CN106370221B - 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法 - Google Patents

一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法 Download PDF

Info

Publication number
CN106370221B
CN106370221B CN201610711116.5A CN201610711116A CN106370221B CN 106370221 B CN106370221 B CN 106370221B CN 201610711116 A CN201610711116 A CN 201610711116A CN 106370221 B CN106370221 B CN 106370221B
Authority
CN
China
Prior art keywords
elastic fabric
graphene
pvdf
fabric compound
response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610711116.5A
Other languages
English (en)
Other versions
CN106370221A (zh
Inventor
侯成义
刘宇飞
时秋伟
李耀刚
王宏志
张青红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610711116.5A priority Critical patent/CN106370221B/zh
Publication of CN106370221A publication Critical patent/CN106370221A/zh
Application granted granted Critical
Publication of CN106370221B publication Critical patent/CN106370221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B13/00Treatment of textile materials with liquids, gases or vapours with aid of vibration
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B15/00Removing liquids, gases or vapours from textile materials in association with treatment of the materials by liquids, gases or vapours
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B3/00Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating
    • D06B3/10Passing of textile materials through liquids, gases or vapours to effect treatment, e.g. washing, dyeing, bleaching, sizing, impregnating of fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,包括:将经过前处理的弹性织物浸入氧化石墨烯分散液中,静置,取出弹性织物,烘干,得到氧化石墨烯/弹性织物复合物,然后进行还原,清洗,烘干,得到石墨烯/弹性织物复合物;浸入聚偏氟乙烯PVDF溶液中,取出复合物,烘干,10~20kV极化4~15h,得到自响应PVDF/石墨烯/弹性织物复合传感器。本发明的方法简单,所得到的自响应PVDF/石墨烯/弹性织物传感器不需要额外的电源支持,具有高灵敏度、可拉伸性和循环稳定性,在智能服装上有很大的应用前景。

Description

一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法
技术领域
本发明属于石墨烯复合材料的制备领域,特别涉及一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法。
背景技术
“衣食住行”,作为居于人类本能社会活动之首的“衣”,现在远不止“包裹身躯”那么简单了,服装不只是款式的美观与得体,更是讲究穿着的舒适和个性的表达以及多功能的一体化。服装行业的科技发展在今后若干年最主要的任务就是利用高新技术和信息技术改变和提升传统的服装功能,这将主要体现在智能服装的研究和开发上。智能服装是随着科学技术的发展应运而生的产物,它是集多种功能于一体,可以快速、便捷、智能化的服务于人们。智能服装的应用在不断的渗透到每个领域,包括通讯、医疗、运动、军事、娱乐等等,比如:变色军装、保温袜、情绪手套、音乐外套等等。在智能服装中,智能传感器的应用越来越广泛,比如智能心率仪,智能体温计等智能服装,这些服饰对健康监测有很大的辅助作用。近年来随着可穿戴式传感器的兴起,越来越多的材料用在此类传感器的制备中,其中石墨烯基可穿戴式传感器近年来在智能服装领域得到了很高的关注。
石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。自2004年首次被科学家成功制备出以来其独特的二维结构和优异的性能受到众多学者的广泛关注。石墨烯中各碳原子之间的连接非常柔韧,当施加外部作用力时,碳原子面就会弯曲变形,从而使碳原子不必重新排列来适应外力,保持了结构稳定,这种稳定的晶格结构还使石墨烯具有优秀的导电性。除此外石墨烯还具有优异的导热能、极高的比表面积、高透光性和极快的电子迁移速率等特性,这些特性使石墨烯在超级电容器、太阳能电池、生物医学、应变传感器、微电子和智能服装领域等方面具有广泛的应用。
石墨烯基的可穿戴式传感器是近年来新兴的传感器,多数具有良好的灵敏度、较宽的检测范围和可重复性。但现在的石墨烯基的可穿戴式传感器在智能服装上测试时都需要额外的电源,使其在应用时很不方便,且大多数石墨烯基的可穿戴式传感器都是有少量裹有石墨烯的线与大片织物结合在一起,这就局限了石墨烯材料在智能服装上的应用,这些附加的因素不利于充分发挥出石墨烯的特性,不能充分的发挥出复合体各自的优势。
发明内容
本发明所要解决的技术问题是提供一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,该方法制得的自响应PVDF/石墨烯/弹性织物复合传感器在应用时不需要额外的电源,即可准确、灵敏监测动态变形信号,循环稳定好;在心率、脉搏等监测上有着广阔的应用前景。
本发明的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,包括:
(1)将经过前处理的弹性织物浸入氧化石墨烯分散液中,静置,取出弹性织物,烘干,得到氧化石墨烯/弹性织物复合物;
(2)将步骤(1)中的氧化石墨烯/弹性织物复合物进行还原,清洗,烘干,得到石墨烯/弹性织物复合物;
(3)将步骤(2)种石墨烯/弹性织物复合物浸入聚偏氟乙烯PVDF溶液中充分吸附,取出复合物,烘干,10~20kV高压极化4~15h,得到自响应PVDF/石墨烯/弹性织物复合传感器;其中,PVDF溶液的组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=3~10:8~2:0.8~1.5。
所述步骤(1)中弹性织物为由质量分数1~20%氨纶+99~80%涤纶组成。
所述步骤(1)中前处理的方式为:将弹性织物用去离子水清洗后放置于酒精溶液中,然后超声处理10~60min,再用氧等离子体表面改性处理10~120min,利于氧化石墨烯有效的浸渍在织物表面。
所述步骤(1)中氧化石墨烯分散液的浓度为1~60mg/mL。
所述氧化石墨烯分散液的制备方法为:在室温下,将氧化石墨加入去离子水中,超声,得到氧化石墨烯分散液;其中,超声的时间为1~96h。
所述步骤(1)中静置的时间为1~60min。
所述步骤(1)中烘干的条件为:40~80℃保温1~5h,优选40~75℃保温1~5h。
所述步骤(2)中还原的方式为:氢碘酸还原1~3h。
所述步骤(2)中清洗的条件为:乙醇和去离子水分别清洗;烘干的条件为:40~80℃保温1~5h。
所述步骤(3)中浸入的时间为10~120min。
所述步骤(3)中烘干的条件为:40~80℃保温1~5h,优选50~80℃保温1~5h。
有益效果
(1)本发明的制备方法简单,制作成本低廉,工艺简便;
(2)本发明通过石墨烯和弹力织物的结合,使石墨烯有一个优异弹性的基底,石墨烯和弹性织物两者的优点充分的结合在一起,并且石墨烯和弹性织物不易分开,并可以水洗;
(3)本发明所制备的自响应PVDF/石墨烯/弹性织物复合传感器在应用时不需要额外的电源,弹性织物由于具有压电效应的PVDF的存在,在受到外部刺激时产生应变后可以自响应产生电信号,摆脱了对外界电源的依赖,在心率、脉搏等智能穿戴方面有着广阔的应用前景。
附图说明
图1为实施例1制备自响应PVDF/石墨烯/弹性织物复合传感器的扫描电镜图;
图2为实施例1制备自响应PVDF/石墨烯/弹性织物复合传感器在无外加电源时循环应变1%作用下的时间-电流曲线;
图3为实施例1制备石墨烯/弹性织物复合物的扫描电镜图;
图4为实施例2制备石墨烯/弹性织物复合物的扫描电镜图;
图5为实施例3制备石墨烯/弹性织物复合物的扫描电镜图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
在室温下,称取氧化石墨270mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为9mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理6h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性织物用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理60min。将处理后的弹性织物浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨分散液的弹性织物放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯/弹性织物复合物。对获得的氧化石墨烯/弹性织物复合物用氢碘酸还原,时间为1.5h。将还原后的织物用乙醇和去离子水进行多次洗涤,放入设置为60℃的烘箱中,时间为3h,得到石墨烯/弹性织物复合物。将上述复合物浸入PVDF(聚偏氟乙烯)溶液中,时间为30min,充分吸附后将其放入设置为70℃的烘箱中,时间为3h,烘干后用10kV高压极化5h,得到自响应PVDF/石墨烯/弹性织物复合传感器;其中,PVDF溶液的各组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12。
图1为制备自响应PVDF/石墨烯/弹性织物复合传感器的扫描电镜图,可以看出:在石墨烯/弹性织物表面浸渍了一定量的PVDF溶液,这样的组件在高压极化后可以作为自响应传感器使用。图2为制备自响应PVDF/石墨烯/弹性织物复合传感器在无外加电源时循环应变1%作用下的时间-电流曲线,可以看出:在无外加电源的支持下,在多次循环后响应电流依然稳定。图3为制备石墨烯/弹性织物复合物的扫描电镜图,可以看出:弹性织物表面覆盖有石墨烯。
实施例2
在室温下,称取氧化石墨90mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为3mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理6h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性织物用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理60min。将处理后的弹性织物浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨分散液的弹性织物放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯/弹性织物复合物。对获得的氧化石墨/弹性织物复合物用氢碘酸还原,时间为1.5h。将还原后的织物用乙醇和去离子水进行多次洗涤,放入设置为60℃的烘箱中,时间为3h,得到石墨烯/弹性织物复合物。将上述复合物浸入PVDF(聚偏氟乙烯)溶液中,时间为30min,充分吸附后将其放入设置为70℃的烘箱中,时间为3h,烘干后用10kV高压极化5h后得到自响应PVDF/石墨烯/弹性织物复合传感器;其中,PVDF溶液的各组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12。
图4为制备仅有石墨烯/弹性织物复合物的扫描电镜图,可以看出:由于初始的氧化石墨分散液的浓度相较实施例1的低,所以弹性织物表面覆盖的石墨烯的量较实施例1的少。
实施例3
在室温下,称取氧化石墨450mg,置于50mL的烧杯中,然后加去离子水30mL配成浓度为15mg/mL的氧化石墨分散液,然后将烧杯放入超声仪中超声处理6h,得到氧化石墨烯分散液。
将由质量分数5%氨纶+95%涤纶组成的弹性织物用去离子水清洗后放置酒精溶液中,然后超声处理30min,再用氧等离子体处理60min。将处理后的弹性织物浸入上述氧化石墨烯分散液中,浸泡时间为20min。将浸有氧化石墨分散液的弹性织物放入设置为60℃的烘箱中,时间为2h,得到氧化石墨烯/弹性织物复合物。对获得的氧化石墨/弹性织物复合物用氢碘酸还原,时间为1.5h。将还原后的织物用乙醇和去离子水进行多次洗涤,放入设置为60℃的烘箱中,时间为3h,得到石墨烯/弹性织物复合物。将上述复合物浸入PVDF(聚偏氟乙烯)溶液中,时间为30min,充分吸附后将其放入设置为70℃的烘箱中,时间为3h,烘干后用10kV高压极化5h后得到自响应PVDF/石墨烯/弹性织物复合传感器;其中,PVDF溶液的各组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=6:4:1.12。
图5为制备仅有石墨烯/弹性织物复合物的扫描电镜图,可以看出:由于初始的氧化石墨分散液的浓度较实施例1的高,所以弹性织物表面覆盖的石墨烯的量较实施例1的多。

Claims (9)

1.一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,包括:
(1)将经过前处理的弹性织物浸入氧化石墨烯分散液中,静置,取出弹性织物,烘干,得到氧化石墨烯/弹性织物复合物,其中前处理的方式为:将弹性织物用去离子水清洗后放置于酒精溶液中,然后超声处理10~60min,再用氧等离子体表面改性处理10~120min;
(2)将步骤(1)中的氧化石墨烯/弹性织物复合物进行还原,清洗,烘干,得到石墨烯/弹性织物复合物,其中还原是用氢碘酸;
(3)将步骤(2)种石墨烯/弹性织物复合物浸入聚偏氟乙烯PVDF溶液中,取出复合物,烘干,10~20kV极化4~15h,得到自响应PVDF/石墨烯/弹性织物复合传感器;其中,PVDF溶液的组分及其质量比为:丙酮:N,N-二甲基甲酰胺:PVDF=3~10:8~2:0.8~1.5。
2.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(1)中弹性织物为由1~20wt%氨纶+99~80wt%涤纶组成。
3.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(1)氧化石墨烯分散液的浓度为1~60mg/mL。
4.根据权利要求1或3所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述氧化石墨烯分散液的制备方法为:在室温下,将氧化石墨加入去离子水中,超声1~96h,得到氧化石墨烯分散液。
5.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(1)中静置的时间为1~60min。
6.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(2)中还原的时间为1~3h。
7.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(2)中清洗的条件为:乙醇和去离子水分别清洗。
8.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(1)、步骤(2)和步骤(3)中烘干的条件为:40~80℃保温1~5h。
9.根据权利要求1所述的一种自响应PVDF/石墨烯/弹性织物复合传感器的制备方法,其特征在于,所述步骤(3)中浸入的时间为10~120min。
CN201610711116.5A 2016-08-23 2016-08-23 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法 Active CN106370221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610711116.5A CN106370221B (zh) 2016-08-23 2016-08-23 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610711116.5A CN106370221B (zh) 2016-08-23 2016-08-23 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法

Publications (2)

Publication Number Publication Date
CN106370221A CN106370221A (zh) 2017-02-01
CN106370221B true CN106370221B (zh) 2019-07-23

Family

ID=57878004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610711116.5A Active CN106370221B (zh) 2016-08-23 2016-08-23 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法

Country Status (1)

Country Link
CN (1) CN106370221B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511598B (zh) * 2018-03-16 2020-04-03 中国科学院上海微系统与信息技术研究所 Pvdf/石墨烯柔性压电材料及其柔性压电发电机的制备方法
CN109520648B (zh) * 2018-10-22 2020-09-22 华南理工大学 一种可穿戴压阻式压力传感器及其制备方法和应用
CN110455176A (zh) * 2019-07-19 2019-11-15 南京邮电大学 柔性应变传感器的制备方法
CN112587128B (zh) * 2020-11-16 2022-08-05 江南大学 一种基于氧化锌纳米棒结构的织物基底压电传感器及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061327A1 (en) * 2013-10-21 2015-04-30 The Penn State Research Foundation Method for preparing graphene oxide films and fibers
CN103806266B (zh) * 2013-11-25 2016-01-13 江南大学 一种利用紫外光制备氧化石墨烯导电纤维素织物的方法
CN104264260B (zh) * 2014-07-28 2016-04-13 四川大学 一种石墨烯/纳米纤维素复合纤维及其制备方法
CN104281261B (zh) * 2014-09-16 2018-04-13 苏州能斯达电子科技有限公司 一种用于手势交互系统的可穿戴张力传感器及其制备方法
CN104328653B (zh) * 2014-10-11 2016-06-08 江南大学 一种氧化石墨烯衍生物用于纺织品多功能整理的方法
CN104313872B (zh) * 2014-10-11 2016-06-08 江南大学 一种石墨烯/聚苯胺共价结合柔性导电织物的制备方法
CN104451925B (zh) * 2014-11-21 2017-01-04 东华大学 一种水溶性聚合物/石墨烯复合纤维及其制备方法和应用
CN105286823B (zh) * 2015-10-13 2018-05-04 吉林大学 穿戴式自供电多生理参数监测装置及监测方法
CN105529397B (zh) * 2016-01-15 2018-07-27 电子科技大学 一种复合柔性纳米发电机及其制备方法

Also Published As

Publication number Publication date
CN106370221A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
CN106370221B (zh) 一种自响应pvdf/石墨烯/弹性织物复合传感器的制备方法
Chen et al. Recent progress in self‐powered multifunctional e‐skin for advanced applications
Jayathilaka et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors
Pu et al. Wearable triboelectric sensors for biomedical monitoring and human-machine interface
Lin et al. Wearable sensors and devices for real-time cardiovascular disease monitoring
Xia et al. Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system
Ren et al. Flexible sensors based on organic–inorganic hybrid materials
Yoo et al. A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt
Wang et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients
CN106370290B (zh) 一种pvdf纳米纤维/石墨烯/弹性纤维压电传感器及其制备方法
Yu et al. Bioinspired self-powered piezoresistive sensors for simultaneous monitoring of human health and outdoor UV light intensity
CN106430160B (zh) 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法
Rana et al. Zirconium metal-organic framework and hybridized Co-NPC@ MXene nanocomposite-coated fabric for stretchable, humidity-resistant triboelectric nanogenerators and self-powered tactile sensors
Banitaba et al. Recent progress of bio-based smart wearable sensors for healthcare applications
Wang et al. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics
CN110455176A (zh) 柔性应变传感器的制备方法
Wu et al. Highly sensitive temperature–pressure bimodal aerogel with stimulus discriminability for human physiological monitoring
CN105444928A (zh) 一种压阻型线状柔性应力传感器的制备方法
Ghosal et al. Environmental bacteria engineered piezoelectric bio-organic energy harvester towards clinical applications
CN109793520A (zh) 湿度和应变协同敏感的柔性织物呼吸传感器及其制备方法
Yu et al. Multilayer Perceptron Algorithm-Assisted Flexible Piezoresistive PDMS/Chitosan/cMWCNT Sponge Pressure Sensor for Sedentary Healthcare Monitoring
Li et al. Self-powered hydrogel sensors
Fan et al. Highly sensitive fabric sensors based on scale-like wool fiber for multifunctional health monitoring
Guo et al. A self-wetting paper electrode for ubiquitous bio-potential monitoring
Meskher et al. Mini review about metal organic framework (MOF)-based wearable sensors: Challenges and prospects

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant