CN106385118A - Electric vehicle, wheel and switched reluctance motor - Google Patents

Electric vehicle, wheel and switched reluctance motor Download PDF

Info

Publication number
CN106385118A
CN106385118A CN201610859297.6A CN201610859297A CN106385118A CN 106385118 A CN106385118 A CN 106385118A CN 201610859297 A CN201610859297 A CN 201610859297A CN 106385118 A CN106385118 A CN 106385118A
Authority
CN
China
Prior art keywords
rotor
switched reluctance
reluctance machines
motor
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610859297.6A
Other languages
Chinese (zh)
Inventor
漆亚梅
童恩东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN PEITIAN MOTOR TECHNOLOGY Co Ltd
Original Assignee
SHENZHEN PEITIAN MOTOR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN PEITIAN MOTOR TECHNOLOGY Co Ltd filed Critical SHENZHEN PEITIAN MOTOR TECHNOLOGY Co Ltd
Publication of CN106385118A publication Critical patent/CN106385118A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Abstract

The present invention belongs to the motor technical field and discloses a switched reluctance motor. The switched reluctance motor comprises a shell as well as a rotor and a stator arranged in the shell; the rotor includes a plurality of rotor teeth arranged circumferentially; and two sides of each rotor teeth of the rotor are of an asymmetric structure. The switched reluctance motor has the advantages of large output torque, high magnetic flux utilization rate, excellent low-speed performance, wide efficiency platform, high power density, low noise, excellent environment adaptability, high reliability, long service life, simple production process and cost low, and can be widely applied to an electric vehicle.

Description

Electric motor car, wheel and its switched reluctance machines
Technical field
The present invention relates to the technical field of motor, it is related to a kind of electric motor car, wheel and its switched reluctance machines.
Background technology
Inventor is in practice, it has been found that the hub driven motor of current high power electric vehicle typically adopts permagnetic synchronous motor And motor in axial magnetic field, typically seldom adopt switched reluctance machines.
Below the performance of these three motors is analyzed:
1st, motor in axial magnetic field complex structure, production cost is high, and actual application value is not high.
2nd, switched reluctance machines of the prior art are typically made into inner rotor motor form, and outer rotor hub motor has no It is used.Still it is not so good as permanent magnet synchronous electric as the low-speed stability of the switched reluctance machines of internal rotor application, noise, power density Machine.
3rd, it is scarce that permagnetic synchronous motor has easy demagnetization, low cruise efficiency is low, the life-span is shorter, maintainability is poor etc. Point.
In addition, the both sides of each rotor tooth of rotor are symmetrical structure in prior art, therefore there is the constant area of inductance Between (refer to Figure 11), this interval does not produce moment, and this kind of rotor toothing makes the magnetic flux utilization rate of motor low, and motor is defeated Go out torque little.
Content of the invention
Magnetic flux utilization rate in order to solve prior art breaker in middle reluctance motor is low, and little the asking of output torque of motor Topic, the present invention provides a kind of new switched reluctance machines structure, and the electric motor car using this switched reluctance machines and wheel.
For solving the above problems, embodiments provide a kind of switched reluctance machines, described switched reluctance machines bag Include housing and the rotor in housing and stator, wherein, described rotor includes around circumferentially disposed multiple rotor tooths, described turn The both sides of each rotor tooth of son are unsymmetric structure.
According to one preferred embodiment of the present invention, the angle of two crowns of each rotor tooth of described rotor is different.
According to one preferred embodiment of the present invention, at least one of each two crowns of rotor tooth are obtuse angle.
According to one preferred embodiment of the present invention, one of each two crowns of rotor tooth are obtuse angle, and another one is straight Angle or acute angle.
According to one preferred embodiment of the present invention, the depth at the obtuse angle of the crown of described rotor tooth is gas between stator and rotor 1~2 times of gap width.
According to one preferred embodiment of the present invention, the width at the obtuse angle of the crown of described rotor tooth is the width of described rotor tooth 1/10~1/5.
According to one preferred embodiment of the present invention, the width of air gap between rotor and stator is 0.25~0.5mm.
For solving above-mentioned technical problem, originally return a kind of wheel of offer, wheel adopts switched reluctance machines to drive, and described opens Close the structure that reluctance motor adopts switched reluctance machines any one of above-described embodiment.
For solving above-mentioned technical problem, this further provides for a kind of electric motor car, and described electric motor car is pure electronic or mixing Power car, described electric motor car includes the switched reluctance machines any one of above-described embodiment.
According to one preferred embodiment of the present invention, the wheel of described electric motor car adopts hub-type switched reluctance machines to drive.
Compared with prior art, this switched reluctance machines magnetic flux utilization rate is high, motor output torque is big, environmental suitability Good, reliability height, long service life, simple production process, low cost.Can be widely used in electric motor car.
Brief description
In order to be illustrated more clearly that the embodiment of the present invention or technical scheme of the prior art, below will be to institute in embodiment Need use accompanying drawing be briefly described it should be apparent that, drawings in the following description be only the present invention some enforcement Example, for those of ordinary skill in the art, on the premise of not paying creative work, can also obtain according to these accompanying drawings Obtain other accompanying drawings.
The structure composition block diagram of Fig. 1 Switched Reluctance Motor;
Fig. 2 is switched reluctance machines and its three-phase windings schematic diagram of outer-rotor structure;
Fig. 3 is the partial structurtes enlarged drawing of Fig. 2 breaker in middle reluctance motor;
Fig. 4 is the Distribution of Magnetic Field schematic diagram of stator winding;
Fig. 5 is the Distribution of Magnetic Field figure of single winding in prior art method of accessing;
Fig. 6 is stator and rotor relative position and phase winding inductance curve figure;
Fig. 7 is the enlarged drawing of rotor toothing first preferred embodiment;
Fig. 8 is the enlarged drawing of rotor toothing second preferred embodiment;
Fig. 9 is the enlarged drawing of rotor toothing third preferred embodiment;
Figure 10 is the enlarged drawing of rotor toothing the 4th preferred embodiment;
Figure 11 is the curve chart that in prior art, inductance changes with corner;
Figure 12 is the curve chart that changes with corner of inductance of switched reluctance machines crown structure of the present invention;
Figure 13 is the schematic diagram of the notch that implant is covered on rotor slot;
Figure 14 is that implant is filled in the structural representation in rotor slot;
Figure 15 is the composition frame chart of switched Reluctance Motor Control System;
Figure 16 is the electrical block diagram of working condition selecting module;
Figure 17 is switched reluctance machines and its three-phase windings schematic diagram of inner rotor core;
Figure 18 is the partial structurtes enlarged drawing of Figure 17 breaker in middle reluctance motor;And
Figure 19 is a kind of schematic diagram of preferred inner rotor core.
Specific embodiment
With reference to the accompanying drawings and examples, the present invention is described in further detail.It is emphasized that following implement Example is merely to illustrate the present invention, but the scope of the present invention is not defined.Likewise, following examples are only the portion of the present invention Point embodiment and not all embodiments, the institute that those of ordinary skill in the art are obtained under the premise of not making creative work There are other embodiments, broadly fall into the scope of protection of the invention.
Term " first " in description and claims of this specification and above-mentioned accompanying drawing, " second ", " the 3rd " " Four " etc. (if present) is for distinguishing similar object, without for describing specific order or precedence.Should manage The data that solution so uses can be exchanged, in the appropriate case so that embodiments of the invention described herein for example can be to remove Illustrate here or description those beyond order implement.Additionally, term " comprising " and " having " and theirs is any Deformation, it is intended that covering non-exclusive comprising, for example, contains the process of series of steps or unit, method, system, product Product or equipment are not necessarily limited to those steps or the unit clearly listed, but may include clearly not listing or for this A little processes, method, product or the intrinsic other steps of equipment or unit.
A kind of composition frame chart of governing system of switched reluctance machines is as shown in figure 1, this governing system generally comprises switch Reluctance motor 100, power inverter 200, controller 300 and position sensor 400.With regard to each component units of governing system it Between control process, in the range of the understanding of those skilled in the art, no longer describe in detail herein.
The embodiment of the present invention provides a kind of switched reluctance machines, and this switched reluctance machines is three-phase switch reluctance machine, bag Include housing and the field spider in housing and salient pole stator, the tooth of stator is wound with ABC three-phase windings.
Preferably, each in ABC three-phase windings mutually all includes at least three exits, draws including two ends End, positioned at winding two ends, also includes exit in the middle part of at least one, and in the middle part of this, exit is located at a certain position in the middle of winding, So, when a certain for middle part exit and one of end exit are accessed circuit, then each phase winding only partly leads to Electricity work, and when two end exits are accessed circuit, then each phase winding be all energized work, thus realizing to work shape The regulation of state.
For example, each in ABC three-phase windings is all mutually the three-phase windings with midpoint, middle part exit i.e. with winding Midpoint is connected, then winding can all access circuit and be operated, and the normal operating conditions corresponding to motor is it is also possible to it Half accesses circuit and is operated, corresponding to motor assist working condition.ABC three-phase windings can be arranged to including multiple middle parts Exit, the working condition of such motor then can have multiple gears to adjust.
Preferably, the present embodiment breaker in middle reluctance motor can be the default sub-motor of outer rotor, wherein, as shown in Fig. 2 fixed The stator slot that attached bag includes around circumferentially spaced multiple stator tooths and is located between stator tooth;Rotor is included around circumferentially disposed Multiple rotor tooths and the rotor slot being located between rotor tooth.This rotor 410 can be 24 grooves for the outer rotor of 16 poles, stator 420 Inner stator.
As shown in Fig. 2 the default sub-motor of 16 pole external-rotor 24 groove can adopt ABCABC ... order coiling, totally 24 around Set of pieces, three-phase windings respectively have the elements of winding of 8 series connection, and the element of winding adopts many insulated copper wires and around will thoroughly do away with edge more Copper cash is split into two halves, such 8 series connection the elements of winding, again formed and around two parts, have two line head ends and two lines Tail end, using one pair of which line head end and line tail end as the end exit for this phase winding, then by another to line head end and line Tail end after connecing, as the midpoint exit of this phase winding, therefore ABC three-phase windings be have the three-phase of midpoint exit around Group.Certainly, in other embodiments, each item in three-phase windings is also provided with multiple middle parts exit, and extraction location It is also not necessarily limited to the midpoint in winding, in the range of the understanding of those skilled in the art, here is omitted.
Refer to Fig. 3, Fig. 3 is the partial structurtes enlarged drawing of Fig. 2 breaker in middle reluctance motor.Preferably, fixed in the present embodiment The ratio of the slot bottom width L10 and width L8 of stator tooth of son is 1~1.25, and groove depth D1 is 2~4 times of facewidth L8.This design can Little to ensure the stock utilization height of motor, vibrations and noise.This is because switched reluctance machines do not use permanent magnet, only makes With iron core and copper cash, when its copper consumption with iron suitable when, the stock utilization highest of motor.And the determining of switched reluctance machines The width ratio of slot bottom width and the stator tooth of son for when 1 it is believed that its copper consumption is suitable with iron, slot bottom width and stator The width ratio of tooth is more than 1, then can put more copper cash.But if slot bottom width is excessive with the width ratio of stator tooth, when groove depth is It is meant that the width of stator tooth is too narrow when 2~4 times of the facewidth, after winding energising on tooth, stator and rotor are in strong magnetic pull Under effect, easily produce vibrations and noise.The span of the width ratio of the groove depth of stator of the present invention, tooth and groove, effectively guarantees The stock utilization of motor is high, namely improves the power density of motor, and inhibits vibrations and noise.
Preferably, the width of rebate L7 of the outer rotor and width L6 of rotor tooth meets:L7/L6 is 1~0.75, and groove depth D2 is 20~30 times of air gap delta between rotor 410 and stator 420.This structure design of rotor and the slot bottom width L10 of stator with fixed The ratio of the width L8 of sub- tooth is 1~1.25, and groove depth D1 is that the design of 2~4 times of facewidth L8 matches, and leads to present invention switch magnetic The ratio Lmax/Lmin value with maximum induction Lmax and minimum inductance Lmin of resistance motor is bigger than Conventional switched reluctance motor to be obtained Many, the inductance ratio of the present invention may be up to 6~8, and Conventional switched reluctance motor can only achieve 2.5~4.5 about.Due to switching magnetic The output torque of resistance motorInductance is than high meaningGreatly, the output torque of motor is just big, also Improve the power density of motor again.Wherein, the width of the air gap delta between rotor and stator can be designed as in the present embodiment δ=(0.25~0.5) mm.
Further, in order to improve the power density of motor, the winding on the adjacent stators tooth of stator in the present embodiment produces Raw magnetic direction is contrary, refers to Fig. 4, Fig. 4 is the Distribution of Magnetic Field schematic diagram of stator winding, is compared to traditional winding and leads to Method for electrically, the magnetic direction of the winding on adjacent stators tooth is identical, makes each winding independently form a small magnetic field, refers to figure 5, Fig. 5 is the Distribution of Magnetic Field figure of single winding in prior art method of accessing;The electricity of the winding of adjacent stators tooth in the present embodiment Stream is in opposite direction, so that the magnetic direction that adjacent winding produces is contrary;This kind of method of accessing can make between adjacent stators winding It is collectively forming magnetic field, this kind of structure can improve magnetic density, make reluctance torque become big, and then improve the power density of motor. The step mode of this kind of winding is not only applicable to the electric machine structure of 16 pole 24 groove in the present embodiment, and being equally applicable to rotor is (8 × n) pole rotor, stator be (12 × n) groove stator (wherein, n is the positive integer more than or equal to 2) electric machine structure.
The curve that the inductance of conventional motors changes with corner as shown in fig. 6, there is the constant minizone of inductance, this intervalDo not produce moment.In order to reduce this interval, improve the utilization rate of motor, each rotor tooth of rotor of the present invention Both sides be designed as unsymmetric structure, such as the angle design of the two of rotor tooth crown is different angles etc..Then motor The curve that inductance changes with cornerInterval diminish, or even disappear.And at least one of two crowns of rotor tooth Can be designed as obtuse angle.
It is further preferred that seeing also Fig. 7, Fig. 7 is the enlarged drawing of rotor toothing first preferred embodiment, this reality Apply one of two crowns of the rotor tooth in example crown 4101 and be designed to obtuse angle, another crown 4102 be designed as acute angle or Person right angle.Wherein, depth D3 at rotor crown obtuse angle can be 1~2 times of air gap delta, and the width D 4 at rotor crown obtuse angle is permissible For the 1/10~1/5 of the width L6 of rotor tooth, if the direction that obtuse angle pressed by motor is sequentially energized to three-phase windings, can be significantly Reduce the noise of motor.
In addition, in other embodiments, two crowns of rotor tooth can also be designed as obtuse angle, be designed as acute angle or The version that person's acute angle is arranged in pairs or groups with right angle, as long as ensure that the both sides of rotor tooth are unsymmetric structure.Further referring to Fig. 8-Figure 10, Fig. 8 are the enlarged drawings of rotor toothing second preferred embodiment, and Fig. 9 is rotor toothing third preferred embodiment Enlarged drawing, and Figure 10 is the enlarged drawing of rotor toothing the 4th preferred embodiment;Wherein, rotor tooth in Fig. 8 embodiment Both sides crown one is arc structure 4101, and another is top rake structure 4102, and top rake position forms two obtuse angles;Fig. 9 is implemented In example, the both sides crown of rotor tooth one is acute angle or right-angle structure 4101, and another is prominent horn structure 4102, and In Figure 10 embodiment, the both sides crown of rotor tooth one is acute angle or right-angle structure 4101, is provided with one recessed near another crown The structure 4102 of groove.Below only list the structure of several rotor tooths, the purport that the present invention protects is that the both sides of rotor tooth are Unsymmetric structure.Certainly, in other embodiments, can also there is the rotor toothing of multiple changes, will not enumerate herein.
Refer to Figure 11 and Figure 12, Figure 11 is the curve chart that in prior art, inductance changes with corner, Figure 12 is the present invention Curve chart that the inductance of switched reluctance machines crown structure changes with corner it is obvious that crown design structure in the present invention, its The curve that inductance changes with cornerInterval diminish (in figure label X be position), or even disappear, do not produce moment Interval very little even disappear, from the magnetic flux utilization rate greatly enhancing motor, and then increase the output of motor and turn Square.
Preferably, inside the notch of rotor slot or rotor slot, implant can also be set, to subtract trochantinian windage.Should Implant (covering) needs for the exhausted magnetic material that insulate, such as plastics, fiberglass or composite etc..
See also Figure 13 and Figure 14, Figure 13 and Figure 14 is the schematic diagram of two kinds of implant setting structures, wherein, Figure 13 It is the schematic diagram of the notch that covering is covered on rotor slot, Figure 14 is that implant is filled in the structural representation in rotor slot.
In Figure 13, covering 500 can be the banded structure being pasted onto rotor slot 430 notch, and covering 500 can be one Whole piece covers in all rotor slot 430 of whole rotor, can also be segmental structure covering part rotor slot 430, in ability In the range of the understanding of field technique personnel, no longer describe in detail herein.
In Figure 14, implant 500 is to be filled in voussoir in rotor slot 430, preferably fills and leads up rotor slot 430.In implant 500 when being filled in rotor slot, and be connected smoothly between the rotor tooth of implant 500 and acute angle or right angle crown structure (figure Mark in 14 at 510 positions);And pass through cambered surface between the rotor tooth of implant 500 and obtuse angle crown structure and (mark in Figure 14 At 520 positions) transition connection.Be can ensure that by seamlessly transitting structure and be connected between this implant 500 and both sides rotor tooth The overall lateral surface of rotor is smooth structure, reaches the maximum purpose reducing windage.
Further, in order that implant 500 can reliably be embedded in corresponding rotor slot, in the side of rotor tooth On the locating slot (in figure does not mark) that can be provided with, correspondingly, the side of implant 500 is provided with and positions slot structure and be adapted Positioning convex 530, the clamping positioning to implant 500 is realized in this positioning convex 530 and locating slot cooperation, and then ensures filling Thing 500 is reliably embedded in corresponding rotor slot.Certainly, only illustrate a kind of locator protrusions of arc structure in Figure 14 530, it is, of course, also possible to be dovetail configuration etc., as long as ensure that implant 500 can stably be inlayed or is connected to rotor slot Interior, will not enumerate herein.
In addition the present invention also provides a kind of control system of switched reluctance machines, refers to Figure 15, and Figure 15 is switching magnetic-resistance The composition frame chart of electric machine control system;This system includes switched reluctance machines 510 and driver 520, wherein switched reluctance machines 510 can be the switched reluctance machines of previous embodiment description.
This driver 520 at least includes working condition selecting module 521, and this working condition selecting module 521 is used for selecting Whole windings between two end exits of three-phase windings or be located between end exit and midpoint exit or in Part between point exit is operated, so that switched reluctance machines realize different torque outputs.
This working condition selecting module 521 at least include three first switches, three second switches, three the 3rd switches, Three the first fly-wheel diodes, three the second fly-wheel diodes and three the 3rd fly-wheel diodes, wherein three first switches Colelctor electrode connect the positive pole of power supply, emitter stage connects an end exit of a corresponding phase winding respectively, opens for three second The colelctor electrode closing connects another end exit of a corresponding phase winding respectively, and emitter stage connects the negative pole of power supply, three The colelctor electrode of the 3rd switch connects the midpoint exit of a corresponding phase winding respectively, and emitter stage connects the negative pole of power supply, three The negative pole of the first fly-wheel diode connects the colelctor electrode of the first switch that a corresponding phase winding is connected respectively, and positive pole connects respectively Connect the colelctor electrode of the second switch that a corresponding phase winding is connected, the negative pole of three the second fly-wheel diodes connects correspondence respectively The emitter stage of first switch that connected of a phase winding, positive pole connects the second switch that a corresponding phase winding is connected respectively Emitter stage, the negative pole of three three fly-wheel diodes connects the current collection of the first switch that a corresponding phase winding is connected respectively Pole, positive pole connects the colelctor electrode of the 3rd switch that a corresponding phase winding is connected respectively.
For example, as shown in figure 16, above-mentioned working condition selecting module 521 may include 3 auxiliary powers switch V7, V8, V9 and 3 auxiliary fly-wheel diode VD7, VD8, VD9, when auxiliary power switch participates in work, are back work state;Auxiliary When helping power switch to quit work, it is normal operating conditions.
When ABC three-phase windings are the three-phase windings with midpoint () taking the midpoint exit of winding as a example, V1, V2, V3 is the upper brachium pontis power switch of A, B, C three-phase windings respectively, and its colelctor electrode connects the positive pole of power supply Us;Its emitter stage connect respectively A, The input of B, C three-phase windings, and be connected with the negative pole of fly-wheel diode VD4, VD5, VD6 respectively, then by fly-wheel diode The positive pole of VD4, VD5, VD6 connects the negative pole of power supply Us.The outfan of A, B, C three-phase windings connect respectively lower brachium pontis power switch V4, The colelctor electrode of V5, V6, and being connected with the positive pole of fly-wheel diode VD1, VD2, VD3 respectively, then by fly-wheel diode VD1, The negative pole of VD2, VD3 connects the positive pole of power supply Us.And the emitter stage of power switch V4, V5, V6 connects the negative pole (power supply ground) of power supply Us. So constitute the power driving circuit of three-phase switch reluctance machine;The midpoint exit of A, B, C three-phase windings respectively with auxiliary work( The colelctor electrode that rate switchs V7, V8, V9 is connected, and is connected with the positive pole of auxiliary fly-wheel diode VD7, VD8, VD9 respectively, then The negative pole of auxiliary fly-wheel diode VD7, VD8, VD9 is connect the positive pole of power supply Us.
During normal operating conditions, allow auxiliary power switch V7, V8, V9 to turn off and quit work, three-phase switch reluctance machine is driven V1~V6 power switch normal work of movement controller, can make A, B, C three-phase windings of three-phase switch reluctance machine all throw Enter work;During back work state, the V1~V3 and V7~V9 auxiliary power of three-phase switch reluctance machine drive control device is allowed to open Close normal work, and power switch V4, V5, V6 turn off and quit work, and make A, B, C three-phase windings of three-phase switch reluctance machine 1/2 number of turn winding is devoted oneself to work.During due to normal operating conditions, three-phase windings are all devoted oneself to work, and the total number of turns of motor is big, electricity The moment that machine produces is big, and rotating speed is low;During back work state, only 1/2 number of turn participation work of motor, the moment of motor little but Rotating speed is high;Both achieve two grades of electrodeless variable-speeds at cooperation.
The drive control device 520 of the present embodiment three-phase switch reluctance machine can be when when motor acquisition input speed, profit With the position sensor of switched reluctance machines, make the rate of change that it changes with position angle in three-phase windings inductance,'s Region, carries out on-off control to the power switch of corresponding three-phase windings, realizes generator operation.
This drive control device 520 can be according to rotating speed, and controlling switch reluctance motor is in normal operating conditions and back work Run under state;During normal operating conditions, allow auxiliary power switch V7, V8, V9 to turn off and quit work, three-phase switch reluctance machine Drive control device V1~V6 power switch normal work, A, B, C three-phase windings of three-phase switch reluctance machine can be made complete Portion devotes oneself to work;During back work state, allow three-phase switch reluctance machine drive control device V1~V3 and V7~V9 auxiliary Power switch normal work, and power switch V4, V5, V6 turn off and quit work, and make A, B, C three-phase of three-phase switch reluctance machine 1/2 number of turn winding of winding is devoted oneself to work.During due to normal operating conditions, three-phase windings are all devoted oneself to work, total circle of motor Number is big, and motor adapts to high-torque, rotating speed low state;During back work state, only 1/2 number of turn participation work of motor, motor Adapt to little moment high-speed state;Both cooperations achieve low-speed generator and run and the operation of high tacho generator.
In the present embodiment, three-phase switch reluctance machine as the outstanding advantages of generator operation is:Completely not due to teeth groove The location torque that effect produces;Run and high tacho generator operational mode plus having low-speed generator, high efficiency generates electricity The non-constant width in region.
Switched reluctance machines structure in the embodiment of the present invention effectively increases the power density of switched reluctance machines, reduces The torque ripple of switched reluctance machines and noise, have especially wide efficiency operation region.This switched reluctance machines does not have completely There is the location torque producing due to slot effect, the non-constant width in region generating electricity as generator operation, high efficiency.
In addition, when selecting module 521 selects the middle part lead-out wire accessing winding other positions in working order, can also group Close out different transforming gear forms, in the range of the understanding of people in the art, no longer describe in detail one by one herein.
Further, the embodiment of the present invention also provides a kind of switched reluctance machines of internal rotor outer stator structure, refers to Figure 17, Figure 17 are switched reluctance machines and its three-phase windings schematic diagrams of inner rotor core.Preferably, the switch in this embodiment Reluctance motor is the internal rotor of 16 poles with 16 rotor tooths and the 24 groove external stator motors with 24 stator slots.In figure mark Numbers 210 is stator, and 220 is rotor.
Likewise, this 16 pole internal rotor 24 groove external stator motor can adopt ABCABC ... order coiling, totally 24 around Set of pieces, three-phase windings respectively have the elements of winding of 8 series connection, and the element of winding adopts many insulated copper wires and around will thoroughly do away with edge more Copper cash is split into two halves, such 8 series connection the elements of winding, again formed and around two parts, have two line head ends and two lines Tail end, using one pair of which line head end and line tail end as the end exit for this phase winding, then by another to line head end and line Tail end after connecing, as the midpoint exit of this phase winding, therefore ABC three-phase windings be have the three-phase of midpoint exit around Group.Certainly, in other embodiments, each item in three-phase windings is also provided with multiple middle parts exit, and extraction location It is also not necessarily limited to the midpoint in winding, in the range of the understanding of those skilled in the art, here is omitted.
See also Figure 18, Figure 18 is the partial structurtes enlarged drawing of Figure 17 breaker in middle reluctance motor.Preferably, this enforcement In example, the ratio of the width of rebate L2 and the width L1 of stator tooth of stator is 1~1.25, and groove depth D5 is 2~4 times of facewidth L1.This sets Meter can ensure that the stock utilization of motor is high, and vibrations and noise are little.This is because switched reluctance machines do not use permanent magnet, only Only using iron core and copper cash, when its copper consumption with iron suitable when, the stock utilization highest of motor.And switched reluctance machines The width ratio of the width of rebate of stator and stator tooth be it is believed that its copper consumption is suitable with iron when 1, width of rebate and The width ratio of stator tooth is more than 1, then can put more copper cash.But if width of rebate is excessive with the width ratio of stator tooth, work as groove Depth is it is meant that the width of stator tooth is too narrow during 2~4 times of the facewidth, and after winding energising on tooth, stator and rotor are in strong magnetic Under pulling force effect, easily produce vibrations and noise.The span of the width ratio of the groove depth of stator of the present invention, tooth and groove, effectively Guarantee that the stock utilization of motor is high, namely improve the power density of motor, and inhibit vibrations and noise.
Preferably, the width of rebate L5 of the outer rotor and width L4 of rotor tooth meets:L5/L4 is 1~0.75, and groove depth D6 is 20~30 times of air gap delta between rotor 220 and stator 210.This structure design of rotor and the width of rebate L5 of stator with fixed The ratio of the width L4 of sub- tooth is 1~1.25, and groove depth D5 is that the design of 2~4 times of facewidth L1 matches, and leads to present invention switch magnetic The ratio Lmax/Lmin value with maximum induction Lmax and minimum inductance Lmin of resistance motor is bigger than Conventional switched reluctance motor to be obtained Many, the inductance ratio of the present invention may be up to 6~8, and Conventional switched reluctance motor can only achieve 2.5~4.5 about.Due to switching magnetic The output torque of resistance motorInductance is than high meaningGreatly, the output torque of motor is just big, also Improve the power density of motor again.Wherein, the width of the air gap delta between rotor and stator can be designed as in the present embodiment δ=(0.25~0.5) mm.
In order to improve the power density of motor further, the winding on the adjacent stators tooth of stator in the present embodiment is also adopted by Produce the contrary current control form of magnetic direction, specific field form and principle ask the correlation in parameter above-described embodiment to be retouched State, here is omitted.
Refer to Figure 19, Figure 19 is a kind of schematic diagram of preferred inner rotor core it is preferable that rotor in the present embodiment Tooth both sides crown is likewise designed as the different structure of angle, with regard to the architectural feature of rotor tooth crown, refers to above-mentioned reality Apply the associated description in example, here is omitted.
In addition, implant (in figure label 600) equally can be arranged in rotor slot, to subtract trochantinian windage, though in figure So only indicate and be provided with implant 600 at one, but should be that implant 600 is all set in all rotor slot.And with regard to filling out Fill the technical characteristics such as setting structure and the material of thing 600, also refer to the associated description in above-described embodiment, herein also no longer Repeat.
One optimum embodiment of inner rotor core motor
Switched reluctance machines in the present embodiment include field spider, salient pole stator and drive control device etc., wherein, turn Son is 16 poles, stator is 24 grooves.
It is 1/0.8 with the ratio of the width of stator tooth that the present embodiment takes the width of rebate of stator, and groove depth is 3 times of the facewidth.This Design effectively guarantees that the stock utilization of motor is high, namely improves the power density of motor, and inhibits vibrations and noise.
The present embodiment three-phase switch reluctance machine, the width of rebate angle of the rotor of 16 poles with the ratio of the width of rotor tooth is 0.8, groove depth is 25 times of air gap delta.This design structure of rotor can make inductance ratio up to 7, and Conventional switched reluctance motor is only 2.5~4.5 about can be reached.Output torque due to switched reluctance machinesInductance is than high meaningGreatly, the output torque of motor is just big, namely the power density having significantly improved motor.
One of two crowns of each rotor tooth of rotor crown is designed to obtuse angle simultaneously, and another is acute angle. The curve that then inductance of motor changes with cornerInterval diminish, or even disappear.If the direction that obtuse angle pressed by motor is suitable Sequence ground is energized to three-phase windings, can also significantly reduce the noise of motor.
The width of the air gap delta between the rotor of the present embodiment three-phase switch reluctance machine, stator is δ=0.25mm, rotor The depth at tooth crown obtuse angle is 0.3mm, and the width at obtuse angle is the 1/6 of the width of rotor tooth.
ABC three-phase windings are wound with the tooth of the present embodiment stator, ABC three-phase windings are the three-phase windings with midpoint.Three The distribution sequence of phase winding is respectively A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A-B-C-A-B-C- totally 24 The element of winding, three-phase windings respectively have the element of winding of 8 series connection;The element of winding adopts many insulated copper wires and around will thoroughly do away with more Edge copper cash is split into two halves, such 8 series connection the elements of winding, again formed and around two parts, have two line head ends and two Line tail end, using one pair of which head end and tail end as the exit for this phase winding, then by another to head end, tail end and after connecing, As the midpoint exit of this phase winding, therefore ABC three-phase windings are the three-phase windings with midpoint.
Three-phase switch reluctance machine in the present embodiment, in order to reduce windage and noise, is inserted with voussoir, wedge in the groove of rotor The material of block can be plastic and glass fibrous composite etc..
(Figure 16 is referred to), V1, V2, V3 are respectively in the drive control circuit diagram of the present embodiment three-phase switch reluctance machine The upper brachium pontis power switch of A, B, C three-phase windings, its colelctor electrode connects the positive pole of power supply Us;Its emitter stage connects A, B, C three-phase respectively The input of winding, and being connected with the negative pole of fly-wheel diode VD4, VD5, VD6 respectively, then by fly-wheel diode VD4, VD5, The positive pole of VD6 connects the negative pole of power supply Us.The outfan of A, B, C three-phase windings, meets lower brachium pontis power switch V4, V5, V6 respectively Colelctor electrode, and be connected with the positive pole of fly-wheel diode VD1, VD2, VD3 respectively, then by fly-wheel diode VD1, VD2, VD3 Negative pole connects the positive pole of power supply Us.And the emitter stage of power switch V4, V5, V6 connects the negative pole (power supply ground) of power supply Us.So constitute The power driving circuit of common three-phase switch reluctance machine;The midpoint exit of A, B, C three-phase windings, is opened with auxiliary power respectively The colelctor electrode closing V7, V8, V9 is connected, and is connected with the positive pole of auxiliary fly-wheel diode VD7, VD8, VD9 respectively, then will be auxiliary The negative pole helping fly-wheel diode VD7, VD8, VD9 connects the positive pole of power supply Us.
In the present embodiment, the drive control device of three-phase switch reluctance machine increased 3 auxiliary power switches and 3 auxiliary Fly-wheel diode, when auxiliary power switch participates in work, is back work state, when auxiliary power switch quits work, for just Often working condition.During normal operating conditions, allow auxiliary power switch V7, V8, V9 to turn off and quit work, three-phase switch reluctance machine Drive control device V1~V6 power switch normal work, A, B, C three-phase windings of three-phase switch reluctance machine can be made complete Portion devotes oneself to work;During back work state, allow three-phase switch reluctance machine drive control device V1~V3 and V7~V9 auxiliary Power switch normal work, and power switch V4, V5, V6 turn off and quit work, and make A, B, C three-phase of three-phase switch reluctance machine 1/2 number of turn winding of winding is devoted oneself to work.During due to normal operating conditions, three-phase windings are all devoted oneself to work, total circle of motor Number is big, and the moment that motor produces is big, and rotating speed is low;During back work state, only 1/2 number of turn participation work of motor, motor Moment is little but rotating speed is high;Both achieve two grades of electrodeless variable-speeds at cooperation.
During due to normal operating conditions, three-phase windings are all devoted oneself to work, and the total number of turns of motor is big, the moment that motor produces Greatly, rotating speed is low.During normal operating conditions, ensure that the slow-speed of revolution is interval, motor has high efficiency platform, and rotating speed is close to high velocity Efficiency step-down gradually, now controller according to speed feedback, be switched to back work state.
During back work state, only 1/2 number of turn participation work of motor, the moment of motor is little but rotating speed is high.Backman When making state, motor ensure that high rotating speed interval (4000~9000 revs/min), and motor has high efficiency platform, although work as turning Speed is close to low regime efficiency step-down gradually, but now controller, according to speed feedback, is switched to normal operating conditions again, obtains low The high efficiency platform of fast area's (0~4000 rev/min).It can be seen that, the cooperation of two kinds of working conditions achieves two grades of electrodeless variable-speeds, expands Open up the high efficiency region in motor real work region.Therefore, the actual efficiency platform of the present embodiment three-phase switch reluctance machine Wider many than Conventional switched reluctance motor.
The present embodiment switched reluctance machines efficiency curve is in 125-50% nominal speed range and specified in 50-300% In torque range, efficiency is not less than 86%, peak efficiency 97%.
Switched reluctance machines structure in the embodiment of the present invention effectively increases the power density of switched reluctance machines, reduces The torque ripple of switched reluctance machines and noise, have especially wide efficiency operation region.
The present invention also provides a kind of wheel, this wheel adopt switched reluctance machines drive, and this switched reluctance machines be as Switched reluctance machines described in front embodiment.
Preferably, this wheel can include hub-type switched reluctance machines, that is, utilize hub-type switched reluctance machines to drive, This hub-type switched reluctance machines is the electric machine structure of outer rotor inner stator.
Further, the present invention also provides a kind of electric motor car, this electric motor car can for electric automobile, battery-operated motor cycle or Electric bicycle etc..This electric motor car is pure electric or hybrid car, and the wheel of this electric motor car adopts switched reluctance machines to drive, This switched reluctance machines is also the switched reluctance machines as described in front embodiment.Preferably, the driving wheel of this electric motor car can be adopted With the car wheel structure in above-described embodiment, that is, wheel includes hub-type switched reluctance machines, using hub-type switched reluctance machines Driving moment rotates.
It should be noted that various embodiments above belongs to same inventive concept, the description of each embodiment emphasizes particularly on different fields, Described in separate embodiment, not detailed part, refers to the description in other embodiment.
One of ordinary skill in the art will appreciate that all or part of step in the various methods of above-described embodiment is can Completed with the hardware instructing correlation by program, this program can be stored in a computer-readable recording medium, storage Medium can include:Flash disk, read only memory (Read-Only Memory, ROM), random access device (Random Access Memory, RAM), disk or CD etc..
To the embodiment of the present invention, the switched reluctance machines being provided and system are described in detail above, used herein Specific case is set forth to the principle of the present invention and embodiment, and the explanation of above example is only intended to help understand The method of the present invention and its core concept;Simultaneously for one of ordinary skill in the art, according to the thought of the present invention, in tool All will change on body embodiment and range of application, in sum, this specification content should not be construed as to the present invention Restriction.

Claims (10)

1. a kind of switched reluctance machines are it is characterised in that described switched reluctance machines include housing and the rotor in housing And stator, wherein, described rotor is included around circumferentially disposed multiple rotor tooths, and the both sides of each rotor tooth of described rotor are non- Symmetrical structure.
2. according to claim 1 switched reluctance machines it is characterised in that two crowns of each rotor tooth of described rotor Angle different.
3. according to claim 2 switched reluctance machines it is characterised in that at least one of two crowns of each rotor tooth For obtuse angle.
4. according to claim 3 switched reluctance machines it is characterised in that one of two crowns of each rotor tooth be blunt Angle, another one is right angle or acute angle.
5. according to claim 3 switched reluctance machines it is characterised in that the depth at the obtuse angle of the crown of described rotor tooth is 1~2 times of width of air gap between stator and rotor.
6. according to claim 5 switched reluctance machines it is characterised in that the width at the obtuse angle of the crown of described rotor tooth is The 1/10~1/5 of the width of described rotor tooth.
7. according to claim 5 switched reluctance machines it is characterised in that width of air gap between rotor and stator is 0.25 ~0.5mm.
8., it is characterised in that described wheel adopts switched reluctance machines to drive, described switched reluctance machines are using power for a kind of wheel Profit requires the structure of switched reluctance machines described in any one of 1-7.
9. it is characterised in that described electric motor car is pure electric or hybrid car, described electric motor car is included as power for a kind of electric motor car Profit requires the switched reluctance machines described in any one of 1-7.
10. electric motor car according to claim 9, the wheel of described electric motor car adopts hub-type switched reluctance machines to drive.
CN201610859297.6A 2016-04-08 2016-09-28 Electric vehicle, wheel and switched reluctance motor Pending CN106385118A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610217433 2016-04-08
CN2016102174331 2016-04-08

Publications (1)

Publication Number Publication Date
CN106385118A true CN106385118A (en) 2017-02-08

Family

ID=57715670

Family Applications (12)

Application Number Title Priority Date Filing Date
CN201621095094.6U Active CN206149035U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201610859299.5A Pending CN106329755A (en) 2016-04-08 2016-09-28 Electric vehicle and its switched reluctance motor and switched reluctance motor system
CN201610867067.4A Pending CN106341021A (en) 2016-04-08 2016-09-28 Electric vehicle, wheel, switched reluctance motor thereof and switched reluctance motor system
CN201610859297.6A Pending CN106385118A (en) 2016-04-08 2016-09-28 Electric vehicle, wheel and switched reluctance motor
CN201621095126.2U Active CN206149037U (en) 2016-04-08 2016-09-28 Electric motor car and switched reluctance motor , Switched reluctance motor system thereof
CN201621095092.7U Active CN206149121U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201621088357.0U Active CN206149034U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201610862047.8A Pending CN106300715A (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance machines thereof
CN201621095071.5U Active CN206149116U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor , Switched reluctance motor system thereof
CN201621090553.1U Active CN206149115U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor , Switched reluctance motor system thereof
CN201610859130.XA Pending CN106357070A (en) 2016-04-08 2016-09-28 Electric vehicle, wheel, switch reluctance motor, switch reluctance motor system
CN201610859645.XA Active CN106451984B (en) 2016-04-08 2016-09-28 Electric vehicle, wheel and its switched reluctance machines

Family Applications Before (3)

Application Number Title Priority Date Filing Date
CN201621095094.6U Active CN206149035U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201610859299.5A Pending CN106329755A (en) 2016-04-08 2016-09-28 Electric vehicle and its switched reluctance motor and switched reluctance motor system
CN201610867067.4A Pending CN106341021A (en) 2016-04-08 2016-09-28 Electric vehicle, wheel, switched reluctance motor thereof and switched reluctance motor system

Family Applications After (8)

Application Number Title Priority Date Filing Date
CN201621095126.2U Active CN206149037U (en) 2016-04-08 2016-09-28 Electric motor car and switched reluctance motor , Switched reluctance motor system thereof
CN201621095092.7U Active CN206149121U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201621088357.0U Active CN206149034U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor thereof
CN201610862047.8A Pending CN106300715A (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance machines thereof
CN201621095071.5U Active CN206149116U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor , Switched reluctance motor system thereof
CN201621090553.1U Active CN206149115U (en) 2016-04-08 2016-09-28 Electric motor car, wheel and switched reluctance motor , Switched reluctance motor system thereof
CN201610859130.XA Pending CN106357070A (en) 2016-04-08 2016-09-28 Electric vehicle, wheel, switch reluctance motor, switch reluctance motor system
CN201610859645.XA Active CN106451984B (en) 2016-04-08 2016-09-28 Electric vehicle, wheel and its switched reluctance machines

Country Status (2)

Country Link
CN (12) CN206149035U (en)
WO (6) WO2017173787A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017173787A1 (en) * 2016-04-08 2017-10-12 深圳市配天电机技术有限公司 Electric vehicle and wheel, and switched reluctance motor thereof
WO2019015032A1 (en) * 2017-07-21 2019-01-24 深圳市配天电机技术有限公司 Electric vehicle, wheel, and switch reluctance motor thereof
CN108110983A (en) * 2018-01-12 2018-06-01 上海理工大学 A kind of switching magnetic-resistance wheel hub motor and its operation method
CN108808900A (en) * 2018-06-22 2018-11-13 淮北思尔德电机有限责任公司 A kind of switched reluctance machines
CN110329083A (en) * 2019-06-17 2019-10-15 浙江鸿吉智能控制有限公司 A kind of battery-operated motor cycle
CN113824288B (en) * 2020-06-18 2023-08-04 天津中艺银舟电机制造有限公司 Multi-gear hub motor and control method thereof
CN114421666B (en) * 2022-02-28 2024-02-06 上海交通大学 Doubly-fed switched reluctance motor, system and control method thereof
CN117526659A (en) * 2023-11-27 2024-02-06 皖西学院 Low-loss switch reluctance motor and control system thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247906B1 (en) * 1999-05-28 2001-06-19 Joseph M. Pijanowski Combined pump and motor device
CN1369130A (en) * 1999-07-02 2002-09-11 布莱克和德克尔公司 Electric machines
CN1950991A (en) * 2004-11-17 2007-04-18 丰田自动车株式会社 Vehicle drive system and vehicle comprising it
CN202997734U (en) * 2012-12-18 2013-06-12 杨昌良 Rotor structure of two-phase switched reluctance motor
CN105322677A (en) * 2015-10-29 2016-02-10 周斌欣 Switched reluctance motor
CN206149034U (en) * 2016-04-08 2017-05-03 深圳市配天电机技术有限公司 Electric motor car, wheel and switched reluctance motor thereof

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053666A (en) * 1988-06-06 1991-10-01 General Electric Company Construction of reluctance motors
US5099186A (en) * 1990-12-31 1992-03-24 General Motors Inc. Integrated motor drive and recharge system
DE4330386A1 (en) * 1993-09-08 1995-03-09 Licentia Gmbh Switched reluctance motor
US5604388A (en) * 1994-02-16 1997-02-18 Emerson Electric Co. Switched reluctance rotor molded lug
CN2245820Y (en) * 1995-04-14 1997-01-22 满永奎 Switch magnetic drag electric machine
JP2000350390A (en) * 1999-06-04 2000-12-15 Daikin Ind Ltd Switched reluctance motor
EP1593189A4 (en) * 2003-01-31 2009-07-29 Light Engineering Inc Efficient high-speed electric device using low-loss materials
US20040155545A1 (en) * 2003-02-06 2004-08-12 Martin Kaplan Switched reluctance motor having improved stator pole design
JP4606714B2 (en) * 2003-09-03 2011-01-05 株式会社ミツバ Electric motor
CN2660765Y (en) * 2003-09-19 2004-12-01 殷天明 Rotor structure of switching reluctance dynamo
CN101001065A (en) * 2006-01-13 2007-07-18 苏州扬名机电有限公司 Driving plan of parallel multi-section contactless switch speed regulating machine
DE102007022511B4 (en) * 2007-05-14 2009-07-30 Repower Systems Ag Wind energy plant with an adjustment device for the rotor blades
JP2009118618A (en) * 2007-11-06 2009-05-28 Hitachi Ltd Vehicular alternator and automobile using the same, method for manufacturing the same and vehicular rotating electric machine
CN101667758A (en) * 2009-09-29 2010-03-10 河北工业大学 Rotor structure of switched reluctance motor
CN101702562A (en) * 2009-11-09 2010-05-05 南京航空航天大学 Non-overlapping winding sectional rotor switched reluctance motor (SRM)
CN101719709B (en) * 2009-12-29 2012-02-01 卧龙电气集团股份有限公司 Switched reluctance motor for capacitance split circuit
CN201656724U (en) * 2009-12-29 2010-11-24 卧龙电气集团股份有限公司 Switched reluctance motor
GB2489423A (en) * 2011-03-25 2012-10-03 Technelec Ltd Flux switching electrical machine with slotted rotor
US20120306296A1 (en) * 2011-06-02 2012-12-06 Samsung Electro-Mechanics Co., Ltd. Switched reluctance motor
CN202183652U (en) * 2011-07-19 2012-04-04 上海电机学院 Low wind resistance magnetic flux switching motor
CN202586521U (en) * 2012-05-04 2012-12-05 山东德森机电科技股份有限公司 Novel switch magnetic resistance motor
CN202696300U (en) * 2012-06-18 2013-01-23 中国航空工业第六一八研究所 Padding-type rotor structure of switch reluctance machine
CN202997900U (en) * 2012-12-18 2013-06-12 杨昌良 Two-phase switched reluctance motor
CN103151865B (en) * 2013-02-07 2015-05-27 浙江中自机电控制技术有限公司 Method for efficiently operating switch reluctance (SR) motor at low and high speed and SR motor thereof
CN203193467U (en) * 2013-04-11 2013-09-11 天津富迪机电有限公司 Switch reluctance motor for electric bicycle or electric motorcycle
CN103475111B (en) * 2013-09-28 2016-04-13 台州佳能电子有限公司 A kind of motor
CN203761230U (en) * 2014-01-22 2014-08-06 珠海格力节能环保制冷技术研究中心有限公司 Switched reluctance motor
CN104158240B (en) * 2014-07-23 2016-08-24 浙江大学 A kind of for the distributing source of charging electric vehicle feedback switched reluctance motor system
CN105897053A (en) * 2014-09-10 2016-08-24 董福民 Structural principle and technology of permanent magnetic power machine
CN204258479U (en) * 2014-11-14 2015-04-08 浙江中自机电控制技术有限公司 A kind of interstitital texture of switch reluctance machine rotor
CN105207439B (en) * 2015-08-31 2017-06-27 浙江大学 It is a kind of that there is the switched reluctance motor system and its method for diagnosing faults of fault tolerance based on splitting phase tap

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247906B1 (en) * 1999-05-28 2001-06-19 Joseph M. Pijanowski Combined pump and motor device
CN1369130A (en) * 1999-07-02 2002-09-11 布莱克和德克尔公司 Electric machines
CN1950991A (en) * 2004-11-17 2007-04-18 丰田自动车株式会社 Vehicle drive system and vehicle comprising it
CN202997734U (en) * 2012-12-18 2013-06-12 杨昌良 Rotor structure of two-phase switched reluctance motor
CN105322677A (en) * 2015-10-29 2016-02-10 周斌欣 Switched reluctance motor
CN206149034U (en) * 2016-04-08 2017-05-03 深圳市配天电机技术有限公司 Electric motor car, wheel and switched reluctance motor thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡文宏: "《江苏大学硕士学位论文》", 30 June 2015 *

Also Published As

Publication number Publication date
WO2017173787A1 (en) 2017-10-12
CN206149115U (en) 2017-05-03
CN106357070A (en) 2017-01-25
CN106329755A (en) 2017-01-11
CN106451984A (en) 2017-02-22
CN106451984B (en) 2018-06-19
CN206149034U (en) 2017-05-03
CN106341021A (en) 2017-01-18
CN206149116U (en) 2017-05-03
WO2017173786A1 (en) 2017-10-12
CN206149035U (en) 2017-05-03
WO2017173790A1 (en) 2017-10-12
CN106300715A (en) 2017-01-04
WO2017173785A1 (en) 2017-10-12
CN206149037U (en) 2017-05-03
WO2017173788A1 (en) 2017-10-12
CN206149121U (en) 2017-05-03
WO2017173789A1 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN206149034U (en) Electric motor car, wheel and switched reluctance motor thereof
CN103956872B (en) Permanent magnet synchronous motor and its rotor
US20060152188A1 (en) Rotating electrical machine and manufacturing method thereof
CN1756040A (en) Rotating electrical machine and machine winding
MX2011001863A (en) Two speed induction motor with tapped auxiliary winding.
CN101299588B (en) Three-phase double salient poles permanent magnetism wind power generator system and control method thereof
CN108880047B (en) Permanent magnet motor and control method and system for same
CN108808907A (en) The electronic automobile-used switched reluctance machines of one kind and electric machine control system
CN201263102Y (en) Stator winding of high speed DC brushless permanent magnet motor
CN102377309A (en) Brushless motor for electric vehicle
CN108418375A (en) A kind of multistage spoke for electric vehicle interlocks rotor permanent magnet synchronous motor and its method
CN201044396Y (en) Gas engine driven DC arc-welding generator
CN2831596Y (en) Disk-type brushless double-feedback a.c.dynamo
CN208489784U (en) A kind of multistage spoke for electric vehicle interlocks rotor permanent magnet synchronous motor
CN2826808Y (en) Synchronous frequency conversion reluctance motor
CN2909683Y (en) Magnetic polar structure of switching reluctance motor
CN1153333C (en) AC brushless double feed motor
CN201252431Y (en) Magneto-modulated brushless internal-feedback motor
CN2586286Y (en) A.C. brushless double-feedback dynamo
CN206977171U (en) A kind of lightweight quadrupole rain shaving electrical machine
CN201018383Y (en) Permanent magnet brushless motor for electric vehicle
CN206992812U (en) Traction machine with multiwinding machine and the elevator for being equipped with this kind of traction machine
CN201893670U (en) Double-speed single-phase asynchronous motor
CN100544166C (en) The field structure of switched reluctance machines
CN2404254Y (en) Inertial force motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170208

RJ01 Rejection of invention patent application after publication