SYSTEMS Inc
Original Assignee
WUXI HAIYING ELECTRONIC MEDICAL SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI HAIYING ELECTRONIC MEDICAL SYSTEMS Inc filed Critical WUXI HAIYING ELECTRONIC MEDICAL SYSTEMS Inc
Priority to CN201610751217.5A priority Critical patent/CN106388859B/zh
Publication of CN106388859A publication Critical patent/CN106388859A/zh
Application granted granted Critical
Publication of CN106388859B publication Critical patent/CN106388859B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Abstract

本发明涉及一种新型超声阵元选通电路,包括若干高压开关,高压开关的输出端口中每4个特定端口并联成一条信号输出,并连接到对应通道;高压开关控制数据根据选通的起始阵元和结束阵元即可同步计算出并输入到高压开关的输入端口。本发明的高压开关数据设置不需要提前计算存储在FPGA的内部ROM中,只需要根据存储的选通起始阵元和结束阵元即可同步计算出开关控制数据,并输入到高压开关的输入端口,较传统的方式减少了大量的存储空间,降低了系统成本,数据的同步匹配也更容易控制。

Description

一种新型超声阵元选通电路
技术领域
本发明涉及超声前端系统领域,尤其是一种新型超声阵元选通电路。
背景技术
超声前端系统主要包括探头选择模块1、阵元选择模块2、发射与前放模块3、整序折叠模块4、TGC放大模块5和波束合成模块6,如图1所示为超声前端系统模块框图。探头选择模块1选择多个探头中的一个作为工作探头,且通过阵元选择模块2选择参与当前一次发射或者接收工作的一组阵元,该阵元将受到高压脉冲电压的激励发出超声波,发射的超声波将聚焦在之前设置好的某个深度上,发射模块31用来产生高压脉冲激励阵元,前放模块32用来将人体组织反射的微弱回波信号进行前级放大后经整序折叠模块4、TGC放大模块5和波束合成模块6来进行后续整序折叠、TGC二级放大、波束合成。
阵元选择模块2在每次发射超声波时,探头中只有一组相邻的阵元收到高压脉冲的激励产生超声波,并在先前设置的深度上进行聚焦,发射出去的超声波遇到人体组织后反射回来的信号被原发射阵元接收,转换成微弱的电信号进行后续信号处理。
以128阵元探头,32通道整节距扫描方式为例,如图2所示,类似一个与128阵元保持平行的32通道从扫描线1平移到扫描线128,与32通道重合的部分就是参与发射接收的阵元,即图中标出的起始阵元start_el和结束阵元end_el之间(包括该阵元)的阵元,起始阵元和结束阵元的中心即是扫面线位置。
传统的阵元选通电路使用16个高压开关21,其输入端分别连接到探头的128阵元上,这样每个高压开关21连接8个阵元。高压开关21的输出端每4个并联成一条信号输出到后续处理电路,电路结构如图3所示。为了便于解释,图中省略了LE、CL等使能、清零控制端口,高压开关21两个串联成一组,一共8组。高压开关21控制数据分成8组Din0~Din7,每组数据串行输入输出,内部通过移位寄存器并行输入到各个阵元选通开关端口,控制相应阵元的选通。
传统的高压开关控制数据Din0~Din7是事先计算好,以某种方式储存在FPGA的内部ROM里面供高压开关设置逻辑读取。首先128线扫描每线需要128bit开关数据,共128*128位数据,且扫描线数越高导致其开关数据所占空间更大,其次硬件逻辑电路的改变也会要求ROM所存储的开关数据有所更改,所以灵活性较低;而且高压开关在一个特定时钟周期将一位开关数据输入,一组数据一共16位,需要16个时钟周期,而ROM的地址与数据读取也需要一定的时间延迟,其中的时间同步匹配问题控制不好容易出错。
基于上述问题,设计了一种新型超声阵元选通电路主要用于阵元选择模块。
发明内容
本发明要解决的技术问题是克服现有的缺陷,提供一种新型超声阵元选通电路,减少了大量的存储空间,降低了系统成本,数据的同步匹配也更容易控制。
为了解决上述技术问题,本发明提供了如下的技术方案:
本发明一种新型超声阵元选通电路,包括若干高压开关,高压开关的输出端口中每4个特定端口并联成一条信号输出,并连接到对应通道;高压开关控制数据根据选通的起始阵元和结束阵元即可同步计算出并输入到高压开关的输入端口。
进一步地,高压开关内部电路包括芯片数据串行输入Din,芯片数据串行输出Dout,移位寄存器和开关SW,芯片数据串行输入Din,芯片数据串行输出Dout由移位寄存器控制,将数据并行输入到开关SW的输入端,控制开关SW的通断,为1时开关闭合,为0时开关断开。
进一步地,高压开关控制数据由FPGA进行计算。
本发明的有益效果:本发明的高压开关数据设置不需要提前计算存储在FPGA内部ROM中,只需要将起始阵元号和结束阵元号以高低字节为单位存储于FPGA内部ROM,然后根据扫描线号读取相应的起始阵元和结束阵元即可同步计算出开关控制数据,并输入到高压开关的输入端口,128阵元32通道整节距扫描方式下内部ROM只需要128*16bit位的存储空间,较传统的方式减少了大量的存储空间,降低了系统成本,数据的同步匹配也更容易控制。
附图说明
图1为超声前端系统模块框图;
图2为以128阵元探头的32通道整节距扫描方式为例进行阵元选通的示意图;
图3为传统的阵元选通电路结构示意图;
图4为高压开关内部原理图;
图5为本发明的阵元选通电路结构示意图;
图6为本发明中进行高压开关控制数据时选通起始位lo_bit以及结束位hi_bit的计算流程图。
具体实施方式
本发明所列举的实施例,只是用于帮助理解本发明,不应理解为对本发明保护范围的限定,对于本技术领域的普通技术人员来说,在不脱离本发明思想的前提下,还可以对本发明进行改进和修饰,这些改进和修饰也落入本发明权利要求保护的范围内。
以128阵元探头的32通道整节距扫描方式为例,根据阵元选通的规律,一般采用高压开关21作为阵元选通的基本原件,高压开关21内部原理图如图4。芯片数据串行输入Din,串行输出Dout,并且受8bit移位寄存器211控制,将数据并行输入到8个开关SW0~SW7的输入端,控制开关的通断,为1时开关闭合,为0时开关断开。
本发明的阵元选通电路结构如图5所示,其中的高压开关21与传统的高压开关连接不同的是,其输入端口连接的对应阵元是按照0~127阵元号顺序依次排列,输出端口也是按照阵元顺序输出,所以必须按照传统的输出端口那样特定的4个进行并联输出,连接到对应通道。连接顺序如下表1(每4个输出端口进行并联,如0326496并联接到CH0;1336597并联接到CH1)。
表1每4个输出端口连接顺序
0 32 64 96 16 48 80 112
1 33 65 97 17 49 81 113
2 34 66 98 18 50 82 114
3 35 67 99 19 51 83 115
4 36 68 100 20 52 84 116
5 37 69 101 21 53 85 117
6 38 70 102 22 54 86 118
7 39 71 103 23 55 87 119
8 40 72 104 24 56 88 120
9 41 73 105 25 57 89 121
10 42 74 106 26 58 90 122
11 43 75 107 27 59 91 123
12 44 76 108 28 60 92 124
13 45 77 109 29 61 93 125
14 46 78 110 30 62 94 126
15 47 79 111 31 63 95 127
图5中的高压开关设置数据Din0~7由FPGA进行计算,设计思路见如下表2,对应以上高压开关电路,将128阵元分成group=0~7一共8组,每组对应16个阵元位构成16位的串行开关控制数据din,采用0~15计数器bit_cnt进行循环计数。根据输入的起始阵元Start-el和结束阵元End_el来确定start(start_group,start_bit)以及end(end_group,end_bit)。然后对8个group进行扫描,超出start_group和end_group之外的group全部关闭(对应din数值为0),在范围内的group则分别计算出该组16位的选通起始位lo_bit以及结束位hi_bit,然后将bit_cnt计数器的值与[lo_bit,hi_bit]进行比较,在其范围内的din为1,范围外的为0。
上述hi_bit和lo_bit的计算流程如图6所示,其中disable表示高压开关关闭,start_bit=start_el[3:0],end_bit=end_el[3:0]。输入group,start-el,end_el;设end_group=end_el[6:4],start_group=start_el[6:4];判断是否start_group≤group≤end_group,group若在范围之外,则disable,group若在范围内,则判断是否group=start_group,若相等,则起始位lo_bit=start_bit以及hi_bit=15,若不相等,则lo_bit=0,继续判断是否group=end_group,若相等,则hi_bit=end_bit,若不相等,则hi_bit=15。
表2高压开关控制数据的设置思路
本发明的高压开关控制数据不需要提前计算存储在FPGA的内部ROM中,在128阵元32通道下,只需要将各个扫描线号对应的起始阵元号start_el[6:0]和结束阵元号end_el[6:0]以高低字节为单位存储于FPGA内部ROM,需128线*16bit存储空间,然后根据扫描线号读取相应的起始阵元和结束阵元即可同步计算出开关控制数据,并输入到高压开关21的Din0~Din7端口,较传统的方式减少了大量的存储空间,降低了系统成本,数据的同步匹配也更容易控制。

Claims (3)

1.一种新型超声阵元选通电路,包括若干高压开关(21),其特征在于:所述高压开关(21)的输出端口中每4个特定端口并联成一条信号输出,并连接到对应通道;所述高压开关(21)控制数据根据选通的起始阵元和结束阵元即可同步计算出并输入到高压开关(21)的输入端口。
2.根据权利要求1所述的新型超声阵元选通电路,其特征在于:所述高压开关(21)内部电路包括芯片数据串行输入Din,芯片数据串行输出Dout,移位寄存器(211)和开关SW,芯片数据串行输入Din,芯片数据串行输出Dout由移位寄存器(211)控制,将数据并行输入到开关SW的输入端,控制开关SW的通断,为1时开关闭合,为0时开关断开。
3.根据权利要求1所述的新型超声阵元选通电路,其特征在于:所述高压开关(21)控制数据由FPGA进行计算。
CN201610751217.5A 2016-08-29 2016-08-29 一种新型超声阵元选通电路 Active CN106388859B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610751217.5A CN106388859B (zh) 2016-08-29 2016-08-29 一种新型超声阵元选通电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610751217.5A CN106388859B (zh) 2016-08-29 2016-08-29 一种新型超声阵元选通电路

Publications (2)

Publication Number Publication Date
CN106388859A true CN106388859A (zh) 2017-02-15
CN106388859B CN106388859B (zh) 2023-08-29

Family

ID=58003944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610751217.5A Active CN106388859B (zh) 2016-08-29 2016-08-29 一种新型超声阵元选通电路

Country Status (1)

Country Link
CN (1) CN106388859B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974305A (zh) * 2019-12-13 2020-04-10 山东大学齐鲁医院 基于深度学习的远程心脏超声三维成像系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120179044A1 (en) * 2009-09-30 2012-07-12 Alice Chiang Ultrasound 3d imaging system
CN103006265A (zh) * 2012-12-25 2013-04-03 汕头市超声仪器研究所有限公司 一种超声多阵元探头装置
CN203000986U (zh) * 2012-12-25 2013-06-19 汕头市超声仪器研究所有限公司 一种超声多阵元探头装置
CN103698756A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种便携式超声系统的前端装置
CN206350734U (zh) * 2016-08-29 2017-07-25 无锡海鹰电子医疗系统有限公司 一种新型超声阵元选通电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120179044A1 (en) * 2009-09-30 2012-07-12 Alice Chiang Ultrasound 3d imaging system
CN103006265A (zh) * 2012-12-25 2013-04-03 汕头市超声仪器研究所有限公司 一种超声多阵元探头装置
CN203000986U (zh) * 2012-12-25 2013-06-19 汕头市超声仪器研究所有限公司 一种超声多阵元探头装置
CN103698756A (zh) * 2013-12-06 2014-04-02 深圳先进技术研究院 一种便携式超声系统的前端装置
CN206350734U (zh) * 2016-08-29 2017-07-25 无锡海鹰电子医疗系统有限公司 一种新型超声阵元选通电路

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMAURI A. ASSEF ET AL: "Design of a 128-channel FPGA-Based Ultrasound Imaging Beamformer for Research Activities", 《2012 IEEE INTERNATIONA ULTRASONICS SYMPOSIUM PROCEEDINGS》 *
GI-DUCK KIM ET AL: "A Single FPGA-Based Portable Ultrasound Imaging System for Point-of-Care Applications", 《TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL》 *
郝云霞: "基于FPGA的医用阵列超声内镜成像系统的研究", pages 3 - 11 *
陈亚沛: "医用B超仪器前端设计", 《中国硕博学位论文全文数据库》 *
黄伟华: "B型超声诊断仪设计及编码激励方法研究", 《中国硕博学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974305A (zh) * 2019-12-13 2020-04-10 山东大学齐鲁医院 基于深度学习的远程心脏超声三维成像系统及方法
CN110974305B (zh) * 2019-12-13 2021-04-27 山东大学齐鲁医院 基于深度学习的远程心脏超声三维成像系统及方法

Also Published As

Publication number Publication date
CN106388859B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN104378114B (zh) 一种实现多通道模数转换器同步的方法
US6842436B2 (en) Multiport-RAM memory device
US6421274B1 (en) Semiconductor memory device and reading and writing method thereof
CN106652893A (zh) Led显示屏控制系统
EP0123411B1 (en) Parallel processing of simultaneous ultrasound vectors
US6741193B2 (en) Parallel in serial out circuit having flip-flop latching at multiple clock rates
CN1577612A (zh) 半导体存储装置和用于高频操作的模块
US20240061107A1 (en) Ultrasound probe with multiline digital microbeamformer
US20190212424A1 (en) Ultrasound probe with digital microbeamformer having integrated circuits fabricated with different manufacturing processes
CN106388859A (zh) 一种新型超声阵元选通电路
CN103903651B (zh) 双线串行端口内建自测电路及其通讯方法
EP3872988A1 (en) Waveform generator
CN206350734U (zh) 一种新型超声阵元选通电路
CN100418159C (zh) 同步半导体存储器装置的数据输入单元及数据输入方法
CN101441857B (zh) 可改善电磁干扰的电路装置及其相关方法
KR20160143014A (ko) 메모리 칩 및 이를 포함하는 적층형 반도체 장치
CN106652897B (zh) Led显示屏控制系统
CN111966628B (zh) 一种多核组合式大容量数据同步存储方法
WO2021109525A1 (zh) 一种大规模天线阵数字波控信号接口方法
US10210129B2 (en) Systems and methods for deserializing data
CN209728477U (zh) 一种多通道温度数据采集电路
CN110664431B (zh) 一种复用型超声内镜回波数据传输及图像重建装置及方法
CN211554705U (zh) 一种多通道超声波发射电路
US6928024B2 (en) RAM memory circuit and method for memory operation at a multiplied data rate
WO2017207815A1 (en) Ultrasound systems with time compression and time multiplexing of received ultrasound signals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant