CN106353316A - 一种野外勘查离子型稀土的快速测试方法 - Google Patents

一种野外勘查离子型稀土的快速测试方法 Download PDF

Info

Publication number
CN106353316A
CN106353316A CN201610811804.9A CN201610811804A CN106353316A CN 106353316 A CN106353316 A CN 106353316A CN 201610811804 A CN201610811804 A CN 201610811804A CN 106353316 A CN106353316 A CN 106353316A
Authority
CN
China
Prior art keywords
ammonium sulfate
rare earth
sample
cup
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610811804.9A
Other languages
English (en)
Inventor
寇洪立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Rare Earth and Rare Metals Tungsten Group Holding Co Ltd
Original Assignee
Jiangxi Rare Earth and Rare Metals Tungsten Group Holding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Rare Earth and Rare Metals Tungsten Group Holding Co Ltd filed Critical Jiangxi Rare Earth and Rare Metals Tungsten Group Holding Co Ltd
Priority to CN201610811804.9A priority Critical patent/CN106353316A/zh
Publication of CN106353316A publication Critical patent/CN106353316A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/82Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a precipitate or turbidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Abstract

一种野外勘查离子型稀土的快速测试方法,包括检测用工具包和现场检测操作步骤。检测用工具包内装有:透明水杯、漏斗、过滤纸、盛有硫酸铵的容器、盛有草酸饱和溶液的试剂瓶、纯净水。现场检测操作步骤:用硫酸铵饱和溶液浸泡野外勘查钻孔中取出的样品,再用滴草酸饱和溶液滴加到过滤后的硫酸铵浸泡溶液中,通过观察硫酸铵浸泡溶液的变化来估算样品中稀土的含量。本发明方法检测设备简单,便于携带,操作步骤简单易学,可用肉眼判断样品中的稀土含量,估算误差可达到±0.01%,分析费用低,效率高,能为野外离子型稀土地质勘查及时指明方向。

Description

一种野外勘查离子型稀土的快速测试方法
技术领域
本发明涉及一种野外勘查离子型稀土的快速测试方法,具体属于分析化学技术领域。
背景技术
离子吸附型稀土矿一般赋存于全风化花岗、强风化花岗岩体内,矿体具有埋藏浅、岩体松散的特点,离子型稀土以游离子状态吸附在花岗岩体上。野外稀土地质勘查时,地质钻孔取出的岩土用肉眼无法分辩是否含有稀土矿,无法指导现场钻孔施工深度,现场只能盲目施工,需要全孔取样送往化验室进行化学测试,取样化验工作量大,化学分析时间长,无法现场指导野外地质勘查。针对这种现状,本发明提出一种野外勘查离子型稀土的快速测试方法,实现野外离子型稀土地质勘查时快速测试,及时指导野外地质现场勘查工作,通过硫酸铵饱和溶液浸泡和草酸还原,用2-3分钟时间,即可检测出一个样品中的稀土含量,不但解决了样品中稀土“有无”问题,同时也能检测出样品中的稀土“贫富”,使野外地质勘查工作者能及时判断钻孔应何时终孔,提高了勘查工作效率和效果。
发明内容
本发明的目的是在于提出一种野外勘查离子型稀土的快速测试方法,所述的方法包括检测用工具包和现场检测操作步骤,具体如下:
所述的检测用工具包内装有:
直径和高度为6cm的透明水杯一个、直径为6-7cm的漏斗一个、直径为10cm的过滤纸;盛装有500克硫酸铵的 2-3升容器一只、盛装有草酸饱和溶液的250ml试剂瓶一个、4-5升的纯净水一桶;
所述的现场检测操作步骤:
(1)先将过滤纸折叠成漏斗状,安置在漏斗中;
(2)将漏斗安放在透明水杯上,漏斗的漏斗口与透明水杯底部间隙保持在3-5mm距离;
(3)用纯净水配制硫酸铵饱和溶液;将野外勘查钻孔中取出的样品均匀混合,取100克的样品装到漏斗中的过滤纸中,加入100-150克硫酸铵饱和溶液浸泡样品,浸泡2-3分钟时间进行化学反应,将吸附在花岗岩土中稀土离子稀释出来,硫酸铵浸泡溶液从漏斗口滴入透明水杯中;如果从漏斗口滴出硫酸铵浸泡溶液的速度过快或者混浊,再将透明水杯中的硫酸铵浸泡溶液重新倒到漏斗中进行第二次浸泡、过滤;
(4)过滤后的硫酸铵浸泡溶液呈无色状,向其中滴入2-3滴草酸饱和溶液,观察硫酸铵浸泡溶液的变化来估算样品中稀土的含量;
(5)样品中稀土含量的估算:
杯中硫酸铵浸泡溶液不变色,呈无色状,则样品中不含稀土;
杯中硫酸铵浸泡溶液变成较浅的白色状,样品中的稀土离子被还原成稀土氧化物,离子型稀土氧化物含量呈微量;
杯中硫酸铵浸泡溶液变成较深的白色状,呈牛奶状,但没有沉淀物产生,根据硫酸铵浸泡溶液的透明度判断,样品中离子型稀土品位在0.03%-0.05%之间;
杯中硫酸铵浸泡溶液出现白色沉淀物,样品中离子型稀土氧化物品位在0.05%-0.07%之间,沉淀物越多,品位越高;
杯中硫酸铵浸泡溶液出现白色沉淀物呈雪花状,样品中离子型稀土氧化物品位达到0.08%-0.1%以上;
杯中硫酸铵浸泡溶液出现白色雪花状沉淀物达到杯中溶液的一半以上,样品中离子型稀土氧化物品位达到0.1%-0.17%;
杯中硫酸铵浸泡溶液出现白色雪花状沉淀物占满溶液体,白色沉淀物呈糊状,样品中离子型稀土氧化物品位达到0.18%-0.2%以上。
本发明的有益效果:本发明检测设备简单,便于携带,操作步骤简单易学,普通钻探工人和技术人员即学即会。分析费用低,分析速度快,用2-3分钟时间即可检测出一个样品中的稀土含量,不但解决了样品中稀土“有无”问题,同时也能检测出样品中的稀土“贫富”。 如样品无稀土,则不需取样化验,减少取样化验工作量,降低地质勘查费用;钻孔底部最后1米经快分后没有稀土,则可以判断是否终孔。另外,现场检测操作步骤可用肉眼判断样品中的稀土含量,估算误差可达到±0.01%,能为野外离子型稀土地质勘查及时指明方向,效率高。
附图说明
图 1 为本发明所述透明水杯示意图;
图2为本发明所述漏斗示意图;
图3为本发明所述过滤纸示意图;
图4为本发明所述过滤装置组合图;
图中:过滤纸(1)、漏斗(2)、透明水杯(3)。
具体实施方式
实施例1
结合附图说明如下,相关附图为具有具体尺寸的各视图:
野外勘查离子型稀土的快速测试方法包括检测用工具包和现场检测操作步骤。
检测用工具包内装有:
直径和高度为6cm的透明水杯一个、直径为6cm的漏斗一个、直径为10cm的过滤纸;盛装有500克硫酸铵的 2升容器一只、盛装有草酸饱和溶液的250ml试剂瓶一个、4升的纯净水一桶。
现场检测操作步骤:
(1)先将过滤纸折叠成漏斗状,安置在漏斗中;
(2)将漏斗安放在透明水杯上,漏斗的下部漏口不要与透明水杯接触,漏斗的漏斗口与透明水杯底部保持在3mm的距离;
(3)用纯净水配制硫酸铵饱和溶液;将野外勘查钻孔中取出的样品均匀混合,取100克的样品装到漏斗中的过滤纸中,加入120克硫酸铵饱和溶液浸泡样品,浸泡3分钟时间进行化学反应,可将吸附在花岗岩土中稀土离子稀释出来,硫酸铵浸泡溶液从漏斗口滴入透明水杯中;如果从漏斗口滴出硫酸铵浸泡溶液的速度过快或者混浊,再将水杯中的硫酸铵浸泡溶液重新倒到漏斗中进行第二次浸泡过滤;
(4)过滤后的硫酸铵浸泡溶液呈无色状,向其中滴入2滴草酸饱和溶液,观察硫酸铵浸泡溶液的变化来估算样品中稀土的含量;
(5)样品中稀土含量的估算:
杯中硫酸铵浸泡溶液变成较深的白色状,呈牛奶状,但没有沉淀物产生,根据硫酸铵浸泡溶液的透明度判断,离子型稀土品位在0.04%。
实施例2
野外勘查离子型稀土的快速测试方法包括检测用工具包和现场检测操作步骤。
检测用工具包内装有:
直径和高度为6cm的透明水杯一个、直径为7cm的漏斗一个、直径为10cm的过滤纸;盛装有500克硫酸铵的 3升容器一只、盛装有草酸饱和溶液的250ml试剂瓶一个、5升的纯净水一桶。
现场检测操作步骤:
(1)先将过滤纸折叠成漏斗状,安置在漏斗中;
(2)将漏斗安放在透明水杯上,漏斗的下部漏口不要与透明水杯接触,漏斗的漏斗口与透明水杯底部保持在5mm的距离;
(3)用纯净水配制硫酸铵饱和溶液;将野外勘查钻孔中取出的样品均匀混合,取100克的样品装到漏斗中的过滤纸中,加入150克硫酸铵饱和溶液浸泡样品,浸泡3分钟时间进行化学反应,可将吸附在花岗岩土中稀土离子稀释出来,硫酸铵浸泡溶液从漏斗口滴入透明水杯中;如果从漏斗口滴出硫酸铵浸泡溶液的速度过快或者混浊,再将透明水杯中的硫酸铵浸泡溶液重新倒到漏斗中进行第二次浸泡过滤;
(4)过滤后的硫酸铵浸泡溶液呈无色状,向其中滴入3滴草酸饱和溶液,观察硫酸铵浸泡溶液的变化来估算样品中稀土的含量;
(5)样品中稀土含量的估算:
杯中硫酸铵浸泡溶液出现白色雪花状沉淀物达到杯中溶液的一半以上,离子型稀土氧化物品位达到0.15%。

Claims (1)

1.一种野外勘查离子型稀土的快速测试方法,其特征在于:所述的方法包括检测用工具包和现场检测操作步骤,具体如下:
所述的检测用工具包内装有:
直径和高度为6cm的透明水杯一个、直径为6-7cm的漏斗一个、直径为10cm的过滤纸;盛装有500克硫酸铵的 2-3升容器一只、盛装有草酸饱和溶液的250ml试剂瓶一个、4-5升的纯净水一桶;
所述的现场检测操作步骤:
(1)先将过滤纸折叠成漏斗状,安置在漏斗中;
(2)将漏斗安放在透明水杯上,漏斗的漏斗口与透明水杯底部间隙保持在3-5mm距离;
(3)用纯净水配制硫酸铵饱和溶液;将野外勘查钻孔中取出的样品均匀混合,取100克的样品装到漏斗中的过滤纸中,加入100-150克硫酸铵饱和溶液浸泡样品,浸泡2-3分钟时间进行化学反应,将吸附在花岗岩土中稀土离子稀释出来,硫酸铵浸泡溶液从漏斗口滴入透明水杯中;如果从漏斗口滴出硫酸铵浸泡溶液的速度过快或者混浊,再将透明水杯中的硫酸铵浸泡溶液重新倒到漏斗中进行第二次浸泡、过滤;
(4)过滤后的硫酸铵浸泡溶液呈无色状,向其中滴入2-3滴草酸饱和溶液,观察硫酸铵浸泡溶液的变化来估算样品中稀土的含量;
(5)样品中稀土含量的估算:
杯中硫酸铵浸泡溶液不变色,呈无色状,则样品中不含稀土;
杯中硫酸铵浸泡溶液变成较浅的白色状,样品中的稀土离子被还原成稀土氧化物,离子型稀土氧化物含量呈微量;
杯中硫酸铵浸泡溶液变成较深的白色状,呈牛奶状,但没有沉淀物产生,根据硫酸铵浸泡溶液的透明度判断,样品中离子型稀土品位在0.03%-0.05%之间;
杯中硫酸铵浸泡溶液出现白色沉淀物,样品中离子型稀土氧化物品位在0.05%-0.07%之间,沉淀物越多,品位越高;
杯中硫酸铵浸泡溶液出现白色沉淀物呈雪花状,样品中离子型稀土氧化物品位达到0.08%-0.1%以上;
杯中硫酸铵浸泡溶液出现白色雪花状沉淀物达到杯中溶液的一半以上,样品中离子型稀土氧化物品位达到0.1%-0.17%;
杯中硫酸铵浸泡溶液出现白色雪花状沉淀物占满溶液体,白色沉淀物呈糊状,样品中离子型稀土氧化物品位达到0.18%-0.2%以上。
CN201610811804.9A 2016-09-09 2016-09-09 一种野外勘查离子型稀土的快速测试方法 Pending CN106353316A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610811804.9A CN106353316A (zh) 2016-09-09 2016-09-09 一种野外勘查离子型稀土的快速测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610811804.9A CN106353316A (zh) 2016-09-09 2016-09-09 一种野外勘查离子型稀土的快速测试方法

Publications (1)

Publication Number Publication Date
CN106353316A true CN106353316A (zh) 2017-01-25

Family

ID=57859333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610811804.9A Pending CN106353316A (zh) 2016-09-09 2016-09-09 一种野外勘查离子型稀土的快速测试方法

Country Status (1)

Country Link
CN (1) CN106353316A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030067A (zh) * 2021-03-04 2021-06-25 中国科学院广州地球化学研究所 风化壳淋积型稀土矿稀土品位野外快速鉴定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634028A (ja) * 1986-06-23 1988-01-09 Sumitomo Metal Mining Co Ltd 希土類と鉄を含有するスクラツプの処理方法
CN102297862A (zh) * 2011-07-20 2011-12-28 武汉工程大学 一种风化壳淋积型稀土矿稀土品位野外实地快速测定的方法
RU2011147548A (ru) * 2011-11-24 2013-05-27 Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" Способ извлечения редкоземельных материалов при переработке фосфогипса
WO2016128621A1 (en) * 2015-02-12 2016-08-18 Outotec (Finland) Oy Method and arrangement of recovering rare earth elements from ion adsorption clays
RU2595672C1 (ru) * 2015-06-16 2016-08-27 Открытое акционерное общество "Акрон" Способ переработки концентрата редкоземельных элементов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634028A (ja) * 1986-06-23 1988-01-09 Sumitomo Metal Mining Co Ltd 希土類と鉄を含有するスクラツプの処理方法
CN102297862A (zh) * 2011-07-20 2011-12-28 武汉工程大学 一种风化壳淋积型稀土矿稀土品位野外实地快速测定的方法
RU2011147548A (ru) * 2011-11-24 2013-05-27 Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" Способ извлечения редкоземельных материалов при переработке фосфогипса
WO2016128621A1 (en) * 2015-02-12 2016-08-18 Outotec (Finland) Oy Method and arrangement of recovering rare earth elements from ion adsorption clays
RU2595672C1 (ru) * 2015-06-16 2016-08-27 Открытое акционерное общество "Акрон" Способ переработки концентрата редкоземельных элементов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘小永: "离子吸附型稀土矿找矿勘查中的工作方法应用", 《西部探矿工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113030067A (zh) * 2021-03-04 2021-06-25 中国科学院广州地球化学研究所 风化壳淋积型稀土矿稀土品位野外快速鉴定方法

Similar Documents

Publication Publication Date Title
Rongemaille et al. Rare earth elements in cold seep carbonates from the Niger delta
Bau et al. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling
Zhang et al. Zircon U–Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: constraints on the ore-forming age and tectonic setting
Johannesson et al. Rare earth element geochemistry of groundwaters from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada
Gong et al. Barium isotopic fractionation in latosol developed from strongly weathered basalt
Leybourne et al. Groundwater in geochemical exploration
Luo et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea
Jiang et al. Dolomitization of gas reservoirs: the upper Permian Changxing and lower Triassic feixianguan formations, northeast Sichuan Basin, China
Valsami-Jones et al. The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc
Chavagnac et al. Sources of REE in sediment cores from the Rainbow vent site (36 14′ N, MAR)
Cao et al. What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments
Zhou et al. A new paleoenvironmental index for anoxic events—Mo isotopes in black shales from Upper Yangtze marine sediments
Holdsworth et al. Acid content of snow from a mid-troposphere sampling site on Mount Logan, Yukon Territory, Canada
Bishop et al. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone
CN110057902A (zh) 陆源碎屑沉积物中选择性提取的可交换态锶钡比的海陆相沉积环境判别方法
Frondini Geochemistry of regional aquifer systems hosted by carbonate-evaporite formations in Umbria and southern Tuscany (central Italy)
Steiner et al. Comparing Rhizon samplers and centrifugation for pore‐water separation in studies of the marine carbonate system in sediments
CN111308577B (zh) 一种针对氦气气藏定量勘探中地区参数的确定方法
Rillard et al. Behavior of rare earth elements in an aquifer perturbed by CO2 injection: Environmental implications
CN106706571B (zh) 陆源碎屑沉积物中沉积成因锶钡的选择性提取方法
Sasamoto et al. Interpretation of undisturbed hydrogeochemical conditions in Neogene sediments of the Horonobe area, Hokkaido, Japan
CN106353316A (zh) 一种野外勘查离子型稀土的快速测试方法
Yan et al. Distribution of the rare earth elements in porewaters from a clay-rich aquitard sequence, Saskatchewan, Canada
Maskenskaya et al. The role of carbonate complexes and crystal habit on rare earth element uptake in low-temperature calcite in fractured crystalline rock
Rude et al. Fluorine uptake by Amazon continental shelf sediment and its impact on the global fluorine cycle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125

RJ01 Rejection of invention patent application after publication