CN106430160B - 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法 - Google Patents

双层还原氧化石墨烯薄膜柔性应变传感器的制备方法 Download PDF

Info

Publication number
CN106430160B
CN106430160B CN201610813162.6A CN201610813162A CN106430160B CN 106430160 B CN106430160 B CN 106430160B CN 201610813162 A CN201610813162 A CN 201610813162A CN 106430160 B CN106430160 B CN 106430160B
Authority
CN
China
Prior art keywords
graphene
redox graphene
preparation
strain transducer
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610813162.6A
Other languages
English (en)
Other versions
CN106430160A (zh
Inventor
刘爱萍
钱巍
王夏华
居乐乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201610813162.6A priority Critical patent/CN106430160B/zh
Publication of CN106430160A publication Critical patent/CN106430160A/zh
Application granted granted Critical
Publication of CN106430160B publication Critical patent/CN106430160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明提供了一种双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,属还原氧化石墨烯传感器领域,通过还原氧化石墨烯水溶液抽滤成膜,转印到柔性聚二甲基硅氧烷(PDMS)衬底上,分别在还原氧化石墨烯的两端连铜线电极,再从中间剪开还原氧化石墨烯柔性薄膜,对扣使得还原氧化石墨烯层间相接触,形成还原氧化石墨烯薄膜柔性传感器。该还原氧化石墨烯薄膜柔性传感器具有比表面积大,优良的导电性和机械性能,并且该还原氧化石墨烯传感器的制备条件温和,方法简单易行,工艺参数可控,成本低廉,可重复性高;该还原氧化石墨烯传感器具有高灵敏度,能用于微小应变的测量。

Description

双层还原氧化石墨烯薄膜柔性应变传感器的制备方法
技术领域
本发明属于还原氧化石墨烯传感器领域,尤其涉及一种将抽滤技术,转印技术相结合制备还原氧化石墨烯薄膜柔性应变传感器的方法。属于先进石墨烯传感器制备的技术领域。
背景技术
监测人类生理信号被认为是对疾病诊断和健康评估的有效方法,医院传统的用于人类生理信号检测的医疗保健传感设备,包括基于红外光电器件和呆板的多电极压力传感器。然而,由于它们不易携带而且敏感度差的缺点,使得它们的应用受到限制。近年来,柔性的可拉伸的电子皮肤具有能检测细微应变变化的能力吸引了越来越多的关注,这可能开发潜在应用用于可穿戴的健康检测,敏感的触觉信息获取,微创手术和假肢。
在过去的几年中,柔性压敏电阻器,电容器,以及基于纳米结构材料,包括碳纳米管,锗/硅纳米线和垂直的ZnO纳米线阵列已经证明在低应变状态具有压力传感特性。相比低透明和硬的金属/金属氧化物纳米线和机械性能不稳定与低载流子迁移率的聚合物,石墨烯由于其优越的机械柔性和稳定性,大电导率和高透明度,被认为是柔性电极的最佳候选。
石墨烯是一种由碳原子以SP2杂化轨道组成六角形呈蜂巢晶格的二维单层片状结构,具有透光率高、载流子迁移率高、良好的化学稳定性及其卓越的机械性能等优点。因此,石墨烯广泛用于电池、超级电容器和催化剂载体等领域并且也可以作为化学、生物传感器,用于可穿戴设备。但石墨烯一般通过繁琐、复杂且高成本的化学气相沉积法制备,不利于大规模推广应用。于是,大部分研究人员采用简单、高效的氧化还原法制备还原氧化石墨烯替代石墨烯,在保证其基本特性的基础上,降低生产成本和技术难度。
PDMS由于具有极好的弹性和生物相容性,广泛作为柔性电子器件的柔性衬体。此外,PDMS还具备高透光性,高灵敏度,以及极短的弛豫时间等优点,将其作为石墨烯或者还原氧化石墨烯的柔性衬体,做成应变传感器或者化学传感器,不仅能够充分发挥石墨烯与还原氧化石墨烯的优良性能还能提高器件的柔韧性,使传感器更符合实际应用。
近年来,柔性可穿戴电容型和电阻型应变传感器受到研究人员的广泛关注。如碳纳米管薄膜/PDMS微阵列电容型应变传感器、三维石墨烯/PDMS电阻型应变传感器和银纳米线/PDMS电阻型应变传感器等。但这些应变传感器灵敏度低且对小应变不够敏感制约其广泛应用于可穿戴设备。而我们充分利用还原氧化石墨烯和PDMS的优点,制备双层还原氧化石墨烯柔性薄膜电阻型应变传感器,该还原氧化石墨烯薄膜柔性传感器具有比表面积大,优良的导电性和机械性能,并且该还原氧化石墨烯传感器的制备条件温和,方法简单易行,工艺参数可控,成本低廉,可重复性高;该还原氧化石墨烯传感器具有高灵敏度,能用于微小应变的测量。
发明内容
本发明的目的在于针对现有技术的不足,提供一种双层还原氧化石墨烯柔性薄膜应变传感器的制备方法。
本发明的目的是通过以下技术方案实现的:一种双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,步骤如下:
(1)量取还原氧化石墨烯水溶液3mL,加入150mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。
(2)取已经固化好的PDMS,通过按压的方式将滤膜上的还原氧化石墨烯转印到已经固化好的PDMS上,随后将PDMS泡在丙酮中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。
(3)将附着在PDMS表面的还原氧化石墨烯薄膜两端用银胶连上铜线电极,从还原氧化石墨烯薄膜中间剪开,把还原氧化石墨烯薄膜面与面接触对扣,形成接触式的还原氧化石墨烯薄膜柔性应变传感器。
进一步地,所述还原氧化石墨烯水溶液的浓度小于1mg/mL。
进一步地,步骤(1)中还原氧化石墨烯制备方法为碱性条件下,高温水热还原氧化石墨烯。
进一步地,步骤(1)中抽滤出的还原氧化石墨烯的膜厚度为510nm。
进一步地,所述砂芯过滤装置中的滤膜为可溶于丙酮的水溶性滤膜。
本发明具有以下优点:还原氧化石墨烯柔性薄膜传感器具有大的比表面积,优良的导电性和机械性能;以PDMS作为柔性衬体,使其在各种变形中性能保持稳定。给该接触式双层还原氧化石墨烯应变传感器施加应变时,会减小还原氧化石墨烯片层间的层间距,以增加还原氧化石墨烯的接触面积和导通路径,导致电阻减小,从而增强该接触式应变传感器的导电性;而当撤去该接触式传感器的应变时,还原氧化石墨烯的层间距又重新恢复到原来的状态,其接触面积和导通路径均减少,增大了电阻,减弱了导电性。如此一来,该接触式传感器就能通过应变前后电信号变化来检测施加的应变。该还原氧化石墨烯柔性薄膜应变传感器的制备方法条件温和,简单易行,工艺参数可控,成本低廉,可重复性高。该还原氧化石墨烯柔性薄膜应变传感器具有灵敏度高和能感应微小应变等优点,且可用于可穿戴设备。
附图说明
图1为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器的XRD图;
图2为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器的SEM图;
图3为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器对30mg药丸的灵敏程度示意图;
图4为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器测脉搏振动示意图。
具体实施方式
实施例1:一种双层还原氧化石墨烯柔性薄膜应变传感器的制备方法,包括以下内容:
(1)氧化石墨烯的制备方法为:在冰水浴中缓慢将270mL浓硫酸/磷酸混酸(H2SO4:H3PO3=9:1,V/V)滴加至装有2g天然石墨粉烧杯中并保持搅拌,随后缓慢加入12g高锰酸钾,混合均匀后,将烧杯转移至50℃水浴锅中反应12h。反应完毕后,将300mL冰水加入烧杯中,冷却至室温后,再滴加5mL 30%双氧水,得到亮黄色产物。最后将产物分别用盐酸、去离子水离心洗涤,直至pH=6,转速为8000rpm/min,最后冷冻干燥得到氧化石墨烯。
(2)还原氧化石墨烯的制备方法为:量取7.5mg/mL氧化石墨烯1.67mL,加入25mL去离子水中搅拌、超声均匀。用pH计测试氧化石墨烯水溶液的pH,缓慢滴加氨水,调节氧化石墨烯的pH直至10,然后将氧化石墨烯水溶液转移到水热反应釜中,将水热反应釜置于180℃鼓风干燥箱中反应12h。图1为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器的XRD图。氧化石墨烯的衍射峰在12.5°,而还原氧化石墨烯的衍射峰在24.5°,说明氧化石墨烯被还原了。
(3)量取还原氧化石墨烯水溶液3mL(浓度为0.1mg/mL),加入150mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤所需的滤膜为水溶性滤膜,尼龙材质,要用机溶剂才能溶解。抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h。
(4)固化的PDMS制备方法如下:按照质量比为10:1的量称取二甲基硅氧烷与交联剂,搅拌20min后,在真空干燥箱中去除气泡,然后将其倒至培养皿中,在水平桌面上静置10min,移至旋涂机上,调节转速为500rpm/min,旋涂15s后,再在水平桌面上静置10min,随后将培养皿移至90℃鼓风干燥箱中1h。
(5)将干燥完全的滤膜取出,转印到已经固化好的PDMS上,通过仔细缓慢按压的方式转印还原氧化石墨烯薄膜,还原氧化石墨烯的转印过程为反复按压附着在PDMS上的滤膜,使还原氧化石墨烯完全粘附在PDMS上,增强它们之间的结合力。压印时间控制在30min左右,并排除气泡。随后将其泡在丙酮溶液中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥。图2为左图为PDMS表面的SEM,可以看出PDMS表面十分光滑;右图为PDMS表面转印上一层还原氧化石墨烯的SEM,可以看出还原氧化石墨烯是片状、折皱的结构,说明还原氧化石墨烯很好地附着在PDMS的表面。
(6)将附着在PDMS表面的还原氧化石墨烯薄膜两端用银胶连上铜线电极,从还原氧化石墨烯薄膜中间剪开,把还原氧化石墨烯薄膜面与面接触对扣,形成接触式的还原氧化石墨烯薄膜柔性应变传感器。该还原氧化石墨烯薄膜柔性应变传感器具有高灵敏度,能检测微小应变,如:30mg药丸的质量响应,人体脉搏信号响应。
图3为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器对30mg药丸的灵敏程度示意图。当双层柔性薄膜应变传感器上没有放置药丸时,通过吉时利2400表可以看出还原氧化石墨烯应变传感器相对电阻变化为零;当一颗30mg药丸放置在双层还原氧化石墨烯薄膜应变传感器上时,通过吉时利2400表显示还原氧化石墨烯相对电阻变化,且相对电阻变化为负值,说明施加压力使得还原氧化石墨烯片层之间的接触面积增大,增加了导通路径,提高了导电性。
图4为本发明制备一种双层还原氧化石墨烯柔性薄膜应变传感器测脉搏振动示意图。该双层还原氧化石墨烯柔性薄膜传感器能准确反映每一次的脉搏振动信号,具有稳定性好的优点;同时,该双层柔性应变传感器能精准反映一次脉搏振动信号的内容:一次脉搏振动分为三个阶段,分别对应着percussion wave(P-wave),tidal wave(T-wave)anddiastolic wave(D-wave),它们与心血管的收缩与舒张有关,能根据三个波来判断中老年人是否患有心血管疾病。因此,该应变传感器可用于可穿戴设备领域检测人体健康。
上述实例用来解释说明本发明,然而并非限定本发明。在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (5)

1.一种双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,其特征在于,步骤如下:
(1)量取还原氧化石墨烯水溶液3mL,加入150mL的去离子水中,搅拌、超声,直至分散均匀,再用砂芯过滤装置进行抽滤,抽滤结束后,将滤膜取出,放到70℃鼓风干燥箱中干燥1h;
(2)取已经固化好的PDMS,通过按压的方式将滤膜上的还原氧化石墨烯转印到已经固化好的PDMS上,随后将PDMS泡在丙酮中,溶解滤膜,最后将附有还原氧化石墨烯薄膜的PDMS放到70℃鼓风干燥箱中干燥;
(3)将附着在PDMS表面的还原氧化石墨烯薄膜两端用银胶连上铜线电极,从还原氧化石墨烯薄膜中间剪开,把还原氧化石墨烯薄膜面与面接触对扣,形成接触式的还原氧化石墨烯薄膜柔性应变传感器。
2.根据权利要求1所述的双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,其特征在于,所述还原氧化石墨烯水溶液的浓度小于1mg/mL。
3.根据权利要求2所述的双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,其特征在于,步骤(1)中还原氧化石墨烯制备方法为碱性条件下,高温水热还原氧化石墨烯。
4.根据权利要求1所述的双层还原氧化石墨烯薄膜柔性应变传感器的制备方法,其特征在于,步骤(1)中抽滤出的还原氧化石墨烯的膜厚度为510nm。
5.根据权利要求1所述的层还原氧化石墨烯薄膜柔性应变传感器的制备方法,其特征在于,所述砂芯过滤装置中的滤膜为可溶于丙酮的水溶性滤膜。
CN201610813162.6A 2016-09-09 2016-09-09 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法 Active CN106430160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610813162.6A CN106430160B (zh) 2016-09-09 2016-09-09 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610813162.6A CN106430160B (zh) 2016-09-09 2016-09-09 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法

Publications (2)

Publication Number Publication Date
CN106430160A CN106430160A (zh) 2017-02-22
CN106430160B true CN106430160B (zh) 2018-04-17

Family

ID=58167593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610813162.6A Active CN106430160B (zh) 2016-09-09 2016-09-09 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法

Country Status (1)

Country Link
CN (1) CN106430160B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107678327A (zh) * 2017-08-31 2018-02-09 浙江理工大学 一种发音辅助系统
CN110411627A (zh) * 2018-04-28 2019-11-05 京东方科技集团股份有限公司 压力传感器及其制备方法、压力检测方法和装置
CN108332887B (zh) * 2018-04-28 2024-08-23 河北工业大学 一种柔性应力传感器
CN108567565A (zh) * 2018-05-15 2018-09-25 浙江工业大学 一种心肺复苏动作柔性规范仪
CN108711346A (zh) * 2018-05-15 2018-10-26 浙江工业大学 柔性可穿戴盲人阅读仪
CN108621646A (zh) * 2018-05-15 2018-10-09 浙江工业大学 一种纠正握笔姿势的智能签字笔
CN110793676A (zh) * 2018-08-02 2020-02-14 北京纳米能源与系统研究所 温度湿度压力传感器及其制备方法、电子皮肤
CN109793520A (zh) * 2019-02-01 2019-05-24 电子科技大学 湿度和应变协同敏感的柔性织物呼吸传感器及其制备方法
CN111006800A (zh) * 2019-12-23 2020-04-14 浙江清华柔性电子技术研究院 柔性压力传感制备方法及柔性压力传感器
CN112168137A (zh) * 2020-09-29 2021-01-05 有研工程技术研究院有限公司 一种可穿戴式眼压监测传感器及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928296B (zh) * 2013-01-16 2017-03-15 中国科学院上海微系统与信息技术研究所 一种将石墨烯转移到具有pdms过渡层硬质衬底上的方法
CN103265013B (zh) * 2013-04-26 2014-12-10 华中科技大学 一种基于柔性基底的石墨烯及其复合薄膜的制备方法
CN103871548B (zh) * 2014-02-28 2016-08-31 南京邮电大学 一种柔性透明薄膜电极及其制作方法
CN105067160B (zh) * 2015-07-23 2017-10-03 东南大学 基于氧化石墨烯海绵的柔性压力传感器
CN105783695A (zh) * 2016-04-22 2016-07-20 武汉大学深圳研究院 石墨烯复合纳米金薄膜柔性应变传感器的制备方法及其应变传感器

Also Published As

Publication number Publication date
CN106430160A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106430160B (zh) 双层还原氧化石墨烯薄膜柔性应变传感器的制备方法
Cheng et al. Bioinspired microspines for a high-performance spray Ti3C2T x MXene-based piezoresistive sensor
Han et al. Ultralow-cost, highly sensitive, and flexible pressure sensors based on carbon black and airlaid paper for wearable electronics
He et al. Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications
Yao et al. Nanomaterial‐enabled wearable sensors for healthcare
Zhang et al. Highly sensitive capacitive flexible pressure sensor based on a high-permittivity MXene nanocomposite and 3D network electrode for wearable electronics
Lai et al. Emerging MXene‐Based Flexible Tactile Sensors for Health Monitoring and Haptic Perception
Yuan et al. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics
Cai et al. Stretchable Ti3C2T x MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range
Qiao et al. Graphene-based wearable sensors
Jiang et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains
Wu et al. Piezoresistive stretchable strain sensors with human machine interface demonstrations
Park et al. Micro/nanostructured surfaces for self-powered and multifunctional electronic skins
Qiao et al. Substrate-free multilayer graphene electronic skin for intelligent diagnosis
Kedambaimoole et al. MXene wearables: properties, fabrication strategies, sensing mechanism and applications
Tan et al. Flexible pressure sensors based on bionic microstructures: from plants to animals
Banitaba et al. Recent progress of bio-based smart wearable sensors for healthcare applications
Gao et al. Flexible microstructured pressure sensors: design, fabrication and applications
Chen et al. Recent progress in graphene-based wearable piezoresistive sensors: From 1D to 3D device geometries
Lin et al. Study on a paper-based piezoresistive sensor applied to monitoring human physiological signals
Hao et al. Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles
CN106430161B (zh) 一种基于双层屈曲结构的还原氧化石墨烯薄膜的心尖搏动传感器
Xiao et al. High-adhesive flexible electrodes and their manufacture: A review
Ferreira et al. Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review
Chen et al. A review related to MXene preparation and its sensor arrays of electronic skins

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Ximei New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000813

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20211215

Application publication date: 20170222

Assignee: Shaoxing Lingwo Textile Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000812

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20211215

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Keqiao Mingshi Textile Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000811

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20211216

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Fenghua Technology Development Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000817

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20211228

Application publication date: 20170222

Assignee: GLOBALS ELECTRONICS (WENZHOU) Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2021330000847

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20211228

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Shaoxing Xinfeng New Material Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2022330000010

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20220110

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: HANGZHOU FANGXIANG MEDICAL APPLIANCE Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980034047

Denomination of invention: Preparation of a flexible strain sensor based on bilayer reduced graphite oxide film

Granted publication date: 20180417

License type: Common License

Record date: 20230329

EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Hangzhou Tianzhi Intelligent Technology Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980034181

Denomination of invention: Preparation of a flexible strain sensor based on bilayer reduced graphite oxide film

Granted publication date: 20180417

License type: Common License

Record date: 20230330

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: ZHEJIANG SAISAI BEARING CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000256

Denomination of invention: Preparation of a flexible strain sensor based on bilayer reduced graphite oxide film

Granted publication date: 20180417

License type: Common License

Record date: 20230424

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: Songyang Yongxin Machinery Manufacturing Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023980037300

Denomination of invention: Preparation of a flexible strain sensor based on bilayer reduced Graphite oxide film

Granted publication date: 20180417

License type: Common License

Record date: 20230703

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: ZHEJIANG EXPO NEW MATERIALS CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000821

Denomination of invention: Preparation method of double layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20231107

Application publication date: 20170222

Assignee: HANGZHOU COCO HEALTHCARE PRODUCTS Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2023330000818

Denomination of invention: Preparation method of double layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20231107

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: ZHEJIANG XINZHEN PRINTING TECHNOLOGY CO.,LTD.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000017

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20240229

EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170222

Assignee: CHANGSHAN XINLONG BEARING Co.,Ltd.

Assignor: ZHEJIANG SCI-TECH University

Contract record no.: X2024330000027

Denomination of invention: Preparation method of double-layer reduced graphene oxide thin film flexible strain sensor

Granted publication date: 20180417

License type: Common License

Record date: 20240403