CN106363612A - 一种视觉引导的全向移动双臂机器人及其全向移动方法 - Google Patents

一种视觉引导的全向移动双臂机器人及其全向移动方法 Download PDF

Info

Publication number
CN106363612A
CN106363612A CN201610906943.XA CN201610906943A CN106363612A CN 106363612 A CN106363612 A CN 106363612A CN 201610906943 A CN201610906943 A CN 201610906943A CN 106363612 A CN106363612 A CN 106363612A
Authority
CN
China
Prior art keywords
chassis
robot
omni
ultrasonic sensor
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610906943.XA
Other languages
English (en)
Inventor
康升征
吴洪涛
杨小龙
李耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610906943.XA priority Critical patent/CN106363612A/zh
Publication of CN106363612A publication Critical patent/CN106363612A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/026Acoustical sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种视觉引导的全向移动双臂机器人及其全向移动方法,全向移动双臂机器人包含车体、上位机、支撑骨架、深度摄像头、第一至第四超声波传感器模块、以及第一至第二机械臂;上位机和支撑骨架均固定在车体上;深度摄像头、第一至第二机械臂均设置在支撑骨架上;深度摄像头和上位机电气相连;车体包含底盘、车盖、第一至第四直流电机、第一至第四电机驱动模块、第一至第四联轴器、第一至第四全向轮、下位机和蓝牙模块。本发明增大了机器人的工作空间范围,提高了其灵活性,具有较大的实用价值。

Description

一种视觉引导的全向移动双臂机器人及其全向移动方法
技术领域
本发明涉及一种移动双臂机器人,尤其是一种能够进行视觉引导的具有全向运动能力的移动双臂机器人及其全向移动方法。
背景技术
移动机器人因其运动灵活、工作空间大在工程领域备受青睐,按移动特性可分为非全向和全向两种。非全向轮式移动机器人结构简单、运动控制方便,已经广泛的应用工业各个领域。然而随着移动机器人应用范围的不断扩大,对于工作空间狭窄以及机动性要求高的场合,非全向轮式移动机器人已经很难满足要求。全向移动机器人是一种满足完整约束条件,并具有平面内三个自由度的机器人。与非全向轮式移动机器人相比,全向移动机器人可以在保持车体姿态不变的情况下,从当前位置向工作平面上的任意位置和方向运动。它能够通过狭窄的通道、直角弯道,能够在需要精确定位和高精度轨迹跟踪的场合进行自身位姿的细微调整。此外,全向移动机器人摆脱了转弯半径的限制,能够实现零曲率半径运动。然而,全向移动机器人并不能像机械操作臂一样进行复杂的操作任务,这也就限制了其应用范围。
机械操作臂具有工作效率高,重复精度好,功能强大等优点,因而被广泛应用到了生产加工、服务运输等各个领域。但由于固定在操作台上的操作臂的工作空间十分有限,极大地制约了机械操作臂功能的拓展。虽然专利“超冗余全方位移动操作臂”(专利号CN101428420)中提出了在全向移动机器人上加上单个机械臂,提高了机器人的性能,但是对于需要协调操作、复杂精密的操作任务依然很难胜任。
发明内容
本发明所要解决的技术问题是针对背景技术中所涉及到的缺陷,提供一种视觉引导的全向移动双臂机器人及其全向移动方法。
本发明为解决上述技术问题采用以下技术方案:
一种视觉引导的全向移动双臂机器人,包含车体、上位机、支撑骨架、深度摄像头、第一至第四超声波传感器模块、以及第一至第二机械臂;
所述上位机和支撑骨架均固定在车体上;所述深度摄像头、第一至第二机械臂均设置在支撑骨架上;
所述深度摄像头和所述上位机电气相连,用于拍摄全向移动双臂机器人正面的图像并将其传递给所述上位机;
所述车体包含底盘、车盖、第一至第四直流电机、第一至第四电机驱动模块、第一至第四联轴器、第一至第四全向轮、下位机和蓝牙模块;
所述第一至第四直流电机均固定在底盘上,其输出轴分别通过第一至第四联轴器与第一至第一至第四全向轮的输入轴对应相连;
所述第一至第四直流驱动模块分别和第一至第四直流电机对应相连,用于驱动其对应的直流电机;
所述车盖设置在底盘上、呈长方体;
所述第一至第四超声波传感器模块分别对应设置在车盖的四个侧面上,用于测量车盖四个侧面和障碍物之间的距离;
所述蓝牙模块和所述上位机基于无线通信;
所述下位机分别和第一至第四电机驱动模块、第一至第四超声波传感器模块、第一至第二机械臂、蓝牙模块电气相连,用于将第一至第四超声波传感器模块的感应数据传递给所述上位机、并根据接收到的上位机的控制命令控制第一至第四电机驱动模块以及第一至第二机械臂工作;
所述上位机用于根据深度摄像头拍摄的图像、第一至第四超声波传感器模块的感应数据、以及外部输入的工作指令发送控制命令给所述下位机。
作为本发明一种视觉引导的全向移动双臂机器人进一步的优化方案,所述第一至第二机械臂均包含三个用于控制机械臂运动方向的旋转驱动单元和一个机械手爪;其中,所述机械手爪通过三个旋转驱动单元和所述固定骨架连接;所述三个旋转驱动单元、机械手爪均和所述下位机电气相连。
作为本发明一种视觉引导的全向移动双臂机器人进一步的优化方案,所述机械手爪的夹持面上设有和所述下位机电气相连的触觉传感器。
作为本发明一种视觉引导的全向移动双臂机器人进一步的优化方案,所述底盘包含前底盘和后底盘,所述前底盘和后底盘之间通过连接轴固连;
所述第一至第二直流电机设置在前底盘上,第三至第四直流电机设置在后底盘上;
所述后底盘上设有四根支撑柱,所述车盖通过螺栓与所述四根支撑柱的顶端固连。
作为本发明一种视觉引导的全向移动双臂机器人进一步的优化方案,所述第一至第四超声波传感器模块均包含超声波发射单元和超声波接收单元;
所述车盖的四个侧面上均设有两个安装有橡胶套的孔洞;
所述第一至第四超声波传感器模块的超声波发射单元和超声波接收单元分别对应设置在车盖四个侧面的孔洞中。
本发明还公开了基于该视觉引导的全向移动双臂机器人的全向控制方法,包含以下步骤:
以底盘中心为原点、前进方向为X轴、X轴的顺时针方向90度为Y轴建立坐标系,得到底盘的正向运动学方程:
q · = J Θ · J = R / 4 - 1 1 1 - 1 1 1 1 1 - 1 / a 1 / a - 1 / a 1 / a a = l 1 + l 2
式中,为底盘在坐标系下的位姿矢量,vx为底盘在X轴的速度、vy为底盘在Y轴的速度,ωz为底盘在坐标系下的旋转角速度,为左前轮、右前轮、左后轮、右后轮在该坐标系下的角速度矢量,J为底盘速度与轮子转速之间的映射雅克比矩阵,l1和l2分别为轮毂轴心与O点的横向和纵向距离,R为轮子半径,逆时针转动为正方向;
若使机器人向X方向运动,控制且机器人的速度为vy=0,ωz=0;
若使机器人向Y方向运动,控制且机器人的速度为vx=0,ωz=0;
若使机器人原地旋转,控制且机器人的速度为vx=0,vy=0,
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
本发明视觉引导的全向移动双臂机器人集视觉、触觉及测距等多传感器于一体,具有与人类似的灵敏的外界环境感知能力,不仅能够实现任意方向的平动以及任意半径的转动,而且通过双臂的相互协调配合,能够较好地完成复杂环境下的避障、自主导航、柔性化装配等任务要求,从而更好地增大了机器人的工作空间范围,提高了其灵活性。此外,深度摄像头能够捕捉人体手臂动作来控制机械臂的运动,进行示教,同时还能采集环境图像数据,构建点云地图从而进行视觉导航。
附图说明
图1为本发明视觉引导的全向移动双臂机器人位于初始状态下的结构示意图;
图2为本发明中车盖部件在拆装状态下的结构示意图;
图3为本发明中不含车盖的车体的结构示意图;
图4为本发明视觉引导的全向移动双臂机器人位于工作状态下的结构示意图;
图5为本发明视觉引导的全向移动双臂机器人的控制系统结构图;
图6为本发明中底盘的坐标系统。
图中,1-车体,2-上位机,3-支撑骨架,4-深度摄像头,5-机械臂,6-车盖,7-车盖,8-橡胶套,9-超声波传感器模块,10-安装孔,11-底盘,12-直流电机,13-联轴器,14-后底盘,15-连接轴,16-前底盘,17-全向轮,18-电机驱动模块,19-下位机,20-蓝牙模块,21-支撑柱,22-旋转驱动单元,23-机械手爪。
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明:
如图1至图4所示,本发明公开了一种视觉引导的全向移动双臂机器人,包含车体、上位机、支撑骨架、深度摄像头、第一至第四超声波传感器模块、以及第一至第二机械臂;
所述上位机和支撑骨架均固定在车体上;所述深度摄像头、第一至第二机械臂均设置在支撑骨架上;
所述深度摄像头和所述上位机电气相连,用于拍摄全向移动双臂机器人正面的图像并将其传递给所述上位机;
所述车体包含底盘、车盖、第一至第四直流电机、第一至第四电机驱动模块、第一至第四联轴器、第一至第四全向轮、下位机和蓝牙模块;
所述第一至第四直流电机均固定在底盘上,其输出轴分别通过第一至第四联轴器与第一至第一至第四全向轮的输入轴对应相连;
所述第一至第四直流驱动模块分别和第一至第四直流电机对应相连,用于驱动其对应的直流电机;
所述车盖设置在底盘上、呈长方体;
所述第一至第四超声波传感器模块分别对应设置在车盖的四个侧面上,用于测量车盖四个侧面和障碍物之间的距离;
所述蓝牙模块和所述上位机基于无线通信;
所述下位机分别和第一至第四电机驱动模块、第一至第四超声波传感器模块、第一至第二机械臂、蓝牙模块电气相连,用于将第一至第四超声波传感器模块的感应数据传递给所述上位机、并根据接收到的上位机的控制命令控制第一至第四电机驱动模块以及第一至第二机械臂工作;
所述上位机用于根据深度摄像头拍摄的图像、第一至第四超声波传感器模块的感应数据、以及外部输入的工作指令发送控制命令给所述下位机。
所述第一至第二机械臂均包含三个用于控制机械臂运动方向的旋转驱动单元和一个机械手爪;其中,所述机械手爪通过三个旋转驱动单元和所述固定骨架连接;所述三个旋转驱动单元、机械手爪均和所述下位机电气相连。
所述机械手爪的夹持面上设有和所述下位机电气相连的触觉传感器。
所述底盘包含前底盘和后底盘,所述前底盘和后底盘之间通过连接轴固连;
所述第一至第二直流电机设置在前底盘上,第三至第四直流电机设置在后底盘上;
所述后底盘上设有四根支撑柱,所述车盖通过螺栓与所述四根支撑柱的顶端固连。
所述第一至第四超声波传感器模块均包含超声波发射单元和超声波接收单元;
所述车盖的四个侧面上均设有两个安装有橡胶套的孔洞;
所述第一至第四超声波传感器模块的超声波发射单元和超声波接收单元分别对应设置在车盖四个侧面的孔洞中。
如图5所示的视觉引导的全向移动双臂机器人的控制系统结构图,下位机分别与旋转驱动单元、蓝牙模块、超声波传感器模块以及电机驱动模块通过端口导线连接,并均由所述下位机发送控制指令,实现相应的功能;其中,所述旋转驱动单元通过自身旋转来驱动机械臂运动;所述电机驱动模块用来驱动直流电机转动;所述超声波传感器模块用来实时探测环境障碍物到自身的距离;所述蓝牙模块用于传递感应数据和接收上位机发送的控制指令;深度摄像头通过自身携带的信号线与上位机的USB端口连接通讯,并由上位机控制其实现环境图像数据的获取。
为了控制全向移动双臂机器人进行全方位移动,需要对车体进行运动学分析。以底盘中心为原点、前进方向为X轴、X轴的顺时针方向为Y轴90度建立如图6所示的底盘的坐标系统,通过对机器人的轮子转速和车体速度之间关系进行分析,可得到底盘的正向运动学方程如下:
q · = J Θ · J = R / 4 - 1 1 1 - 1 1 1 1 1 - 1 / a 1 / a - 1 / a 1 / a a = l 1 + l 2 - - - ( 1 )
式中:为底盘在坐标系下的位姿矢量,vx为底盘在X轴的速度、vy为底盘在Y轴的速度,ωz为底盘在坐标系下的旋转角速度,为左前轮、右前轮、左后轮、右后轮在该坐标系下的角速度矢量,J为底盘速度与轮子转速之间的映射雅克比矩阵,l1和l2分别为轮毂轴心与O点的横向和纵向距离,R为轮子半径,逆时针转动为正方向。
由于雅克比矩阵J的秩Rank(J)=3,故MWSR不存在奇异位形,利用广义逆运算即可求得逆向运动学方程。由式(1)可知,若使机器人向X方向运动,则应满足且机器人的速度为vy=0,ωz=0;若使机器人向Y方向运动,应满足且机器人的速度为vx=0,ωz=0;若使机器人原地旋转,应满足且机器人的速度为vx=0,vy=0,
在移动过程中,超声波传感器模块会实时探测环境障碍物到自身的距离并给予反馈,同时深度摄像头也会采集环境图像点云数据,由上位机进行三维重构,再对目标进行识别,根据识别的物体类型来引导机器人进行移动、抓取或双臂协同操作等。在本实施方式中,当探测到前方是障碍物并小于安全距离时,下位机会发送控制指令,使图6中的左前轮和右后轮顺时针转动,而右前轮和左后轮逆时针转动,这样驱动机器人向后移动达到安全区域,或者左前轮和左后轮逆时针转动,右前轮和右后轮顺时针转动,使得机器人原地转向朝其他安全区域移动等等,在实际运动过程中,不局限与上述运动方式,而是根据环境的复杂程度,选择运动量最少的运动方向;而当探测到前方是目标物体时,下位机会发送控制指令,控制旋转驱动单元驱动机械臂运动,并通过机械手爪进行抓取目标操作,对于需要协调操作的任务,也可控制两个机械臂同时操作。
本技术领域技术人员可以理解的是,除非另外定义,这里使用的所有术语(包含技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种视觉引导的全向移动双臂机器人,其特征在于,包含车体、上位机、支撑骨架、深度摄像头、第一至第四超声波传感器模块、以及第一至第二机械臂;
所述上位机和支撑骨架均固定在车体上;所述深度摄像头、第一至第二机械臂均设置在支撑骨架上;
所述深度摄像头和所述上位机电气相连,用于拍摄全向移动双臂机器人正面的图像并将其传递给所述上位机;
所述车体包含底盘、车盖、第一至第四直流电机、第一至第四电机驱动模块、第一至第四联轴器、第一至第四全向轮、下位机和蓝牙模块;
所述第一至第四直流电机均固定在底盘上,其输出轴分别通过第一至第四联轴器与第一至第四全向轮的输入轴对应相连;
所述第一至第四直流驱动模块分别和第一至第四直流电机对应相连,用于驱动其对应的直流电机;
所述车盖设置在底盘上、呈长方体;
所述第一至第四超声波传感器模块分别对应设置在车盖的四个侧面上,用于测量车盖四个侧面和障碍物之间的距离;
所述蓝牙模块和所述上位机基于无线通信;
所述下位机分别和第一至第四电机驱动模块、第一至第四超声波传感器模块、第一至第二机械臂、蓝牙模块电气相连,用于将第一至第四超声波传感器模块的感应数据传递给所述上位机、并根据接收到的上位机的控制命令控制第一至第四电机驱动模块以及第一至第二机械臂工作;
所述上位机用于根据深度摄像头拍摄的图像、第一至第四超声波传感器模块的感应数据、以及外部输入的工作指令发送控制命令给所述下位机。
2.根据权利要求1所述的视觉引导的全向移动双臂机器人,其特征在于,所述第一至第二机械臂均包含三个用于控制机械臂运动方向的旋转驱动单元和一个机械手爪;其中,所述机械手爪通过三个旋转驱动单元和所述固定骨架连接;所述三个旋转驱动单元、机械手爪均和所述下位机电气相连。
3.根据权利要求2所述的视觉引导的全向移动双臂机器人,其特征在于,所述机械手爪的夹持面上设有和所述下位机电气相连的触觉传感器。
4.根据权利要求1所述的视觉引导的全向移动双臂机器人,其特征在于,所述底盘包含前底盘和后底盘,所述前底盘和后底盘之间通过连接轴固连;
所述第一至第二直流电机设置在前底盘上,第三至第四直流电机设置在后底盘上;
所述后底盘上设有四根支撑柱,所述车盖通过螺栓与所述四根支撑柱的顶端固连。
5.根据权利要求1所述的视觉引导的全向移动双臂机器人,其特征在于,所述第一至第四超声波传感器模块均包含超声波发射单元和超声波接收单元;
所述车盖的四个侧面上均设有两个安装有橡胶套的孔洞;
所述第一至第四超声波传感器模块的超声波发射单元和超声波接收单元分别对应设置在车盖四个侧面的孔洞中。
6.基于权利要求1所述的视觉引导的全向移动双臂机器人的全向控制方法,其特征在于,包含以下步骤:
以底盘中心为原点、前进方向为X轴、X轴的顺时针方向90度为Y轴建立坐标系,得到底盘的正向运动学方程:
q · = J Θ · J = R / 4 - 1 1 1 - 1 1 1 1 1 - 1 / a 1 / a - 1 / a 1 / a a = l 1 + l 2
式中,为底盘在坐标系下的位姿矢量,vx为底盘在X轴的速度、vy为底盘在Y轴的速度,ωz为底盘在坐标系下的旋转角速度,为左前轮、右前轮、左后轮、右后轮在坐标系下的角速度矢量,J为底盘速度与轮子转速之间的映射雅克比矩阵,l1和l2分别为轮毂轴心与O点的横向和纵向距离,R为轮子半径,逆时针转动为正方向;
若使机器人向X方向运动,控制且机器人的速度为vy=0,ωz=0;
若使机器人向Y方向运动,控制且机器人的速度为vx=0,ωz=0;
若使机器人原地旋转,控制且机器人的速度为vx=0,vy=0,
CN201610906943.XA 2016-10-18 2016-10-18 一种视觉引导的全向移动双臂机器人及其全向移动方法 Pending CN106363612A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610906943.XA CN106363612A (zh) 2016-10-18 2016-10-18 一种视觉引导的全向移动双臂机器人及其全向移动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610906943.XA CN106363612A (zh) 2016-10-18 2016-10-18 一种视觉引导的全向移动双臂机器人及其全向移动方法

Publications (1)

Publication Number Publication Date
CN106363612A true CN106363612A (zh) 2017-02-01

Family

ID=57895428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610906943.XA Pending CN106363612A (zh) 2016-10-18 2016-10-18 一种视觉引导的全向移动双臂机器人及其全向移动方法

Country Status (1)

Country Link
CN (1) CN106363612A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106695797A (zh) * 2017-02-22 2017-05-24 哈尔滨工业大学深圳研究生院 基于双臂机器人协同操作的柔顺控制方法及系统
CN107253191A (zh) * 2017-05-22 2017-10-17 广州中国科学院先进技术研究所 一种双机械臂系统及其协调控制方法
CN108748182A (zh) * 2018-06-12 2018-11-06 芜湖乐创电子科技有限公司 一种基于可视化控制的接线机器人
CN108942869A (zh) * 2018-09-02 2018-12-07 南京吉目希自动化科技有限公司 一种智能全向移动机器人
CN109108979A (zh) * 2018-09-14 2019-01-01 广东人励智能工程有限公司 一种基于工业机器人实现伺服驱动控制的系统及方法
CN109129459A (zh) * 2017-06-28 2019-01-04 上海优爱宝智能机器人科技股份有限公司 双臂机器人
CN109397244A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种一体化双7自由度机械臂全向移动机器人系统与控制方法
CN109746928A (zh) * 2019-01-30 2019-05-14 南京航空航天大学 一种可移动双机器人自动铣削的智能化柔性生产线及其运行方法
CN109849016A (zh) * 2019-03-28 2019-06-07 合肥工业大学 一种具有行走和搬运功能的家用服务机器人
CN109940598A (zh) * 2019-02-15 2019-06-28 盐城工学院 一种搭载机械臂的智能作业车
CN109973757A (zh) * 2017-12-28 2019-07-05 中国科学院沈阳自动化研究所 一种基于超越离合机理的欠驱动攀爬机器人
CN110101572A (zh) * 2019-04-28 2019-08-09 南京云视郎生物科技有限公司 一种拔针机器人及其拔针方法
CN110154033A (zh) * 2019-06-21 2019-08-23 哈工大机器人(合肥)国际创新研究院 全向移动双臂机器人
CN110216688A (zh) * 2019-05-23 2019-09-10 浙江工业大学 一种办公区送件服务机器人及其控制方法
CN110340868A (zh) * 2018-04-08 2019-10-18 AIrobot株式会社 机械臂、作业机构和自主移动搬运机器人
CN111409056A (zh) * 2020-04-29 2020-07-14 天津航天机电设备研究所 一种全向移动机器人
CN111673738A (zh) * 2020-05-15 2020-09-18 中国第一汽车股份有限公司 一种自动引导智能双臂搬运机器人
CN113276090A (zh) * 2020-12-08 2021-08-20 北京联合大学 一种大承载仿人双臂服务机器人
CN113524148A (zh) * 2021-08-04 2021-10-22 合肥工业大学 一种移动双臂柔性装配机器人
CN115635272A (zh) * 2022-10-24 2023-01-24 南京佳和牙科技术有限公司 牙模与底座的安装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736826A (en) * 1985-04-22 1988-04-12 Remote Technology Corporation Remotely controlled and/or powered mobile robot with cable management arrangement
US5857534A (en) * 1997-06-05 1999-01-12 Kansas State University Research Foundation Robotic inspection apparatus and method
CN1562575A (zh) * 2004-03-25 2005-01-12 上海交通大学 复印机自动添换纸机器人
CN1611331A (zh) * 2003-10-29 2005-05-04 中国科学院自动化研究所 移动机械手系统
CN101428420A (zh) * 2008-12-17 2009-05-13 哈尔滨工业大学 超冗余全方位移动操作臂
CN105291086A (zh) * 2015-11-19 2016-02-03 长春诺惟拉智能科技有限责任公司 用于送餐的室内移动机器人
CN206123654U (zh) * 2016-10-18 2017-04-26 南京航空航天大学 一种视觉引导的全向移动双臂机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736826A (en) * 1985-04-22 1988-04-12 Remote Technology Corporation Remotely controlled and/or powered mobile robot with cable management arrangement
US5857534A (en) * 1997-06-05 1999-01-12 Kansas State University Research Foundation Robotic inspection apparatus and method
CN1611331A (zh) * 2003-10-29 2005-05-04 中国科学院自动化研究所 移动机械手系统
CN1562575A (zh) * 2004-03-25 2005-01-12 上海交通大学 复印机自动添换纸机器人
CN101428420A (zh) * 2008-12-17 2009-05-13 哈尔滨工业大学 超冗余全方位移动操作臂
CN105291086A (zh) * 2015-11-19 2016-02-03 长春诺惟拉智能科技有限责任公司 用于送餐的室内移动机器人
CN206123654U (zh) * 2016-10-18 2017-04-26 南京航空航天大学 一种视觉引导的全向移动双臂机器人

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龚振邦等: "《机器人机械设计》", 30 November 1995 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106695797A (zh) * 2017-02-22 2017-05-24 哈尔滨工业大学深圳研究生院 基于双臂机器人协同操作的柔顺控制方法及系统
CN107253191A (zh) * 2017-05-22 2017-10-17 广州中国科学院先进技术研究所 一种双机械臂系统及其协调控制方法
CN109129459A (zh) * 2017-06-28 2019-01-04 上海优爱宝智能机器人科技股份有限公司 双臂机器人
CN109973757A (zh) * 2017-12-28 2019-07-05 中国科学院沈阳自动化研究所 一种基于超越离合机理的欠驱动攀爬机器人
CN110340868A (zh) * 2018-04-08 2019-10-18 AIrobot株式会社 机械臂、作业机构和自主移动搬运机器人
CN108748182A (zh) * 2018-06-12 2018-11-06 芜湖乐创电子科技有限公司 一种基于可视化控制的接线机器人
CN108942869A (zh) * 2018-09-02 2018-12-07 南京吉目希自动化科技有限公司 一种智能全向移动机器人
CN108942869B (zh) * 2018-09-02 2024-05-03 南京吉目希自动化科技有限公司 一种智能全向移动机器人
CN109108979A (zh) * 2018-09-14 2019-01-01 广东人励智能工程有限公司 一种基于工业机器人实现伺服驱动控制的系统及方法
CN109397244A (zh) * 2018-11-23 2019-03-01 华中科技大学 一种一体化双7自由度机械臂全向移动机器人系统与控制方法
CN109746928A (zh) * 2019-01-30 2019-05-14 南京航空航天大学 一种可移动双机器人自动铣削的智能化柔性生产线及其运行方法
CN109940598A (zh) * 2019-02-15 2019-06-28 盐城工学院 一种搭载机械臂的智能作业车
CN109849016A (zh) * 2019-03-28 2019-06-07 合肥工业大学 一种具有行走和搬运功能的家用服务机器人
CN110101572B (zh) * 2019-04-28 2024-04-02 南京云视郎生物科技有限公司 一种拔针机器人及其拔针方法
CN110101572A (zh) * 2019-04-28 2019-08-09 南京云视郎生物科技有限公司 一种拔针机器人及其拔针方法
CN110216688A (zh) * 2019-05-23 2019-09-10 浙江工业大学 一种办公区送件服务机器人及其控制方法
CN110154033A (zh) * 2019-06-21 2019-08-23 哈工大机器人(合肥)国际创新研究院 全向移动双臂机器人
CN111409056A (zh) * 2020-04-29 2020-07-14 天津航天机电设备研究所 一种全向移动机器人
CN111673738A (zh) * 2020-05-15 2020-09-18 中国第一汽车股份有限公司 一种自动引导智能双臂搬运机器人
CN113276090A (zh) * 2020-12-08 2021-08-20 北京联合大学 一种大承载仿人双臂服务机器人
CN113524148A (zh) * 2021-08-04 2021-10-22 合肥工业大学 一种移动双臂柔性装配机器人
CN115635272A (zh) * 2022-10-24 2023-01-24 南京佳和牙科技术有限公司 牙模与底座的安装方法
CN115635272B (zh) * 2022-10-24 2023-09-08 上海微云实业集团有限公司 牙模与底座的安装方法

Similar Documents

Publication Publication Date Title
CN106363612A (zh) 一种视觉引导的全向移动双臂机器人及其全向移动方法
US11034026B2 (en) Utilizing optical data to dynamically control operation of a snake-arm robot
CN109397249B (zh) 基于视觉识别的二维码定位抓取机器人系统的方法
US11584004B2 (en) Autonomous object learning by robots triggered by remote operators
CN107309872B (zh) 一种带有机械臂的飞行机器人及其控制方法
CN108499054B (zh) 一种基于slam的车载机械臂捡球系统及其捡球方法
CN206123654U (zh) 一种视觉引导的全向移动双臂机器人
US20230247015A1 (en) Pixelwise Filterable Depth Maps for Robots
CN108406726A (zh) 一种轮式移动机械排爆机器人
WO2016193781A1 (en) Motion control system for a direct drive robot through visual servoing
CN105364934A (zh) 液压机械臂遥操作控制系统和方法
CN106863307A (zh) 一种基于视觉和语音智能控制的机器人
CN109949370B (zh) 一种用于imu-相机联合标定的自动化方法
CN112109092A (zh) 一种变压器运维取油机器人
US20220355495A1 (en) Robot Docking Station Identification Surface
EP4095486A1 (en) Systems and methods for navigating a robot using semantic mapping
CN117103277A (zh) 一种基于多模态数据融合的机械手臂感知方法
US20190184551A1 (en) Robotic Arm Assemblies with Unidirectional Drive Actuators
US11450018B1 (en) Fusing multiple depth sensing modalities
US11262887B2 (en) Methods and systems for assigning force vectors to robotic tasks
CN210551257U (zh) 一种履带式排爆机器人
CN111702787A (zh) 人机协作控制系统及控制方法
Ling et al. Design and research of the multifunctional mobile manipulator based on ROS
EP3842888A1 (en) Pixelwise filterable depth maps for robots
US20220168909A1 (en) Fusing a Static Large Field of View and High Fidelity Moveable Sensors for a Robot Platform

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170201