CN106365354B - 一种淡水水体中憎水性溶解腐殖酸提取装置 - Google Patents
一种淡水水体中憎水性溶解腐殖酸提取装置 Download PDFInfo
- Publication number
- CN106365354B CN106365354B CN201610920508.2A CN201610920508A CN106365354B CN 106365354 B CN106365354 B CN 106365354B CN 201610920508 A CN201610920508 A CN 201610920508A CN 106365354 B CN106365354 B CN 106365354B
- Authority
- CN
- China
- Prior art keywords
- water tank
- filter
- water
- outlet
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08H—DERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
- C08H6/00—Macromolecular compounds derived from lignin, e.g. tannins, humic acids
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/08—Multistage treatments, e.g. repetition of the same process step under different conditions
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明提供了一种淡水水体中憎水性溶解腐殖酸提取装置,包括原水供给单元、预处理单元、反渗透浓缩单元、酸碱度调节单元、有机质提取单元、第一水箱、总控制系统、第二水箱、pH值自动调节单元和腐殖酸提取单元;其中,pH值自动调节单元包括pH传感器、第二加药装置、第三加药装置和计量加药泵;酸碱度调节单元和pH自动调节单元均为全自动的,不仅节省了劳动力,降低了生产成本,而且pH值调节的准确率比较高;腐殖酸提取单元中通过滤膜过滤将腐殖酸和其它溶解性有机质分离,再通过淋洗装置淋洗纯化,提高的腐殖酸的纯度。本发明提供的一种淡水水体中憎水性溶解腐殖酸提取装置结构简单、自动化程度高、操作方便。
Description
技术领域
本发明涉及浓缩技术领域,尤其涉及一种淡水水体中憎水性溶解腐殖酸提取装置。
背景技术
溶解有机质是能通过孔径为0.45μm滤膜的一类天然大分子有机物混合物,它来源于动植物分泌物及其残体分解产物,包括腐殖酸、富里酸和非腐殖物质。腐殖酸分子量大,对污染物的沉积和絮凝具有重要作用。腐殖酸可以分为憎水性腐殖酸和亲水性腐殖酸,其中憎水性腐殖酸非极性更强,更易与PAHs等新型污染物结合,是目前地球化学和环境科学研究的热点。但是,水体中腐殖酸浓度极低,一般在1-3mg/L左右,而憎水性腐殖酸浓度更低。目前如何实现从江河湖泊及地下水等淡水水体中高效地提取高浓度的憎水性腐殖酸是亟需解决的问题。
反渗透技术是在高于溶液渗透压的作用下,依据大分子物质不能透过半透膜而将这些物质和水分离开来。反渗透膜的膜孔径非常小,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等。反渗透具有脱盐率高,机械强度大和使用寿命长,化学或生化耐受性强等优点。本发明利用反渗透技术初步浓缩淡水水体中憎水性溶解腐殖酸。
彭安、王安华发表了一种关于腐殖酸提取方法的文章,其论文题目:水体腐殖酸及其络合物I.蓟运河腐殖酸的提取和表征(环境科学学报,第一卷第2期,1981.06),公开了一种腐殖酸提取的方法,其提取方法主要是在实验室的条件下进行的,腐殖酸提取和纯化包括两个步骤:
(1)吸附树脂的预处理
处理过的吸附树脂装柱,树脂高和直径比为10:1,上下口用玻璃棉充填,既可起到支持作用又可起到过滤作用。
(2)河水腐殖酸的提取
河水腐殖酸的提取流程如附图2所示。
本论文公开的腐殖酸提取方法主要是依赖于实验室和大量的人工操作条件下进行的,操作过程复杂、自动化程度低,且提取的腐殖酸量较少,不适合大规模样品采集;另外,本论文公开的腐殖酸提取方法受人为影响操作影响较大,不能广泛的用于江河湖泊及地下水等淡水水体中腐殖酸的提取及比对,可实施性不佳。
发明内容
为了获取高浓度的腐殖酸,本发明提供了一种淡水水体中憎水性溶解腐殖酸提取装置,此装置可以应用于江河湖泊及地下水等淡水水体中腐殖酸的提取。
为了解决上述技术问题,本发明的一种淡水水体中憎水性溶解腐殖酸提取装置,包括原水供给单元、预处理单元、反渗透浓缩单元、酸碱度调节单元、有机质提取单元、第一水箱、总控制系统、第二水箱、pH值自动调节单元和腐殖酸提取单元;
所述第二水箱采用耐酸材料,其上面设有密封盖,下端为漏斗形状,其内设有搅拌器、液位传感器和pH传感器;所述密封盖的端面设有至少5个通孔;所述第二水箱与所述过滤器之间的管道伸入水箱中,管道顶部为密封结构,管道壁设有多个孔径为50μm的孔,孔的最低高度控制在水箱高度的1/100-1/10处,所述伸入水箱管道外设有过滤罩,所述过滤罩的孔径为100μm;第二水箱设有氮气供给装置,防止腐殖酸在碱性条件下氧化;
所述pH值自动调节单元包括pH传感器、第二加药装置、第三加药装置和计量加药泵;所述pH传感器设于所述第二水箱内,所述第二加药装置的出口、第三加药装置的出口通过加药泵均与所述第二水箱连接;
所述腐殖酸提取单元包括淋洗装置、液体储存器、过滤器和真空泵;所述过滤器的入口与所述第二水箱的出口连接,所述过滤器的出口与液体储存器入口连接;所述淋洗装置的入口与所述反渗透浓缩单元纯水出口连接,其出口与所述过滤器入口、吸附富集装置入口连接;所述过滤器包括样品室、滤膜和砂芯,所述滤膜置于所述样品室之内,并以所述砂芯作为滤膜支撑物;所述滤膜的孔径取值范围是0.1-0.7μm;所述真空泵的吸气口与所述液体储存器连接。
优选地,原水供给单元采用自吸泵供水,原水主要为江河湖泊及地下水等淡水水体,原水水质的浊度在1000NTU之内,溶解有机碳的取值在1000mg/L之内,电导率取值在30000μS/cm之内;自吸泵的前端设有过滤袋,所述过滤袋的孔径为10μm。
优选地,所述预处理单元包括一级精密微滤过滤器、二级精密微滤过滤器和三级精密微滤过滤器,一级精密微滤过滤器中精密滤芯的孔径为5μm,二级精密微滤过滤器中精密滤芯的孔径为1μm,三级精密微滤过滤器中精密滤芯的孔径为0.45μm;所述一级精密微滤过滤器的入口与自吸泵的出口连接,一级精密微滤过滤器的出口与二级精密微滤过滤器的入口连接,二级精密微滤过滤器的出口与三级精密微滤过滤器的入口连接,三级精密微滤过滤器的出口与第一水箱连接。
优选地,一级、二级和三级精密滤芯均采用聚丙烯滤芯,精密滤芯需要及时更换,以避免堵塞和过多污染物聚集滋生微生物。
优选地,所述第一水箱采用耐酸材料,其上面设有密封盖,下端为漏斗形状,其内设有搅拌器、液位传感器和pH传感器;所述密封盖的端面设有至少5个通孔;所述第一水箱与所述吸附富集装置之间的管道伸入水箱中,管道顶部为密封结构,管道壁设有多个孔径为50μm的孔,孔的最低高度控制在水箱高度的1/100-1/10处,所述伸入水箱管道外设有过滤罩,所述过滤罩的孔径为100μm。
优选地,所述反渗透浓缩单元包括反渗透单元、高压泵及第一电导率探头和第二电导率探头;其中反渗透单元包括反渗透膜和不锈钢膜壳,所述反渗透膜的孔径取值为0.1nm;
所述第一电导率探头设于所述反渗透单元浓水出口处,第二电导率探头设于反渗透单元的纯水出口与淋洗装置之间;通过对比2个电导率探头检测数值,可以判断反渗透膜工作状态是否良好。
优选地,所述反渗透单元设有液体进口,浓水出口和纯水出口;所述液体进口通过高压泵与第一水箱连接,所述浓水出口与第一水箱连接,所述纯水出口与淋洗装置连接;所述反渗透单元浓水和纯水出口都设有安保阀,原水浓缩过程中,所述反渗透单元纯水和浓水电导率差异小于预设值时,所述安保阀开启,说明此时系统无法进行反渗透浓缩。
优选地,所述酸碱度调节单元中包括pH传感器、搅拌器、计量加药泵和酸液药剂箱;所述pH传感器设于第一水箱中,所述计量加药泵设于第一水箱和酸液药剂箱之间,计量加药泵的入口与酸液药剂箱的出口连接,计量加药泵的出口与第一水箱连接。
优选地,所述有机质提取单元包括吸附富集装置和第一加药装置,所述吸附富集装置的入口与第一水箱连接,第一加药装置的出口与吸附富集装置的入口连接,吸附富集装置的出口与所述第二水箱的入口连接,且底部设有废液排出开关;
所述吸附富集装置包括吸附柱和填料,所述填料设于所述吸附柱内,所述填料为XAD-8树脂、DAX-8树脂和XAD-7树脂的一种或多种。
优选地,所述总控制系统包括控制单元和触屏器,所述控制单元与触屏器连接,所述控制单元与自吸泵、液位传感器、pH传感器、计量泵、高压泵和pH自动调节单元连接;所述第一水箱中设有液位传感器;所述第一水箱和第二水箱中设有pH传感器,所述pH传感器设有升降台,必要时可以升至水箱外。
本发明还提供了一种利用淡水水体中憎水性溶解腐殖酸提取装置进行腐殖酸提取的方法,包括如下步骤:
(1)启动总控制系统的总电源启动按钮;
(2)启动自吸泵启动按钮,自吸泵通过管道吸取原水,自吸泵前端的过滤袋对原水进行预过滤,过滤后的原水通过自吸泵的增压进入预处理单元中的一级精密微滤过滤器对原水进行一次过滤,一次过滤后的原水进入二级精密微滤过滤器进行二次过滤,经二次过滤后的原水进入三级精密微滤过滤器进行三次过滤;经三次过滤后的原水通过管道进入第一水箱;当第一水箱中的水位达到4/5水箱高度时,自吸泵停止工作;
(3)第一水箱中的原水经高压泵增压通过管道进入到反渗透浓缩单元,反渗透膜可对原水中的溶解无机盐和天然溶解有机物进行浓缩,得到纯水和浓水;经过反渗透膜的纯水直接排放到淋洗装置中进行存储,浓水循环进入第一水箱,当位于水箱中的溶解有机碳在线测定装置测定的浓水中溶解有机碳的含量达到预设值时,停止浓缩;
(4)启动酸碱度调节单元,计量加药泵接收pH传感器信号启动酸液药剂箱,酸液药剂箱通过耐酸管道向第一水箱中注入酸液,同时第一水箱中搅拌马达启动,使得酸液和浓水均匀混合,直到达到预设的pH值,计量加药泵和第一水箱搅拌马达停止工作;
(5)完成pH值调节后的浓水通过管道流入吸附富集装置,吸附完成后,淋洗装置中的纯水通过管道冲洗吸附富集装置,并打开吸附富集装置底部的废液排出开关,冲洗废液通过管道排出,完成吸附富集装置的冲洗,关闭废液排出开关;
(6)完成吸附富集装置冲洗后,关闭淋洗装置的出口阀门,打开第一加药装置的出口阀门,第一加药装置通过耐碱管道向吸附富集装置中注入碱液,被树脂吸附的天然溶解有机质在碱液的作用下发生解吸,解吸后的液体经管道流入第二水箱,同时打开氮气阀门;
(7)启动pH自动调节单元,pH自动调节单元接收pH传感器的检测信号启动酸液加入程序,从第二加药装置抽取酸液通过第一耐酸管道向第二水箱中注入非氧化性酸液,同时第二水箱中搅拌马达启动,使得酸液和有机质溶液均匀混合,直到达到预设的pH值,第一道加酸液程序停止工作;
加药泵从第三加药装置中抽取氢氟酸,通过第二耐酸管道向第二水箱中注入氢氟酸,直到第二水箱中的液体达到预设的氢氟酸浓度,加药泵停止工作;
(8)持续搅拌10-48h后,打开第二水箱的出口阀门,同时启动真空泵,通过真空泵施压,第二水箱中的有机质溶液经滤膜过滤,憎水性腐殖酸被截留在滤膜上面,可溶杂质流入液体储存器中;
(9)有机质完成过滤后,第二水箱搅拌马达自动停止工作,关闭第二水箱的出口阀门,打开淋洗装置与过滤器之间的出口阀门,通过真空泵施压,淋洗装置中的纯水通过管道流入过滤器,对滤膜进行冲洗;冲洗完成后,液体储存器中的液体直接排放掉,留在滤膜上的有机质为所需提取的憎水性腐殖酸,冷冻干燥后,得到固体粉末。
优选地,反渗透单元纯水的排出管道上设有调速阀,所述反渗透单元浓水出口与所述水箱连接的管道上设有调速阀,反渗透膜排出的纯水量与排出的浓水量的比值为1:9-9:1。
优选地,所述耐酸特殊管道和第一耐酸管道要求能承受均为10mol/L的强酸;所述第一加药装置中的碱液为0.1mol/L的强碱;所述耐碱管道要求能承受0.5mol/L的强碱;所述第二耐酸管道要求能承受6mol/L的氢氟酸;所述第一水箱中的混酸取值为0.001-0.5mol/L非氧化性强,所述pH的预设值为0.5-3;所述第二水箱中的混酸取值为0.001-0.5mol/L非氧化性强和0.01-0.5mol/L氢氟酸,并且可以承受0.1mol/L的强碱,所述pH的预设值为0.5-3。
优选地,高压泵的前端设有压力表和安保阀,原水浓缩过程中,所述高压泵前压力大于预设值时,所述安保阀开启,避免高压泵损坏和管道爆裂现象。
优选地,总控制系统采用低压配电,供配电设备的电压等级为220VAC,且设低压配电柜,向工艺系统动力设备供电;控制系统中的电源开关与电控柜门联锁保护,可以达到防尘、散热快且易于安装的效果。
优选地,所述自吸泵的前端设有安全阀,所述水箱中设有液位传感器,其水位在水箱4/5体积时,所述安全阀开启,自吸泵停止运转,避免水箱水位过高。
与现有技术相比本发明产生的有益效果是:
(1)本发明提供一种淡水水体中憎水性溶解腐殖酸提取装置结构简单、自动化程度高、操作方便,可以方便有效地将憎水性腐殖酸和其它杂质分离,提取大量的憎水性溶解腐殖酸,更好的利用所提取的腐殖酸;
(2)本发明中的一级精密滤芯孔径设置为5μm,二级精密滤芯孔径为1μm,三级精密滤芯孔径为0.45μm,更有效地滤除了水中较大颗粒的悬浮物等杂质,更好地避免了颗粒杂物对膜造成的划伤、堵塞和高压冲击;
(3)酸碱度调节单元和pH自动调节单元调节pH值的整个过程是全自动的,节省了劳动力,调制的pH值的准确率比较高;
(4)反渗透浓缩单元中反渗透单元中排出的纯水量与排出的浓水量的比值最优为2:1-1:2,进而可以避免纯水流出量过大或过小对膜造成的伤害或设备效率降低;
(5)第一水箱和第二水箱的底部均为漏斗形状,且伸入水箱内的管道外设有过滤罩,不仅有利于有机质的流出,也更有利于沉淀有机质中的杂质;有机质通过滤膜过滤,不仅可以去除有机质中的杂质,还可以初步完成高纯度腐殖酸水分去除,易于后续工作中的干燥和固化。
附图说明
图1是本发明一种淡水水体中憎水性溶解腐殖酸提取装置工艺流程图;
图2是现有技术中河水腐殖酸提取流程图。
具体实施方式
下面结合附图,对本发明的具体实施方式作详细的说明。
参图1所示,图1是本发明淡水水体中憎水性溶解腐殖酸提取装置的工艺流程图。本发明提供的淡水水体中憎水性溶解腐殖酸提取装置,包括原水供给单元、预处理单元、反渗透浓缩单元、酸碱度调节单元、有机质提取单元、第一水箱8、总控制系统5、第二水箱16、pH值自动调节单元和腐殖酸提取单元;其中原水供给单元主要包括自吸泵1;预处理单元包括一级精密微滤过滤器2、二级精密微滤过滤器3、三级精密微滤过滤器4;反渗透浓缩单元包括反渗透单元10、高压泵9和溶解有机碳在线监测设备,其中反渗透单元10包括反渗透膜和不锈钢膜壳;酸碱度调节单元包括pH传感器、计量加药泵6和酸液药剂加药箱7;有机质提取单元包括吸附富集装置15、第一加药装置14;pH值自动调节单元包括加药泵、pH传感器、第二加药装置17和第三加药装置18;腐殖酸提取单元包括淋洗装置13、过滤器、真空泵22和液体储存器23,其中过滤器包括样品室19、滤膜20和砂芯21,滤膜20位于样品室19内,且由砂芯21支撑;总控制系统5主要采用自动控制,其中的集控操作在控制柜中统一进行,可使整个系统实现自动控制操作和手动操作,实现系统紧急制动。
本着节约成本的理念,酸碱度调节单元和pH值自动调节单元共用一个多通道的计量加药泵;酸液药剂加药箱和第二加药装置可以共用一个箱体。
其中,一级精密微滤过滤器2的入口与自吸泵1的出口连接,一级精密微滤过滤器2的出口与二级精密微滤过滤器3的入口连接,二级精密微滤过滤器3的出口与三级精密微滤过滤器4的入口连接,三级精密微滤过滤器4的出口与第一水箱8连接;计量加药泵6设于第一水箱8和酸液药剂箱7之间,计量加药泵6的入口与酸液药剂箱7的出口连接,计量加药泵6的出口与第一水箱8连接;反渗透单元10设有液体进口,浓水出口和纯水出口;液体进口通过高压泵9与第一水箱8连接,浓水出口与第一水箱8连接,纯水出口与淋洗装置13连接,淋洗装置13出口与吸附富集装置15的入口、腐殖酸提取单元中过滤器的入口连接;吸附富集装置15的入口与第一水箱8连接,第一加药装置14的出口与吸附富集装置15的入口连接,吸附富集装置15的出口与第二水箱16连接,第二水箱16的上面设有密封盖,底部为漏斗形状;其中密封盖的端面设有至少5个通孔;第二水箱16内设有搅拌器和pH传感器;液体储存器23的入口与过滤器的出口连接,过滤器的入口与第二水箱16的出口连接,真空泵22的吸气口置于液体储存器23的腔体内;pH调节单元与位于第二水箱中的pH传感器连接,第二加药装置17出口、第三加药装置18的出口通过加药泵均与第二水箱16连接;总控制系统5包括控制单元和触屏器,控制单元与触屏器连接,控制单元与自吸泵1、液位传感器、pH传感器、计量加药泵6、高压泵9、酸碱度调节单元和pH自动调节单元连接。
本发明提供一种淡水水体中憎水性溶解腐殖酸提取装置,其原水水源为江河湖泊及地下水等淡水水体,原水的水质要求为浊度在1000NTU之内,溶解有机碳的取值在1000mg/L之内,电导率取值在30000μS/cm之内。
总控制系统采用低压配电,供配电设备的电压等级为220VAC,且设低压配电柜,向工艺系统动力设备供电。另外,控制系统中配备独立操作的控制柜,电器开关和电气元件都集中在控制柜内,电源开关与电控柜门联锁保护,可以达到防尘、散热快且易于安装的效果。
首先开启总电源和启动按钮,使整个系统处于工作状态,自吸泵1通过管道吸取原水,原水通过位于自吸泵前端的过滤袋进行初步过滤,过滤袋的孔径为10μm,经过预过滤的原水通过自吸泵的增压进入预处理单元中的一级精密微滤过滤器2对原水进行一次过滤,经一次过滤后的原水进入二级精密微滤过滤器3进行二次过滤,经二次过滤后的原水进入三级精密微滤过滤器4进行三次过滤,其中一级精密微滤过滤器2中的滤芯孔径为5μm,二级精密微滤过滤器3中的滤芯孔径为1μm,三级精密微滤过滤器4中的滤芯孔径为0.45μm,由于淡水水体中颗粒悬浮物较多,三级精密微滤过滤器串联,及此种滤芯直径设置可以更好地滤除水中较大颗粒的悬浮物等杂质,提高水质,更有效地避免颗粒物杂质对膜造成的划伤、堵塞和高压冲击。另外,精密滤芯需要及时更换,避免堵塞和过多污染物集聚滋生微生物。
经过三级精密过滤装置过滤后的原水通过连接管道进入第一水箱8,第一水箱8中的液位传感器对水箱中的水位进行检测,当水位达到水箱体积的4/5时,液位传感器向总控制系统发送液位信号,总控制系统接收液位信号后,向自吸泵发送控制信号,使其停止工作,即停止向第一水箱中注水。
第一水箱8中的原水经过高压泵9加压进入反渗透单元10中的反渗透膜,反渗透膜可将优质地表水、地下水和自来水等淡水水体中可溶无机盐和有机质截留,其中对钠离子的脱除率在96%左右,最高可达到98%;经反渗透膜的纯水直接排放到淋洗装置13中储存,在反渗透单元10与淋洗装置13连接管道上设有调速阀,可以调节纯水流出反渗透膜的速度,其速度调节范围为0-200L/h;待系统工作完毕后,可用淋洗装置13中的纯水对反渗透膜冲刷清洗;经反渗透膜的浓水经过管道回流到第一水箱8中,在反渗透单元10与第一水箱8连接管道上设有调速阀,可以调节浓水流出反渗透膜的速度,其速度调节范围为0-200L/h;纯水流出反渗透膜的速度和浓水流出反渗透膜的速度取值设置在适当的范围内,使反渗透膜排出的纯水量与排出的浓水量的比值为1:9-9:1,进而可以避免因流出的速度过快或过慢对反渗透膜造成的伤害或设备效率降低。浓水进水水箱可以循环浓缩,如此反复,原水箱中的水越来越少,含盐量和有机质含量的浓度越来越高,当位于水箱中的溶解有机碳在线测定装置测定的溶解有机碳含量达到预设值时,自动停止浓缩。
在原水浓缩的过程中,尽量避免浓缩比过高,浓缩比越高,含盐率和有机质浓度越高,过高的含盐率和有机质浓度会对反渗透膜造成伤害,因此,将浓水中有机质含量控制在10000mg/L以下。
RO系统浓水出口处设有第一电导率探头11,反渗透单元与淋洗装置13之间设有第二电导率探头12,通过对比第二电导率探头12与第一电导率探头11检测的数值,可以判定反渗透膜是否渗漏;即如果第二电导率探头12与第一电导率探头11检测的数值相等,可以判定反渗透膜出现渗漏现象。反渗透单元浓水和纯水的出口处还设有安保阀,在原水浓缩过程中,反渗透单元浓水和纯水的电导率差异小于预设值时,安保阀开启,此时系统停止运行。
高压泵9的前端设有安保阀,在浓缩的过程中,当水位低于水箱的1/5时,安保阀开启,高压泵停止运转,由此可以避免高压泵空转时导致高压泵烧毁的现象;高压泵的前端还设有压力表,当高压泵前的压力大于预设值时,安保阀开启,可以避免高压泵损坏和管道爆裂现象。
原水浓缩结束后,启动酸碱度调节单元。在总控制系统5中设置所需的pH值,其设定的pH值为0.5-3,并将此pH传感器信号传递到位于第一水箱中的pH传感器,pH传感器将pH值信号传递给计量加药泵6,计量加药泵启动,通过酸液药剂箱7中的酸溶液通过耐酸管道流入第一水箱8,同时第一水箱8中的搅拌马达启动,使得酸液和浓水均匀混合,进行pH值调节,直到pH值达到预先设置的值,计量加药泵和水箱搅拌马达停止工作。
整个pH值调节的过程为全自动的,节省了劳动力,降低了生产成本,并且调制的pH值的精确度比较高,配制的过程效率也较高。在pH调节过程中,开启搅拌器马达使搅拌器搅拌第一水箱8中的水,使得流入其中的酸液药剂均匀溶入水中,可避免局部的pH值偏高或偏低。
pH值调节完成后,打开第一水箱8的出口阀门,第一水箱中的浓水流入吸附富集装置15,吸附富集装置中的填料对浓水中的有机质进行吸附;吸附完成后,关闭第一水箱8的出口阀门,打开淋洗装置13的出口阀门,淋洗装置13中的纯水流入吸附富集装置15,对其进行淋洗,废液通过废液排出管道排出,有效地去除有机质中的杂质。
淋洗完成后,关闭废液排出开关,然后关闭淋洗装置13的出口阀门;打开第一加药装置14的出口阀门,第一加药装置14中的碱液通过管道流经吸附富集装置15,吸附富集装置15中的吸附树脂吸附的有机质与碱液相互作用后发生解吸,解吸后的有机质通过管道流入第二水箱16中。
吸附富集装置15包括吸附柱和填料,其中填料设于吸附柱内部,采用的是XAD-8树脂、DAX-8树脂和XAD-7树脂一种或多种,可以吸附憎水性腐殖酸、富里酸等溶解有机质成分,获取浓度较高的有机质液体。
开启pH自动调节单元,pH传感器将检测的信号发送给pH调节单元,计量加药泵启动酸液加入程序,从第二加药装置17抽取酸液通过第一耐酸管道向第二水箱中注入非氧化性酸液,同时第二水箱16中的搅拌马达启动,使得酸液和有机质均匀混合,进行pH值调节,直到pH值达到预先设置的值,计量加药泵第一道加酸液程序停止工作;加药泵从第三加药装置18中抽取氢氟酸,通过第二耐酸管道向第二水箱16中注入氢氟酸,直到达到预设的氢氟酸的浓度,加药泵停止工作。第二水箱15中的pH传感器设有升降台,pH值调节完成后,升降台可将pH传感器升至水面之上。
第二水箱16与过滤器之间的管道深入水箱中,管道顶部为密封结构,管道壁设有多个孔径为50μm的孔,孔的最低高度控制在水箱高度的1/100-1/10处,所述伸入水箱管道外设有过滤罩,所述过滤罩的孔径为100μm,更有利于沉淀浓水中的杂质。
第二水箱16中的有机质搅拌10-48h后,打开第二水箱16的出口阀门,同时启动真空泵22,通过真空泵22施压,第二水箱16中的有机质通过过滤器过滤,憎水性溶解腐殖酸被留在过滤器中的滤膜20上面,杂质流入液体储存器23中。
有机质完成过滤后,关闭第二水箱16的出口阀门和搅拌马达,打开淋洗装置13与过滤器之间的出口阀门,淋洗装置13中的纯水通过管道流经过滤器,对滤膜20进行冲洗,冲洗后的废液流入液体储存器23;冲洗完成后,液体储存器23中的液体直接排放掉,留在滤膜上的有机质为所需提取的憎水性腐殖酸,冷冻干燥后得淡水水体憎水性溶解腐殖酸固体粉末。
完成一个工作循环后,重新启动自吸泵,进入下一个工作循环。当水体有机质含量较低时,可以通过自吸泵1多次进水,使得水箱9中浓水溶解有机碳浓度达到预设值,再进行下一步酸碱度调节。
腐殖酸提取结束后,关闭第一水箱的排水口,将储存在淋洗装置13中的纯水倒入第一水箱,启动浓缩,将浓水阀开到最大,利用纯水对膜的冲刷实现反渗透膜的清洗。反渗透膜严禁干燥储存,必须保证膜壳中有水,若因故超过70h不使用,应将反渗透膜浸泡于干净的水中,若长期闲置须按反渗透膜要求存储方式封存。淡水水体憎水性溶解腐殖酸提取中所得纯水储存于淋洗装置13,为反渗透膜冲洗提供用水,成功解决了野外纯水难于获取的实际问题。
所述腐殖酸提取单元使用滤膜为一次性滤膜,滤膜需要能耐受0.2-0.4mol/L强酸,滤膜按要求存储及使用,但不可使用玻璃纤维滤膜等含硅滤膜。
上文所述的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并不是用以限制本发明的保护范围,在所述技术领域普通技术人员所具备的知识范围内,在不脱离本发明宗旨的前提下作出的各种变化均属于本发明的保护范围。
Claims (10)
1.一种淡水水体中憎水性溶解腐殖酸提取装置,包括原水供给单元、预处理单元、反渗透浓缩单元、酸碱度调节单元、有机质提取单元、第一水箱、总控制系统、第二水箱、pH值自动调节单元和腐殖酸提取单元;
所述原水供给单元的出口与所述预处理单元的入口连接,所述预处理单元的出口与所述第一水箱的入口连接,所述第一水箱的出口与所述有机质提取单元的的入口连接;所述第一水箱的入口还与所述反渗透浓缩单元的出口、酸碱度调节单元的出口连接;所述有机质提取单元的出口与所述第二水箱的入口连接;
所述pH值自动调节单元包括pH传感器、第二加药装置、第三加药装置和计量加药泵;所述pH传感器设于所述第二水箱内,所述第二加药装置和所述第三加药装置并列布置,所述第二加药装置的出口、第三加药装置的出口通过计量加药泵均与所述第二水箱连接;
所述腐殖酸提取单元包括淋洗装置、液体储存器、过滤器和真空泵;所述第二水箱的出口与所述过滤器的入口连接,所述过滤器的出口与液体储存器入口连接;所述淋洗装置的入口与反渗透浓缩单元纯水出口连接,所述淋洗装置的出口与过滤器入口、吸附富集装置入口连接;所述过滤器包括样品室、滤膜和砂芯,所述滤膜置于所述样品室之内,并以所述砂芯作为滤膜支撑物;所述滤膜的孔径取值范围是0.1-0.7μm;所述真空泵的吸气口与所述液体储存器连接;
所述第二水箱采用耐酸材料,其上面设有密封盖,下端为漏斗形状,其内设有搅拌器、液位传感器和pH传感器;所述密封盖的端面设有至少5个通孔;所述第二水箱与所述过滤器之间的管道伸入水箱中,管道顶部为密封结构,管道壁设有多个孔径为50μm的孔,孔的最低高度控制在水箱高度的1/100-1/10处,所述伸入水箱管道外设有过滤罩,所述过滤罩的孔径为100μm;第二水箱设有氮气供给装置,防止腐殖酸在碱性条件下氧化;
所述总控制系统与所述预处理单元、所述酸碱度调节单元、pH值自动调节单元控制连接。
2.如权利要求1所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述预处理单元包括一级精密微滤过滤器、二级精密微滤过滤器和三级精密微滤过滤器,一级精密微过滤器中精密滤芯的孔径为5μm,二级精密微过滤器中精密滤芯的孔径为1μm,三级精密微滤过滤器中精密滤芯的孔径为0.45μm;所述一级精密微滤过滤器的入口与自吸泵的出口连接,一级精密微滤过滤器的出口与二级精密微滤过滤器的入口连接,二级精密微滤过滤器的出口与三级精密微滤过滤器的入口连接,三级精密微滤过滤器的出口与第一水箱连接。
3.如权利要求2所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述第一水箱采用耐酸材料,其上面设有密封盖,下端为漏斗形状,其内设有搅拌器、液位传感器和pH传感器;所述密封盖的端面设有至少5个通孔;所述第一水箱与所述吸附富集装置之间的管道伸入水箱中,管道顶部为密封结构,管道壁设有多个孔径为50μm的孔,孔的最低高度控制在水箱高度的1/100-1/10处,所述伸入水箱管道外设有过滤罩,所述过滤罩的孔径为100μm。
4.如权利要求3所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述反渗透浓缩单元包括反渗透单元、高压泵及第一电导率探头和第二电导率探头;其中反渗透单元包括反渗透膜和不锈钢膜壳,所述反渗透膜的孔径取值为0.1nm;
所述第一电导率探头设于所述反渗透单元浓水出口处,第二电导率探头设于反渗透单元的纯水出口与淋洗装置之间;
所述反渗透单元设有液体进口,浓水出口和纯水出口;所述液体进口通过高压泵与第一水箱连接,所述浓水出口与第一水箱连接,所述纯水出口与淋洗装置连接;所述反渗透单元浓水和纯水出口均设有安保阀。
5.如权利要求4所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述酸碱度调节单元中包括pH传感器、搅拌器、计量加药泵和酸液药剂箱;所述pH传感器设于第一水箱中,所述计量加药泵设于第一水箱和酸液药剂箱之间,计量加药泵的入口与酸液药剂箱的出口连接,计量加药泵的出口与第一水箱连接。
6.如权利要求5所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述有机质提取单元包括吸附富集装置和第一加药装置,所述吸附富集装置的入口与第一水箱连接,第一加药装置的出口与吸附富集装置的入口连接,吸附富集装置的出口与所述第二水箱的入口连接,吸附富集装置的底部设有废液排出开关;
所述吸附富集装置包括吸附柱和填料,所述填料设于所述吸附柱内,所述填料为XAD-8树脂、DAX-8树脂和XAD-7树脂的一种或多种。
7.如权利要求6所述淡水水体中憎水性溶解腐殖酸提取装置,其特征在于,所述总控制系统包括控制单元和触屏器,所述控制单元与触屏器连接,所述控制单元与自吸泵、液位传感器、pH传感器、计量泵、高压泵和pH值自动调节单元连接;所述第一水箱中设有液位传感器;所述第一水箱和第二水箱中设有pH传感器,所述pH传感器设有升降台。
8.利用权利要求1-7任一所述的淡水水体中憎水性溶解腐殖酸提取装置进行腐殖酸提取的方法,其特征在于,包括如下步骤:
(1)启动总控制系统的总电源启动按钮;
(2)启动自吸泵启动按钮,自吸泵通过管道吸取原水,自吸泵前端的过滤袋对原水进行预过滤,过滤后的原水通过自吸泵的增压进入预处理单元中的一级精密微滤过滤器对原水进行一次过滤,一次过滤后的原水进入二级精密微滤过滤器进行二次过滤,经二次过滤后的原水进入三级精密微滤过滤器进行三次过滤;经三次过滤后的原水通过管道进入第一水箱;当第一水箱中的水位达到4/5水箱高度时,自吸泵停止工作;
(3)第一水箱中的原水经高压泵增压通过管道进入到反渗透浓缩单元,反渗透膜可对原水中的溶解无机盐和天然溶解有机物进行浓缩,得到纯水和浓水;经过反渗透膜的纯水直接排放到淋洗装置中进行存储,浓水循环进入第一水箱,当位于第一水箱中的溶解有机碳在线测定装置测定的浓水中溶解有机碳的含量达到预设值时,停止浓缩;
(4)启动酸碱度调节单元,计量加药泵接收pH传感器信号启动酸液药剂箱,酸液药剂箱通过耐酸管道向第一水箱中注入酸液,同时第一水箱中搅拌马达启动,使得酸液和浓水均匀混合,直到达到预设的pH值,计量加药泵和第一水箱搅拌马达停止工作;
(5)完成pH值调节后的浓水通过管道流入吸附富集装置,吸附完成后,打开淋洗装置与吸附富集装置之间的开关,淋洗装置中的纯水通过管道冲洗吸附富集装置,并打开吸附富集装置底部的废液排出开关,冲洗废液通过管道排出,完成吸附富集装置的冲洗,关闭废液排出开关;
(6)完成吸附富集装置冲洗后,关闭淋洗装置的出口阀门,打开第一加药装置的出口阀门,第一加药装置通过耐碱管道向吸附富集装置中注入碱液,被树脂吸附的天然溶解有机质在碱液的作用下发生解吸,解吸后的液体经管道流入第二水箱;
(7)启动pH值自动调节单元,pH值自动调节单元接收pH传感器的检测信号启动酸液加入程序,经计量加药泵,从第二加药装置抽取酸液通过第一耐酸管道向第二水箱中注入非氧化性酸液,同时第二水箱中搅拌马达启动,使得酸液和有机质溶液均匀混合,直到达到预设的pH值,第一道加酸液程序停止工作;
计量加药泵从第三加药装置中抽取氢氟酸,通过第二耐酸管道向第二水箱中注入氢氟酸,直到第二水箱中的液体达到预设的氢氟酸浓度,计量加药泵停止工作;
(8)持续搅拌10-48h后,打开第二水箱的出口阀门,同时启动真空泵,通过真空泵施压,第二水箱中的有机质经滤膜过滤,憎水性腐殖酸被截留在滤膜上面,可溶杂质流入液体储存器中;
(9)有机质完成过滤后,第二水箱搅拌马达自动停止工作,关闭第二水箱的出口阀门,打开淋洗装置的出口阀门,通过真空泵施压,淋洗装置中的纯水通过管道流入过滤器,对滤膜进行冲洗;冲洗完成后,液体储存器中的液体直接排放掉,留在滤膜上的有机质为所需提取的憎水性溶解腐殖酸,冷冻干燥后得到固体粉末。
9.如权利要求8所述淡水水体中憎水性溶解腐殖酸提取方法,其特征在于,反渗透单元纯水的排出管道上设有调速阀,所述反渗透单元浓水出口与所述水箱连接的管道上设有调速阀,反渗透膜排出的纯水量与排出的浓水量的比值为1:9-9:1。
10.如权利要求8所述淡水水体中憎水性溶解腐殖酸提取方法,其特征在于,所述耐酸管道和第一耐酸管道要求能承受均为10mol/L的强酸;所述第一加药装置中的碱液为0.1mol/L的强碱强碱;所述耐碱管道要求能承受0.5mol/L的强碱;所述第二耐酸管道要求能承受6mol/L的氢氟酸;所述第一水箱中的混酸浓度取值为0.001-0.5mol/L非氧化性强酸,pH的预设值为0.5-3;所述第二水箱中的混酸浓度取值为0.001-0.5mol/L非氧化性强酸和0.01-0.5mol/L氢氟酸,并且可以承受0.1mol/L的强碱,所述pH的预设值为0.5-3。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610920508.2A CN106365354B (zh) | 2016-10-21 | 2016-10-21 | 一种淡水水体中憎水性溶解腐殖酸提取装置 |
PCT/CN2016/109455 WO2018072281A1 (zh) | 2016-10-21 | 2016-12-12 | 一种淡水水体中憎水性溶解腐殖酸提取装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610920508.2A CN106365354B (zh) | 2016-10-21 | 2016-10-21 | 一种淡水水体中憎水性溶解腐殖酸提取装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106365354A CN106365354A (zh) | 2017-02-01 |
CN106365354B true CN106365354B (zh) | 2017-12-26 |
Family
ID=57895279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610920508.2A Expired - Fee Related CN106365354B (zh) | 2016-10-21 | 2016-10-21 | 一种淡水水体中憎水性溶解腐殖酸提取装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106365354B (zh) |
WO (1) | WO2018072281A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018145458A1 (zh) * | 2017-02-08 | 2018-08-16 | 中国环境科学研究院 | 一种用于提取土壤腐殖酸的装置及其制备方法 |
CN106932259B (zh) * | 2017-02-08 | 2018-04-10 | 中国环境科学研究院 | 一种用于提取土壤憎水溶解有机质的装置 |
CN106905382B (zh) * | 2017-02-08 | 2018-10-09 | 中国环境科学研究院 | 一种提取土壤憎水腐殖酸的装置 |
CN106893114B (zh) * | 2017-02-08 | 2018-06-29 | 中国环境科学研究院 | 一种用于提取土壤腐殖酸全组分的设备 |
WO2018145457A1 (zh) * | 2017-02-08 | 2018-08-16 | 中国环境科学研究院 | 土壤憎水溶解有机质的提取纯化装置 |
CN108996771A (zh) * | 2018-09-29 | 2018-12-14 | 西安建筑科技大学 | 一种浓缩提取微污染水体中化学组分的多柱分配装置 |
CN110255756B (zh) * | 2019-06-05 | 2024-04-30 | 中国石油天然气集团有限公司 | 一种钻井液分离液深度净化处理设备及净化处理方法 |
CN110501203B (zh) * | 2019-08-05 | 2024-04-02 | 未名环境分子诊断(广东)有限公司 | 一种水环境中精神活性物质的现场快速富集净化装置及方法 |
CN110808350A (zh) * | 2019-11-13 | 2020-02-18 | 中材科技膜材料(山东)有限公司 | 一种agm隔膜用自动加酸工艺装置 |
CN113461075A (zh) * | 2020-03-31 | 2021-10-01 | 三一重型装备有限公司 | 矿用纯水制备装置 |
CN111762949B (zh) * | 2020-07-24 | 2024-06-21 | 核工业理化工程研究院 | 高效含硼废水处理系统 |
CN112125432A (zh) * | 2020-09-04 | 2020-12-25 | 西安长庆科技工程有限责任公司 | 一种油田清水处理加药再生一体机及方法 |
CN113716652A (zh) * | 2021-09-26 | 2021-11-30 | 杭州天泽净化科技有限公司 | 一种多方案备用的医用集中供水系统及备用控制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004325425A (ja) * | 2003-04-28 | 2004-11-18 | Silk Kogei:Kk | 水中フルボ酸の粉末標準試料の製造方法 |
CN104230079A (zh) * | 2013-06-19 | 2014-12-24 | 中国石油天然气股份有限公司 | 一种反渗透浓水中有机物的分离方法 |
CN204346808U (zh) * | 2015-01-08 | 2015-05-20 | 常州大学 | 水中低浓度有机物组成分析的预处理装置 |
CN105347593A (zh) * | 2015-11-16 | 2016-02-24 | 浙江工业大学 | 一种淡水中溶解性有机质的提取分离方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003082748A1 (en) * | 2002-04-03 | 2003-10-09 | Orica Australia Pty Ltd | Process for regenerating ion-exchange resins |
CN202036818U (zh) * | 2010-12-31 | 2011-11-16 | 北京工业大学 | 一种水中溶解态有机物富集分离系统 |
WO2013023282A1 (en) * | 2011-08-17 | 2013-02-21 | Al-Samadi Riad A | High recovery drinking water process |
CN105036412B (zh) * | 2015-07-28 | 2017-06-20 | 广州众康环保设备有限公司 | 去除有机物的过滤器及方法以及超纯水制备方法 |
CN204824456U (zh) * | 2015-07-28 | 2015-12-02 | 张平原 | 一种去除有机物的过滤器 |
-
2016
- 2016-10-21 CN CN201610920508.2A patent/CN106365354B/zh not_active Expired - Fee Related
- 2016-12-12 WO PCT/CN2016/109455 patent/WO2018072281A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004325425A (ja) * | 2003-04-28 | 2004-11-18 | Silk Kogei:Kk | 水中フルボ酸の粉末標準試料の製造方法 |
CN104230079A (zh) * | 2013-06-19 | 2014-12-24 | 中国石油天然气股份有限公司 | 一种反渗透浓水中有机物的分离方法 |
CN204346808U (zh) * | 2015-01-08 | 2015-05-20 | 常州大学 | 水中低浓度有机物组成分析的预处理装置 |
CN105347593A (zh) * | 2015-11-16 | 2016-02-24 | 浙江工业大学 | 一种淡水中溶解性有机质的提取分离方法 |
Non-Patent Citations (2)
Title |
---|
应用XAD系列树脂分离和富集天然水体中溶解有机质的研究进展;王立英 等;《地球与环境》;20060131;第34卷(第1期);第90-96页 * |
松花江水中天然有机物的提取分离与特性表征;郭瑾 等;《环境科学》;20050930;第26卷(第5期);第77-84页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2018072281A1 (zh) | 2018-04-26 |
CN106365354A (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106365354B (zh) | 一种淡水水体中憎水性溶解腐殖酸提取装置 | |
CN106365353B (zh) | 一种淡水水体中溶解富里酸提取装置 | |
CN106336515B (zh) | 一种采用两级树脂联用提取水体富里酸的设备 | |
CN106477767B (zh) | 一种提取淡水水体中富里酸的设备及其提取方法 | |
CN106315925B (zh) | 淡水水体中有机质浓缩提纯装置及其制备方法 | |
CN106315924B (zh) | 一种水体中溶解有机质纳滤浓缩提纯装置及提纯方法 | |
WO2018072280A1 (zh) | 一种淡水水体中溶解富里酸提取装置及其制备方法 | |
CN106336041B (zh) | 反渗透与一级树脂联用提取淡水富里酸的装置 | |
CN106830187A (zh) | 具有防止反渗透膜二次污染功能的净水器 | |
CN106315956B (zh) | 两级碱洗式水体溶解有机质的提取设备及其使用方法 | |
CN106396153B (zh) | 一种淡水水体中溶解腐殖酸提取装置及提取方法 | |
CN106430712B (zh) | 采用两级树脂提取淡水富里酸的装置及制备方法 | |
CN206437955U (zh) | 具有防止反渗透膜二次污染功能的净水器 | |
CN106348513B (zh) | 一种反渗透与树脂联用提取淡水有机质的设备 | |
CN106430711B (zh) | 采用两级树脂提取淡水有机质的装置 | |
CN106519259B (zh) | 一种用于提取水体富里酸的设备 | |
CN106496592B (zh) | 用于提取水体中憎水腐殖酸的设备 | |
CN106396172B (zh) | 淡水水体中溶解有机质的两级碱洗式提取装置 | |
CN106397790B (zh) | 一种水体中亲水-疏水双性腐殖酸提取设备 | |
CN101665295A (zh) | 一种水处理设备、水处理系统及其水处理方法 | |
CN106872231B (zh) | 土壤憎水富里酸组分提取纯化装置 | |
WO2018072282A1 (zh) | 用于提取水体中富里酸的设备 | |
CN106893114B (zh) | 一种用于提取土壤腐殖酸全组分的设备 | |
CN209685491U (zh) | 一种拼接试饮用水净水设备 | |
CN106905382B (zh) | 一种提取土壤憎水腐殖酸的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171226 Termination date: 20201021 |
|
CF01 | Termination of patent right due to non-payment of annual fee |