CN106354158B - 阻力性外骨骼控制设计框架 - Google Patents

阻力性外骨骼控制设计框架 Download PDF

Info

Publication number
CN106354158B
CN106354158B CN201610562675.4A CN201610562675A CN106354158B CN 106354158 B CN106354158 B CN 106354158B CN 201610562675 A CN201610562675 A CN 201610562675A CN 106354158 B CN106354158 B CN 106354158B
Authority
CN
China
Prior art keywords
exoskeleton
resistive
control system
integral admittance
admittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610562675.4A
Other languages
English (en)
Other versions
CN106354158A (zh
Inventor
U·纳加拉简
A·戈斯瓦米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN106354158A publication Critical patent/CN106354158A/zh
Application granted granted Critical
Publication of CN106354158B publication Critical patent/CN106354158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/02Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resilient force-resisters
    • A63B21/023Wound springs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/065User-manipulated weights worn on user's body
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • A63B2024/0093Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled by performance parameters, e.g. distance or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/0054Features for injury prevention on an apparatus, e.g. shock absorbers
    • A63B2071/0063Shock absorbers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00178Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices for active exercising, the apparatus being also usable for passive exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00181Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices comprising additional means assisting the user to overcome part of the resisting force, i.e. assisted-active exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/00189Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using resistance provided by plastic deformable materials, e.g. lead bars or kneadable masses
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/06User-manipulated weights
    • A63B21/068User-manipulated weights using user's body weight
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/15Arrangements for force transmissions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4007Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the chest region, e.g. to the back chest
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4009Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the waist
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4011Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4001Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor
    • A63B21/4011Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs
    • A63B21/4015Arrangements for attaching the exercising apparatus to the user's body, e.g. belts, shoes or gloves specially adapted therefor to the lower limbs to the foot
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4027Specific exercise interfaces
    • A63B21/4033Handles, pedals, bars or platforms
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/40Interfaces with the user related to strength training; Details thereof
    • A63B21/4041Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
    • A63B21/4047Pivoting movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/70Measuring or simulating ambient conditions, e.g. weather, terrain or surface conditions
    • A63B2220/78Surface covering conditions, e.g. of a road surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/03516For both arms together or both legs together; Aspects related to the co-ordination between right and left side limbs of a user
    • A63B23/03533With separate means driven by each limb, i.e. performing different movements
    • A63B23/03541Moving independently from each other
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39339Admittance control, admittance is tip speed-force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39343Force based impedance control

Abstract

本发明公开阻力性外骨骼控制设计框架。具体地,公开一种具有控制器的阻力性外骨骼控制系统,所述控制器通过对联接的人体‑外骨骼系统的闭环积分导纳进行整形而产生正阻力,其中,对于有意义的理想频率所述积分导纳的频率响应幅度比自然人体关节低,并且所述控制器对于有意义的理想频率产生约为零的助力比。

Description

阻力性外骨骼控制设计框架
技术领域
本申请总体涉及外骨骼,并且更具体地,涉及用于设计外骨骼控制器的控制设计框架,其中所述外骨骼控制器阻止人体运动以造成运动减小及扭矩放大。
背景技术
外骨骼为可穿戴机械设备,其可具有和人体的运动学构造相似的运动学构造并且所述运动学构造能够跟随使用者的肢体运动。有动力的外骨骼可设计为产生接触力以协助使用者执行运动任务。在过去,对于外骨骼的研究大部分聚焦于为人的肢体提供助力,这种助力可以潜在地使人用更小的力量承担载荷(H.Kazerooni and R.Steger,“Berkeleylower extremity exoskeleton”,ASME J.Dyn.Syst.,Meas.,Control,vol.128,pp.14-25.2006.)以及(L.M.Mooney,E,J.Rouse及H.M.Herr,“Autonomous exoskeleton reducesmetabolic cost of human walking during load carriage”,Journal ofNeuroengineering and Rehabilitation,vol.11,no.80.2014.);行走得更快(S.Lee andY.Sankai,“Virtual impedance adjustment in unconstrained motion for anexoskeletal robot assisting the lower limb”,Advanced Robotics,vol.19,no.7,pp.773-795,2005.)以及(G.S.Sawicki and D.P.Ferris,“Mechanics and energetics oflevel walking with powered ankle exoskeletons”),J.Exp.Biol.,vol.211,no.Pt.9,pp.1402-1413,2008.)以及向关节提供扭矩助力(J.E.Pratt,B.T.Krupp,C.J.Morse,及S.H.Collins,“The RoboKnee:An exoskeleton for enhancing strength and enduranceduring walking”,Proc.IEEE Int.Conf.Robotics and Automation(ICRA),2004,pp.2430-2435.)以及(K.E,Gordon,C.R.Kinnaird及D.P,Ferris,“Locomotor adaptationto a soleus emg-controlled antagonistic exoskeleton”J.NeurophysioL.,vol.109,no.7,pp.1804-1814,2013.)。
外骨骼可被用于对人的运动提供阻力。通过对人的运动提供阻力,外骨骼可被用于锻炼和复健应用。上身外骨骼的阻力训练在过去已有采用。(Z.Song和Z.Wang,“Study onresistance training for upper-limb rehabilitation using an exoskeletondevice”,Proc.IEEE Int’l Conf.Mechatronics and Automation,2013,pp.932-938.);(Z.Song,S.Guo,M.Pang,S.Zhang,N.Xiao,B.Gao及L.Shi,“Implementation ofresistance training using an upper-limb exoskeleton rehabilitation device forelbow joint”J.Med.Bio.Engg.,vol.34,no.2,pp.188—196,2014.)和(T.-M.Wu和D.-Z.Chen,“Biomechanical study of upper-limb exoskeleton for resistance trainingwith three-dimensional motion analysis system”,J.Rehabil.Res.Dev.,vol.51,no.1,pp.111-126,2014)。可阻止人的运动的上身外骨骼以及在抑制震颤上的应用已被用于复健(E.Rocon及J.L.Pons,Exoskeletons in Rehabilitation Robotics:TremorSuppression.Springer Tracts in Advanced Robotics,2011,pp.67-98。2013年,NASA引进了X1外骨骼((2013)Nasa's xl exoskeleton.http://www.nasa.gov/offices/oct/home/feature exoskeleton.html)。X1外骨骼能够对腿中的关节提供助力以及阻力。X1外骨骼可被用作可在宇航员在太空期间改善宇航员健康的锻炼设备,也可被用于复健应用。
即使此前在外骨骼设计和实施上已经投入很多精力,仍然需要一种有阻力性外骨骼控制设计框架,其提供外骨骼控制参数以得到理想的阻力。因此,仍需一种能够克服上述不足的系统和方法。所述系统和方法可提供一种阻力性外骨骼控制设计框架,其提供外骨骼控制参数以得到理想的阻力,同时保证所得到的联接系统的动力学是稳定和被动的。
发明内容
根据一个实施方式,公开了一种阻力性外骨骼控制系统。所述控制系统具有控制器,所述控制器对联接的人体-外骨骼系统的闭环积分导纳进行整形,其中对于有意义的理想频率所述积分导纳的频率响应幅度较自然人体关节的频率响应幅度低,并且所述控制器在有意义的理想频率上产生约为零的助力比。
根据一个实施方式,公开了一种阻力性外骨骼控制系统。所述阻力性外骨骼控制系统具有控制器,所述控制器对联接的人体-外骨骼系统的闭环积分导纳进行整形,其中对于有意义的理想频率,所述积分导纳的频率响应幅度较自然人体关节的频率响应幅度低并且所述控制器产生约为零的助力比,其中所述控制器是稳定且被动的。
根据一个实施方式,公开了一种阻力性外骨骼控制系统。所述阻力性外骨骼控制系统具有控制器,所述控制器在理想频率范围上通过对联接的人体-外骨骼系统的闭环积分导纳进行整形来产生正阻力以及约为零的助力,其中所述控制器是稳定且被动的。
附图说明
在以下说明中,在整个说明书和附图中相似的部分以相同附图标记分别标示。附图并不一定按比例绘制,某些附图可以以夸大的或概括的形式示出,以利于清晰和简明。然而,当结合附图阅读时,参照以下对示出实施方式的详细描述可最佳地理解所公开的内容本身以及优选使用模式及它们的进一步目的和优势,其中:
图1为根据本申请的一个方面的实施示例性导纳整形控制器的外骨骼设备的立体图。
图2A和图2B示出了根据本申请的一个方面的具有刚性联接(图2A)和软联接(图2B)的示例性一自由度(1-DOF)联接的人体-外骨骼系统。
图3为框图,概括了用于根据本申请的一个方面的具有刚性联接和软联接的1-DOF联接的人体-外骨骼系统的等式。
图4A和图4B为框图,示出了具有根据本申请的一个方面的外骨骼控制器Ue(s)的联接的人体-外骨骼系统。
图5A为根据本申请的一个方面的1-DOF助力性外骨骼的助力和阻力的以积分导纳X(s)表示的曲线图。
图5B为根据本申请的一个方面的1-DOF助力性外骨骼的助力和阻力的以助力函数AF(ω)和阻力函数RF(ω)表示的曲线图。
图6A-6C为示意性曲线图,示出根据本申请的一个方面的在联接稳定性、被动性和零助力约束条件下对于不同的理想阻力比Rd而得到的控制参数。
图7示出了根据本申请的一个方面的实现联接稳定性和被动性的图6A-6C中控制参数的Lheu(s)的示意性系列尼奎斯特图。
图8A和8B为对于根据本申请的一个方面得到的联接的人体-外骨骼系统的示例性积分导纳幅相图。
图9为根据本申请的一个方面的用于阻力性外骨骼控制的示例性框架的示意性功能框图。
具体实施方式
以下结合附图的描述旨在作为本发明的当前优选实施方式的说明,而非旨在呈现本发明可构造和/或应用的仅有形式。本描述结合示出的实施方式阐明构建和操作本发明的函数和步骤顺序。但应当理解的是,相同或相当的函数和顺序可由不同实施方式实现,这些不同实施方式被包含在本发明的精神和范围内。
本发明的实施方式提供了一种用于设计可抵抗人体关节运动的阻力性外骨骼控制器的控制设计框架。关于外骨骼控制器的阻力可被限定为联接的人体-外骨骼系统的积分导纳的频率响应幅度曲线比正常人肢体的频率响应幅度曲线低。若控制器增大联接的人体-外骨骼关节的阻抗并减小其导纳,外骨骼控制器可以是阻力性的。阻力性外骨骼控制器可导致运动减小,即,对于相同的关节扭矩曲线,关节运动幅度可以更低,以及导致扭矩放大,即,实现相同的关节运动所需的关节扭矩幅度可以更大。
本控制设计框架可修改所联接的系统关节动力学使得系统导纳降低。更准确地说,所联接的关节动力学的特征可以在于,所联接的系统积分导纳的频率响应幅度曲线(扭矩-角度关系),并且当所联接系统的积分导纳的频率响应幅度曲线可在所有感兴趣的频率下低于自然人体关节的频率响应幅度曲线时,可取得阻力。阻力性控制设计框架可提供外骨骼控制参数,其可确保当取得理想阻力时所联接的系统是稳定且被动的。本控制设计框架可用公式表示为约束优化问题,其目的为找出满足关联的稳定性和被动性约束时实现的理想阻力的外骨骼控制参数。
本控制设计框架可提供阻力性外骨骼,其可被用于阻力训练的复健应用中,也可被无疾病的人用以进行身体锻炼和肌肉塑造。控制设计框架的实施方式可允许单个外骨骼设备仿真具有增大的重量、增大的阻尼(在沙或水中行走)、增大的强度(走上坡路)以及其任意组合的不同的身体训练条件。由此,无需移动到用于身体训练的不同环境或位置,人可利用单个设备在他们选择的单个位置仿真不同的条件。
控制设计框架的实施方式可被修改为设计提供助力并避免阻力的外骨骼控制器。采用所公开的框架还可设计在一些频率提供助力而在其他一些频率提供阻力的控制器。公开的联接系统的积分导纳的响应曲线形状可被整形以取得对人的肢体的多种不同的理想动力学响应。
应注意的是,尽管在此公开的是用于一个自由度(1-DOF)的外骨骼的框架,但这一新颖框架的实施例可以扩展至多自由度(DOF)的外骨骼。所公开的框架不限于下肢外骨骼,还可扩展至上肢外骨骼以及全身外骨骼设备,其在每个关节具有可帮助全身身体训练的阻力性控制器。所公开的框架可以扩展至任务级阻力而不是关节级阻力。例如,外骨骼控制器可被设计为抵抗足部的运动(任务级输出)而非抵抗髋、膝、踝(关节级输出)关节运动。
本发明的示例性实施方式中呈现的分析和试验结果中采用的联接的人体-外骨骼的系统系统参数可参见以下示出的表1。人肢体数据对应于可能大约65kg重且大约1.65m高的人的腿部。在本发明的示例性实施方式中,膝部可假定为是锁定的,所有参数可被用于针对髋关节进行计算。惯性矩可通过由D.A.Winter所写的“Biomechanics and MotorControl of Human Movement”(4th Edition,Wiley,2009,p.86)获得,并可根据人的体重和身高依比例决定。关节阻尼系数可取自K.C.Hayes和H.Hatze所著的“Passive visco-elastic properties of the structures spanning the human elbow joint”(EuropeanJournal Applied Physiology,vol.37,pp.265-274,1977),并且关节刚度系数可利用公式kh=Ihω2 nh得到,其中固有频率ωnh可通过J.Doke、J.M.Donelan和A.D.Kuo所写的“Mechanics and energetics of swinging the human leg”(Journal of ExperimentalBiology,vol.208,pp.439-445,2005)得到。
连接的人体-外骨骼系统参数
Figure BDA0001051150900000061
Figure BDA0001051150900000071
表1
表1中列出的外骨骼参数可由图1中所示的1-DOF髋外骨骼的系统辨识试验得到,其将在下面进行更具体的描述。表1中列出的联接参数可通过以下假设得出:联接参数二阶动力学(second-order dynamics)与外骨骼惯量Ie可具有阻尼系数ζc=1和固有频率ωnc=100ωnh,其中ωnh为人肢体的固有频率。
现参考附图,图1示出根据本发明实施方式的步行管理辅助(SMA)外骨骼设备10。SMA设备10可具有两个1-DOF髋关节12。在所示实施方式中,躯干支撑14可被添加至SMA设备10以提供更大的阻尼并减少振动。外骨骼和人肢体16之间的联接可在决定外骨骼10的性能时扮演关键角色,并且所述联接可以是如图2A-2B和图3所示的刚性联接18或者软联接20。在图2A所示的刚性联接18的情况下,人肢体16和外骨骼10之间可能没有相对运动,而在图2B中软联接20的情况下,人肢体16和外骨骼10可相对彼此运动。在附接于肢体的外骨骼的实际实施中,因骨头和外骨骼设备之间的肌肉、皮肤组织、脂肪层和其他身体物质而可具有软联接。在图3所示实施方式中,软联接可以用具有系数kc的线性扭转弹簧及具有系数bc的线性扭转阻尼器模拟。
如图3所示,具有软联接的联接的人体-外骨骼系统可利用二阶线性模型模拟,以表示如以下等式1所示的人的关节动力学,以及等式2中的外骨骼。1-DOF人体关节的惯性矩、关节阻尼和关节刚度可分别给定为Ih、bh、kh,而外骨骼的惯性矩、关节阻尼和关节刚度可被给定为{Ie,be,ke}。联接阻尼系数和刚度系数可分别给定为bc、kc
本发明的示例性实施方式的孤立的1-DOF人体关节的运动的线性等式可给定为:
Figure BDA0001051150900000081
其中θh(t)为关节角轨迹,Ih、bh、kh分别为相关的惯性矩、关节阻尼系数和关节刚度系数,τh(t)为关节扭矩轨迹。刚度项khθh(t)可包括线性化的重力项。类似地,孤立的1-DOF外骨骼的运动的线性等式可给定为:
Figure BDA0001051150900000082
其中θe(t)为关节角轨迹,Ie、be、ke分别为相关的惯性矩、关节阻尼系数和关节刚度系数,τe(t)为关节扭矩轨迹。
具有软联接的联接的人体-外骨骼系统的运动的线性等式可给定为:
Figure BDA0001051150900000083
Figure BDA0001051150900000084
其中τc为联接关节扭矩,可给定为:
Figure BDA0001051150900000085
对于等式(1)中的线性的人体关节动力学,阻抗(N.Hogan和S.O.Buerger,Impedance and Interaction Control,Robotics and Automation Handbook,CRC Press,LLC.,2005,ch.19)传递函数Zh(s)可给定为:
Figure BDA0001051150900000086
而导纳(N.Hogan和S.O.Buerger,Impedance and Interaction Control,Robotics and Automation Handbook,CRC Press,LLC.,2005,ch.19)传递函数Yh(s)可给定为:
Figure BDA0001051150900000091
其中Ωh(s)为
Figure BDA0001051150900000092
的拉普拉斯变换,而τh(s)为τh(t)的拉普拉斯变换。对于线性系统,其阻抗可以是导纳的倒数,并且反之亦然,就如等式6-7中所见的。
积分导纳传递函数Xh(s)可限定为积分导纳传递函数的积分,并可给定为:
Figure BDA0001051150900000093
其中Θh(s)为θh(t)的拉普拉斯变换。导纳Yh(s)将扭矩映射至角速度,而积分导纳Xh(s)将扭矩映射至角度。积分导纳广泛应用在本发明的其他部分中。
在本发明描述的实施方式中,人的关节、外骨骼和联接元件可被当做三个孤立系统对待,并且它们的对应阻抗和导纳传递函数可被写成如下形式。孤立的人体关节的导纳传递函数Yh(s)可由等式7给定,而孤立的外骨骼的导纳传递函数Ye(s)可给定为:
Figure BDA0001051150900000094
而孤立的联接元件的阻抗传递函数Zc(s)可给定为:
Figure BDA0001051150900000095
其中,Ωc(s)=Ωh(s)-Ωe(s)为联接元件的角速度的拉普拉斯变换。
如在此公开的,外骨骼控制器可被设计为修改所联接系统的关节动力学,例如,关节阻抗、导纳、联接的人体-外骨骼系统的积分导纳。以下为对具有外骨骼控制器的联接的人体-外骨骼系统的闭环动力学的实施方式的推导,并且描述了联接稳定性和被动性条件。
对于反馈外骨骼关节角速度传递函数Ωe(s)的任何外骨骼控制传递函数Ue(s),闭环联接的人体-外骨骼系统可以表示为图4A中的框图。以下分析可应用于任何一般性外骨骼控制器Ue(s),并且本发明中采用的具体外骨骼控制结构通过下文可见。
图4A中框出的区域22包含Zc(s)、Ye(s)、Ue(s),其可被简化为单个传递函数,这一传递函数可给定为:
Figure BDA0001051150900000101
如图4B所示,其中Yeu(s)可给定为:
Figure BDA0001051150900000102
为评估图4B中所示的反馈系统的稳定性可能需要的环路传递函数Lheu(s)可给定为:
Lheu(s)=Yh(s)Zeus(s) (13)
而反馈系统的增益裕量GM可给定为:
Figure BDA0001051150900000103
其中ωc为当Lheu(s)的相位为180°,即∠Lheu(jωc)=180°时的相位交越频率。当闭环系统变得不稳定时,增益裕量GM(Lheu)可给出最大的正增益极限。因此,为了使得图4B所示的联接的人体-外骨骼系统稳定,通常需要满足以下条件:
GM(Lheu)>1 (15)
通过图4B,具有外骨骼控制器Ue(s)的联接的人体-外骨骼系统的整体闭环导纳Yheu(s)可给定为:
Figure BDA0001051150900000104
并且,联接的人体-外骨骼系统的对应闭环积分导纳Xheu(s)可给定为:
Figure BDA0001051150900000105
其中如等式8所示的
Figure BDA0001051150900000106
应注意的是,二阶的自然人体关节动力学可如等式1所示,然而等式3-5中的联接的人体-外骨骼关节动力学为四阶的。但是,具有高联接刚度和阻尼的联接系统动力学可以主要是二阶的。闭环联接系统的阶数可取决于外骨骼控制器Ue(s)的阶数。
除联接稳定性以外,对动态互动系统的一个重要要求可能是联接的被动性(J.E.Colgate,“The control of dynamically interacting systems”,博士论文,Massachusetts Institute of Technology,Cambridge,MA,1988)。联接被动性可确保联接的人体-外骨骼系统在接触任何被动环境时不会变得不稳定(J.E.Colgate及N.Hogan,“Ananalysis of contact instability in terms of passive physical equivalents”,Proc.IEEE Int.Conf.Robotics and Automation(ICRA),1989,pp.404-409),当阻抗传递函数Z(s)满足如下条件时,线性的时间不变系统可以被称为是被动的,(J.E.Colgate,“Thecontrol of dynamically interacting systems”,博士论文,Massachusetts Instituteof Technology,Cambridge,MA,1988),所述条件为:
1)Z(s)在复平面的右边一半中没有极点;以及
2)Z(s)具有完全处在复平面的右边一半中的尼奎斯特图(Nyquist plot)。
第一个条件总体要求Z(s)是稳定的,而第二个条件总体要求Z(s)的相位对于所有频率都落在-90°和90°内(J,E.Colgate,“The control of dynamically interactingsystems”,博士论文,Massachusetts Institute of Technology,Cambridge,MA,1988),即,∠Z(jω)∈[-90°,90°]。这进一步迫使系统导纳的相位∠Y(jω)∈[-90°,90°],而系统积分导纳的相位∠X(jω)∈[-180°,0°]。
因此,为了使得满足等式15的稳定的联接的人体-外骨骼系统为被动的,需要满足以下条件:
Figure BDA0001051150900000111
以下将公开一种新颖的控制设计框架,其可对等式17中的联接的人体-外骨骼系统的闭环积分导纳Xheu(s)的频率响应幅度进行整形以使得1-DOF人体关节运动会被抵抗。在这一框架中,可选取幅度用于整形积分导纳曲线,同时可利用相位来评估联接系统的被动性。
为了设计|Xheu(jω)|的形状,需要限定外骨骼的目的。在示例性的实施方式中,目的可以是为了提供阻力及避免助力。为了限定提供阻力及避免助力的|Xheu(jω)|的形状,阻力和助力可能需要以一种清晰且量化的方式被限定。以下,利用积分导纳的频率响应幅度来描述阻力和助力的概念性的和量化的定义,接着对阻力性外骨骼的理想性质进行描述,还描述一种约束优化方程,其对闭环积分导纳进行整形使得在保证联接稳定性和被动性的同时实现理想阻力。
可根据本发明的实施方式使用阻力和助力的以下定义。定义1:在本发明的示例性实施方式中,若联接的人体-外骨骼系统的积分导纳的频率响应幅度低于自然人在有意义的频率下的频率响应幅度,即
Figure BDA0001051150900000121
其中ωf为有意义的频率的上限,则1-DOF人体关节可被称为受到外骨骼的阻力。当关节受到如定义1所述的阻力时,相同关节扭矩可产生幅度小于自然关节的关节运动,并被称为运动减小。另一方面,利用幅度大于自然关节所需幅度的扭矩曲线,可在受到阻力的关节实现相同的关节运动。这可被称为扭矩放大。
定义2:若联接的人体-外骨骼系统的积分导纳的频率响应幅度高于自然人在有意义的频率下的频率响应幅度,即
Figure BDA0001051150900000122
Figure BDA0001051150900000123
则1-DOF人关节可被称为受到外骨骼的助力。与由阻力导致的运动减小和扭矩放大类似,助力可产生相反作用,即运动放大和扭矩减小。
如图5A和5B中可见的,1-DOF助力性外骨骼的助力和阻力的图以(a)积分导纳X(s)以及(b)助力函数AF(ω)和阻力函数RF(ω)表示。自然人体关节的积分导纳的频率响应的幅度可被记为|Xh(jω)|,联接的人体-外骨骼系统的闭环积分导纳的频率响应幅度可被记为|Xheu(jω)|。
如图5A所示为自然人和假想联接的人体-外骨骼系统的频率响应幅度图,其参数列于表1中。按照上述定义1和2,区域I可表示有阻力时的频率,即|Xheu(jω)|<|Xh(jω)|,而区域II可表示有助力时的频率,即|Xheu(jω)|>|Xh(jω)|。
图5B示出在每个频率ω,外骨骼的行为可以是阻力性的或助力性的。基于这一观察,阻力函数RF(ω)可限定为
Figure BDA0001051150900000131
而助力函数AF(ω)可限定为:
Figure BDA0001051150900000132
在任何频率ω,阻力函数RF(ω)∈[0,1],而助力函数AF(ω)∈[0,∞]。当联接的人体-外骨骼关节动力学同自然的人关节动力学相同时,即,|Xheu(jω)|=|Xh(jω)|,则
Figure BDA0001051150900000133
当|Xheu(jω)|=0时取得上限RF(ω)=1,而当|Xheu(jω)|=1时可取得上限AF(ω)=∞。尽管这两种情况都是数学上有效的,但这两种情况基本上是不现实的。
在本发明的具体实施方式中,需要着重注意的是,外骨骼对于单个关节可在任何特定频率下可以仅仅是阻力性的或仅仅是助力性的,这可由图5A看出,利用助力函数AF(ω)和阻力函数RF(ω),1-DOF助力性外骨骼的阻力和助力的以下量化度量,即阻力比和助力比可以被限定。
定义3:阻力比R可限定为阻力函数RF(ω)在频率范围[0,ωf]上的平均值,并可给定为:
Figure BDA0001051150900000141
定义4:助力比A可限定为助力函数AF(ω)在频率范围[0,ωf]上的平均值,并可给定为:
Figure BDA0001051150900000142
与阻力函数和助力函数类似,阻力比R∈[0,1],助力比A∈[0,∞]。如上所述,仅分别在
Figure BDA0001051150900000143
以及
Figure BDA0001051150900000144
的情况下可分别取得上限R=1及A=∞。尽管这些上限值在数学上是有效的,但对于任何适当的积分导纳传递函数而言这些上限值可能是不现实的。利用上述对阻力和助力的定义,下面的部分会列举阻力性外骨骼的理想性质的实施方式。
阻力性外骨骼的实施方式的目的可以是对人的任何运动提供阻力同时不助力任何运动。但是,其对于确保联接的人体-外骨骼系统稳定仍是至关重要的。并且,由于即使在联接的人体-外骨骼系统和任何被动环境交互时联接被动性可以保障稳定性,因而如“J.E.Colgate所作的“The control of dynamically interacting systems”(博士论文,Massachusetts Institute of Technology,Cambridge,MA,1988)中定义的联接被动性仍然是必要的。
因此,1-DOF阻力性外骨骼的必要理想性质可以如下所列:
1)联接稳定性,即,GM(Lheu)>1(等式15);
2)联接被动性,即,
Figure BDA0001051150900000145
3)正阻力,即R>0(等式21);以及
4)无助力,即A=0(等式22)
上述性质可以是1-DOF阻力性外骨骼的必要理想性质。但是,根据外骨骼实施的任务和理想目标可以增加更多性质。
前述部分已经提供了量度以评估阻力性并列举了阻力性的外骨骼的理想性质。现在,下面将公开基于这些度量对联接的人体-外骨骼系统的闭环积分导纳进行整形的外骨骼控制器Ue(s)的设计的实施方式。
对于τe(t)的任何外骨骼控制规则可产生等式4给出的外骨骼动力学,并从而给出理想的外骨骼动力学,并可得到对应的控制器。若理想的外骨骼动力学可由理想的惯性矩
Figure BDA0001051150900000151
理想的关节阻尼系数
Figure BDA0001051150900000152
和理想的关节刚度系数
Figure BDA0001051150900000153
给出,则为实现理想的外骨骼动力学所需要的外骨骼扭矩τe可给定为:
Figure BDA0001051150900000154
容易证明等式23中的控制规则可将等式2中的外骨骼动力学简化为(若需要的话):
Figure BDA0001051150900000155
对应于等式23中的控制规则并反馈角速度Ωe(s)的外骨骼控制器Ue(s)可以给定为:
Figure BDA0001051150900000156
其中
Figure BDA0001051150900000157
以及
Figure BDA0001051150900000158
分别为角加速度
Figure BDA0001051150900000159
角速度
Figure BDA00010511509000001510
和角度θe的反馈增益。
等式25中所示的控制传递函数Ue(s)的特征在于三个控制参数,即Kα、Kω以及Kθ。这些参数可影响闭环积分导纳Xheu(s),并且可选取这些参数使得闭环积分导纳Xheu(s)的频率响应幅度可被整形进而实现理想阻力Rd
给定理想阻力比Rd,等式17中的1-DOF联接的人体-外骨骼系统的控制参数的最优设置可利用以下约束优化问题得到:
Figure BDA0001051150900000161
Figure BDA0001051150900000167
图6A-6C描绘了在联接稳定性、被动性和零助力约束条件下对于不同的理想阻力比Rd所得到的最优控制参数。不具有任何阻力控制的被动外骨骼已经产生R=0.0177的阻力比,并因而产生大致与理想阻力比Rd≥0.02对应的图6中的优化结果。
图7示出Lheu(s)的一组尼奎斯特图,所述Lheu(s)对应于图6中所示的最优控制参数中的同时实现联接稳定性和被动性的一些控制参数。所有尼奎斯特图均不环绕-1+j0,表示稳定的联接的人体-外骨骼系统。得到的联接的人体-外骨骼系统中的部分的积分导纳幅度和相图在图8A和8B中示出。由图8B可见,联接的系统,其相图如所示地满足等式18中的被动性条件,即,
Figure BDA0001051150900000163
因此,具有最优的控制参数的联接的人体-外骨骼系统的这些实施方式,对于图8A来说具有积分导纳幅度|Xheu(jω)|,对于图8B来说具有积分导纳相位∠Xheu,而实现了联接稳定性和被动性。
图9为控制框架的实施方式的功能框图,所述控制框架执行使用来自等式26的最优参数的阻力性外骨骼控制器。如图9所示,可利用卡尔曼滤波器来估计实施等式25中的控制规则所需要的外骨骼关节角度
Figure BDA0001051150900000164
角速度
Figure BDA0001051150900000165
和角加速度
Figure BDA0001051150900000166
在线应用卡尔曼滤波的实施方式可以基于由P.Canet所作的“Kalman filter estimation of angular velocityand acceleration:On-line implementation”(McGill University,Montreal,Canada,Tech.Rep.TR-CIM-94-15,Nov.1994)中的滤波器模型。
尽管本发明的实施方式已经以多个具体实施方式进行了描述,但本领域技术人员应当理解本发明的实施方式可以在权利要求的精神及范围内有改动地实施。

Claims (17)

1.一种阻力性外骨骼控制系统,包括:
控制器,其被配置成能够:
通过对联接至人体的外骨骼系统的闭环积分导纳进行整形来产生正阻力,其中,在有意义的理想频率上所述闭环积分导纳的频率响应幅度比自然人体关节的低;
在有意义的理想频率上产生约为零的助力比,其中助力比由
Figure FDA0003079712150000011
限定,其中
Figure FDA0003079712150000012
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳;以及
根据所述正阻力和所述助力比控制所述外骨骼系统。
2.根据权利要求1所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够生成具有大于1的增益裕量的环路传递函数。
3.根据权利要求1所述的阻力性外骨骼控制系统,其中,所述控制器具有联接被动性。
4.根据权利要求3所述的阻力性外骨骼控制系统,其中,所述闭环积分导纳的相位由
Figure FDA0003079712150000013
限定。
5.根据权利要求1所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够生成由
Figure FDA0003079712150000014
限定的控制传递函数,其中,
Figure FDA0003079712150000015
为外骨骼设备的角加速度
Figure FDA0003079712150000016
角速度
Figure FDA0003079712150000017
和角度θe的反馈增益。
6.根据权利要求1所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够产生在有意义的理想频率上的正阻力比,其中,正阻力比由
Figure FDA0003079712150000018
限定,其中,
Figure FDA0003079712150000021
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳。
7.一种阻力性外骨骼控制系统,包括:
控制器,其被配置成能够:
对联接至人体的外骨骼系统的闭环积分导纳进行整形,其中,所述闭环积分导纳的频率响应幅度比自然人体关节的低;
在有意义的理想频率上产生约为零的助力比,其中,所述控制器是稳定且被动的;
在有意义的理想频率上产生正阻力比,其中,正阻力比由
Figure FDA0003079712150000022
限定,其中,
Figure FDA0003079712150000023
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳;以及
根据所述正阻力和所述助力比控制所述外骨骼系统。
8.根据权利要求7所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够生成具有大于1的增益裕量的环路传递函数。
9.根据权利要求7所述的阻力性外骨骼控制系统,其中,所述闭环积分导纳的相位由
Figure FDA0003079712150000024
限定。
10.根据权利要求7所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够生成由
Figure FDA0003079712150000025
限定的控制传递函数,其中,
Figure FDA0003079712150000026
为外骨骼设备的角加速度
Figure FDA0003079712150000027
角速度
Figure FDA0003079712150000028
和角度θe的反馈增益。
11.根据权利要求7所述的阻力性外骨骼控制系统,其中,助力比由
Figure FDA0003079712150000029
限定,其中,
Figure FDA0003079712150000031
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳。
12.一种阻力性外骨骼控制系统,包括:
控制器,其被配置成能够:
根据人体关节的积分导纳在理想的频率范围上通过对联接至人体的外骨骼系统的闭环积分导纳进行整形来产生正阻力以及约为零的助力比,其中,所述控制器是稳定且被动的;
生成由
Figure FDA0003079712150000032
限定的控制传递函数,其中,
Figure FDA0003079712150000033
为外骨骼设备的角加速度
Figure FDA0003079712150000034
角速度
Figure FDA0003079712150000035
和角度θe的反馈增益;以及
根据所述正阻力、所述助力比和所述控制传递函数控制所述外骨骼系统。
13.根据权利要求12所述的阻力性外骨骼控制系统,其中,在所述理想的频率范围上,所述闭环积分导纳的频率响应幅度比自然人体关节的低。
14.根据权利要求12所述的阻力性外骨骼控制系统,其中,所述控制器还被配置成能够生成具有大于1的增益裕量的环路传递函数。
15.根据权利要求12所述的阻力性外骨骼控制系统,其中,所述闭环积分导纳的相位由
Figure FDA0003079712150000036
限定。
16.根据权利要求12所述的阻力性外骨骼控制系统,其中正阻力比由
Figure FDA0003079712150000037
限定,其中,
Figure FDA0003079712150000038
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳。
17.根据权利要求12所述的阻力性外骨骼控制系统,其中,助力比由
Figure FDA0003079712150000041
限定,其中,
Figure FDA0003079712150000042
其中,Xh(jω)为人体关节的积分导纳,而Xheu(jω)为联接至人体的所述外骨骼系统的积分导纳。
CN201610562675.4A 2015-07-16 2016-07-15 阻力性外骨骼控制设计框架 Active CN106354158B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/801,455 2015-07-16
US14/801,455 US9782322B2 (en) 2015-07-16 2015-07-16 Resistive exoskeleton control design framework

Publications (2)

Publication Number Publication Date
CN106354158A CN106354158A (zh) 2017-01-25
CN106354158B true CN106354158B (zh) 2021-09-10

Family

ID=57629935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610562675.4A Active CN106354158B (zh) 2015-07-16 2016-07-15 阻力性外骨骼控制设计框架

Country Status (4)

Country Link
US (1) US9782322B2 (zh)
JP (1) JP6800634B2 (zh)
CN (1) CN106354158B (zh)
DE (1) DE102016212863A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015246634A1 (en) * 2014-04-16 2016-10-27 The Commonwealth Of Australia Exoskeleton system for load carrying
WO2017120680A1 (en) 2016-01-17 2017-07-20 Siamak Arzanpour System and device for guiding and detecting motions of 3-dof rotational target joint
CN108324503A (zh) * 2018-03-16 2018-07-27 燕山大学 基于肌骨模型和阻抗控制的康复机器人自适应控制方法
USD947388S1 (en) * 2018-12-10 2022-03-29 Jtekt Corporation Motion assisting device
CN110039515B (zh) * 2019-01-28 2022-02-18 南京理工大学 一种基于代数方法的膝关节外骨骼关节状态估计方法
DE102019210232B3 (de) * 2019-07-10 2020-11-19 Elvira Kuhn Bewegungsabhängiges Stabilisierungsunterstützungssystem
US11039974B2 (en) 2019-08-01 2021-06-22 Brave Virtual Worlds, LLC Full or partial body physical feedback system and wearable exoskeleton
EP3808415B1 (de) * 2019-10-17 2021-09-29 Thomas Chrobok Tragbares trainingsgerät
CN111345971B (zh) * 2020-03-14 2022-03-08 北京工业大学 一种基于导纳模型的踝康复机器人多模式柔顺训练方法
DE102020120161A1 (de) 2020-07-30 2022-02-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medizinisches System zur Laufunterstützung sowie Verfahren zur Regelung eines medizinisches System zur Laufunterstützung
CN114089757B (zh) * 2021-11-17 2024-02-02 北京石油化工学院 一种上下肢协调主动康复机器人控制方法及装置
WO2023225648A1 (en) * 2022-05-20 2023-11-23 North Carolina State University Method to reduce human exertion during walking without affecting gait kinematics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027994A (ja) * 2003-07-10 2005-02-03 National Institute Of Advanced Industrial & Technology 等粘性負荷による三次元運動療法装置
JP2010259607A (ja) * 2009-05-01 2010-11-18 Ritsumeikan トレーニング装置
CN102098986A (zh) * 2008-07-23 2011-06-15 伯克利仿生技术公司 外骨骼和控制该外骨骼的迈步腿的方法
JP3184447U (ja) * 2013-04-16 2013-06-27 サバンジ・ウニヴェルシテシ 非接地の足首治療及び測定外骨格型装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774177B2 (en) 2001-06-29 2010-08-10 Honda Motor Co., Ltd. Exoskeleton controller for a human-exoskeleton system
US7628766B1 (en) 2003-10-29 2009-12-08 The Regents Of The University Of California Lower extremity enhancer
WO2006039403A1 (en) 2004-09-29 2006-04-13 Northwestern University System and methods to overcome gravity-induced dysfunction in extremity paresis
EP2163226A1 (en) 2007-04-23 2010-03-17 Golden Crab, S.L. Exoskeleton for safety and control while skiing
JP2012501739A (ja) 2008-09-04 2012-01-26 アイウォーク・インコーポレーテッド ハイブリッド型地形適応下肢システム
WO2012100250A1 (en) 2011-01-21 2012-07-26 Iwalk, Inc. Terrain adaptive powered joint orthosis
ES2669602T3 (es) 2011-06-21 2018-05-28 Sabanci University Exoesqueleto
EP2723296A2 (en) 2011-06-24 2014-04-30 Northeastern University Robotic gait rehabilitation training system
US9072941B2 (en) 2011-08-11 2015-07-07 The Charles Stark Draper Laboratory, Inc. Exoskeleton suit for adaptive resistance to movement
WO2014109799A1 (en) 2012-09-17 2014-07-17 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
US20140100493A1 (en) 2012-10-04 2014-04-10 Travis Craig Bipedal Exoskeleton and Methods of Use
CN206123638U (zh) 2013-03-15 2017-04-26 Sri国际公司 人体增强系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005027994A (ja) * 2003-07-10 2005-02-03 National Institute Of Advanced Industrial & Technology 等粘性負荷による三次元運動療法装置
CN102098986A (zh) * 2008-07-23 2011-06-15 伯克利仿生技术公司 外骨骼和控制该外骨骼的迈步腿的方法
JP2010259607A (ja) * 2009-05-01 2010-11-18 Ritsumeikan トレーニング装置
JP3184447U (ja) * 2013-04-16 2013-06-27 サバンジ・ウニヴェルシテシ 非接地の足首治療及び測定外骨格型装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
An analysis of contact instability in terms of passive physical equivalents;E. Colgate;《Proceedings, 1989 International Conference on Robotics and Automation》;20020806;第404-409页 *
Controlling Shoulder Impedance in a Rehabilitation Arm Exoskeleton;Craig R. Carignan等;《2008 IEEE International Conference on Robotics and Automation》;20080523;第2453-2458页 *
Negative Inductor-Resistor Controller For Electromagnetic Shunt Damping;S. Behrens;A.J. Fleming;S.O.R. Moheimani;《IFAC Proceedings Volumes》;20011231;第37卷(第14期);第429-434页 *
Process Control and Instrumentation;Guwahati;《NPTEL》;20130630;Module 4: Feedback controller, Lecture 10: Gain Margin and Phase Margin *

Also Published As

Publication number Publication date
CN106354158A (zh) 2017-01-25
DE102016212863A1 (de) 2017-01-19
US9782322B2 (en) 2017-10-10
JP2017023733A (ja) 2017-02-02
US20170014296A1 (en) 2017-01-19
JP6800634B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
CN106354158B (zh) 阻力性外骨骼控制设计框架
Nagarajan et al. Integral admittance shaping: A unified framework for active exoskeleton control
Manna et al. Comparative study of actuation systems for portable upper limb exoskeletons
Wang et al. Model predictive control-based gait pattern generation for wearable exoskeletons
Jardim et al. Development and analysis of series elastic actuators for impedance control of an active ankle–foot orthosis
Alonso et al. A simple approach to estimate muscle forces and orthosis actuation in powered assisted walking of spinal cord-injured subjects
Jamwal et al. Adaptive impedance control of parallel ankle rehabilitation robot
Liu et al. Medical applications of magnetorheological fluid: A systematic review
Hasan et al. Development of a sliding mode controller with chattering suppressor for human lower extremity exoskeleton robot
Nasr et al. Optimal design of active-passive shoulder exoskeletons: A computational modeling of human-robot interaction
Lopez et al. Adaptive control for passive kinesiotherapy ELLTIO
Narayan et al. Adaptive iterative learning-based gait tracking control for paediatric exoskeleton during passive-assist rehabilitation
Taherifar et al. Assistive-compliant control of wearable robots for partially disabled individuals
Fan et al. Dynamics analysis and simulation verification of a novel knee joint exoskeleton
Blanco Ortega et al. Control of a knee rehabilitation machine using a virtual prototype
Demir et al. Human impedance parameter estimation using artificial neural network for modelling physiotherapist motion
Wang et al. Dynamic motion planning for the design of robotic gait rehabilitation
Chen et al. Force/position control strategy of 3-PRS ankle rehabilitation robot
Wu et al. Fuzzy CMAC-based adaptive scale force control of body weight support exoskeletons
Baskar et al. Minimization of metabolic cost of muscles based on human exoskeleton modeling: a simulation
Lopez et al. Model and Control of the ELLTIO with two degrees of freedom
Liu et al. Control of flexible knee joint exoskeleton robot based on dynamic model
Kora et al. Automatic tuning with feedforward compensation of the HuREx rehabilitation system
Bucca et al. A mechatronic device for the rehabilitation of ankle motor function
Shahbazi et al. Therapist-in-the-loop robotics-assisted mirror rehabilitation therapy: An assist-as-needed framework

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant