CN106350775B - 超双疏/抗菌功能复合涂层及其制备方法 - Google Patents

超双疏/抗菌功能复合涂层及其制备方法 Download PDF

Info

Publication number
CN106350775B
CN106350775B CN201611021098.4A CN201611021098A CN106350775B CN 106350775 B CN106350775 B CN 106350775B CN 201611021098 A CN201611021098 A CN 201611021098A CN 106350775 B CN106350775 B CN 106350775B
Authority
CN
China
Prior art keywords
ptfe
preparation
paraffin
composite coating
nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611021098.4A
Other languages
English (en)
Other versions
CN106350775A (zh
Inventor
江晓红
陈琪
李洪成
马晓燕
陆路德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201611021098.4A priority Critical patent/CN106350775B/zh
Publication of CN106350775A publication Critical patent/CN106350775A/zh
Application granted granted Critical
Publication of CN106350775B publication Critical patent/CN106350775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Paints Or Removers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种超双疏/抗菌功能复合涂层及其制备方法。将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在洁净的基底上沉积涂层,其中,沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。本发明选择抗菌效果好的无机抗菌剂Ag纳米粒子作为抗菌剂,在聚合物基复合涂层中引入Ag纳米粒子可在极大程度上增强其抗菌性,得到的石蜡/PTFE/AgCl聚合物基复合涂层将Ag纳米粒子稳定于膜表面及其内部,使其中的Ag纳米粒子充分发挥抗菌效果。

Description

超双疏/抗菌功能复合涂层及其制备方法
技术领域
本发明属于涂层技术领域,尤其涉及一种高效超双疏/抗菌功能复合涂层及其制备方法。
背景技术
石蜡中存在多种烷烃和大量疏水的碳原子长链基团。石蜡具有极低的表面能,用石蜡对材料表面进行修饰可以大大地降低材料表面能,使用一定技术在基底表面构建出微纳米粗糙结构,再利用石蜡极低的表面能,可以制备出双疏性能极强的材料。
聚四氟乙烯(PTFE)表面自由能极低,表面张力小。其F原子在碳链外围形成致密的保护层,因此,PTFE具有极强的热稳定性和化学稳定性,抗强酸强碱,耐腐蚀,几乎不溶于所有溶剂。同时,PTFE还拥有优良的力学性能、电学性能、疏水性能等等,是一种在日常生活中和工业生产上都起着重要作用的树脂。
Ag纳米粒子是通过纳米技术制备的新型银系抗菌剂,拥有小尺寸效应和量子效应。它具有体积小、比表面大的优点,这使得Ag纳米粒子活性更强,更容易与细菌接触,从而轻松地破坏细菌的细胞膜,进入细胞内转换为银离子杀死细菌。因此,与传统银抗菌剂相比,Ag纳米粒子有更强的抗菌性,已广泛应用于生物材料、医用材料和纺织品整理等领域。抗菌材料中引入Ag纳米粒子,一方面,利用纳米颗粒的比表面积大的优势,另一方面,必须考虑Ag纳米粒子在生产过程的团聚现象,因此,抗菌涂层的设计是以聚合物为基膜,Ag纳米粒子均匀分散在其中,稳定在基膜中,避免Ag纳米粒子与空气作用而被氧化,降低抗菌效果。
发明内容
为解决上述背景技术中存在的问题,本发明提供一种简单实用、便于投入工业生产的、节能环保的具有高效超双疏/抗菌功能复合薄膜材料的制备方法。
本发明所解决的技术问题采用以下技术方案来实现:一种超双疏/抗菌功能复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗、干燥;
第二步:将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在基底上沉积涂层。
在本发明的实施例中,第一步中,所述的化学清洗、干燥是将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,清洗结束后将基底置于60℃下干燥。
在本发明的实施例中,第二步中,所述的沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。
在本发明的更优选的实施例中,沉积镀膜时间为6min~12min。
本发明相对于现有技术相比,具有显著优点为:
1、本发明利用低功率真空电子束蒸发法独特的物理气相沉积技术,得到石蜡/PTFE/AgCl聚合物基复合涂层,工艺简单易行,避免使用液相法、化学法等致使薄膜材料不能实际广泛应用等问题,对电子束能量进行调控,得到的石蜡/PTFE/AgCl聚合物基复合涂层结构紧密、结合力强、超双疏性能好,涂层中Ag纳米粒子分散均匀,并具有显著的抗菌效果。
2、本发明用PTFE和石蜡混合作为双疏材料,一方面,PTFE本身具有优异的热稳定性和化学稳定性,同时PTFE还拥有优良的疏水性能的生物相容性;另一方面,石蜡具有极低的表面能,可以制备出双疏性能极强的材料,同时石蜡材料来源广泛、简单易得。综合利用两者的优良性能,能得到稳定的超双疏涂层。
3、本发明创新性的采用PTFE聚合物作为保护抗菌剂,不仅可以避免抗菌产品中纳米颗粒的团聚问题,对纳米粒子抗菌性充分利用,而且还可以保护抗菌涂层中银纳米颗粒与空气作用,防止其被空气氧化,降低抗菌效果。
4、本发明的Ag纳米粒子稳定的分散抗菌涂层内部与表面,使得银颗粒能发挥杀菌抗菌结果,大大提高了抗菌效率,也使得资源的充分利用,解决单纯的银颗粒容易团聚使得银大颗粒内部的粒子浪费的问题。
附图说明
图1是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的AFM图。
图2是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的SEM图;其中:a、b为平面图,放大倍率分别为500、14K;c、d为断面图,放大倍率分别为6K、12K。
图3是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的UV-Vis光谱图。
图4是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的XPS光谱图。
图5是本发明的石蜡/PTFE聚合物基复合涂层和对石蜡/PTFE/AgCl聚合物基复合涂层针对大肠杆菌的抗菌性能效果对照图;其中:a为石蜡/PTFE参照涂层针对大肠杆菌的抗菌性能效果图,b为本发明涂层针对大肠杆菌的24h抗菌性能效果图,c为本发明涂层针对大肠杆菌的48h抗菌性能效果图。
具体实施方式
以下结合附图对本发明做进一步描述:
实施例1
本实施例为一种石蜡/PTFE聚合物基复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗,除去表面的油脂及其他污染物,本实验采用的基底材料为石英玻璃和单晶硅片。清洗步骤为:将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,以提高基底表面活性,从而增强薄膜与基底材料的结合力;清洗结束后将基底置于60℃烘箱内干燥,随后密封保存以待用。
第二步:将石蜡和PTFE粉末机械研磨,按照质量比为4:1的比例混合均匀后,放入靶材容器中;
第三步:将上述靶材放于电子束蒸发仪真空室的靶材位置,将上述的基底放于真空室的基底位置;
第四步:启动低功率电子束蒸发仪,将电子束高压电源调制1.5kV,电子束流密度调0.01A/cm2,电子束流能量调制500eV,沉积镀膜时间为6min。
第五步:将上述样品放于特定保护器皿中,用相应的基底上沉积的样品做相应的测试研究(石英基底测UV-Vis,硅基底测试AFM、接触角、SEM、XPS和抗菌性能);
第六步:对上述样品进行抗菌实验测试,抗菌对象为革兰氏阴性菌大肠杆菌。
实施例2
本实施例为一种石蜡/PTFE/AgCl聚合物基复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗,除去表面的油脂及其他污染物,本实验采用的基底材料为石英玻璃和单晶硅片。清洗步骤为:将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,以提高基底表面活性,从而增强薄膜与基底材料的结合力;清洗结束后将基底置于60℃烘箱内干燥,随后密封保存以待用。
第二步:将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,放入靶材容器中;
第三步:将上述靶材放于电子束蒸发仪真空室的靶材位置,将上述的基底放于真空室的基底位置;
第四步:启动低功率电子束蒸发仪,将电子束高压电源调制2.5kV,电子束流密度调0.05A/cm2,电子束流能量调制2000eV,沉积镀膜时间为12min。
第五步:将上述沉积的基底样品放于特定保护器皿中,将相应的基底做相应的测试研究(石英基底测UV-Vis,硅基底测试接触角数据、AFM、SEM和XPS谱图);
第六步:对表征好的的样品进行抗菌实验测试,抗菌对象为革兰氏阴性菌大肠杆菌。
表1为本发明的石蜡/PTFE/AgCl聚合物基复合涂层的粗糙度、表面能和接触角数据
表1复合涂层的粗糙度、表面能和接触角
从表1得出,靶材中石蜡、PTFE和AgCl粉末质量比为4:1:1时,单晶硅片基底上沉积的石蜡/PTFE/AgCl聚合物基复合涂层疏水和疏油效果显著,针对去离子水的接触角为146.24°,对甘油的接触角为143.19°,对乙二醇的接触角为127.37°,涂层达到了超双疏的效果。
图1是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的AFM图。可以看出涂层表面结构致密,无裂痕和孔洞等缺陷的存在;涂层表面存在疏水性的空腔结构,涂层粗糙度为216.1nm的,都符合超疏性涂层的特征。
图2是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的SEM图。图2a、2b为平面图,2c、2d为断面图。通过SEM图可以看出涂层表面平整、结构紧密,结合力强,纳米颗粒均匀存在于表面和镶嵌在聚合物涂层内部。
图3是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的UV-Vis光谱图。430nm处为Ag纳米粒子的紫外可见特征吸收峰。
图4是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的XPS光谱图。能谱图中出现了Ag元素的3d3/2和3d5/2两个主峰,分别为373eV和367.2eV。373eV处的特征峰可以通过软件拟合成373.3eV和372.4eV两个峰;367.2eV处的特征峰可以通过软件拟合成367.3eV和366.4eV两个峰。其中373.3eV和367.3eV处的峰是Ag纳米粒子的特征峰,而372.4eV和366.4eV处的峰则是Ag(AgCl)的特征峰。
图5是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层和石蜡/PTFE聚合物基复合涂层对大肠杆菌的抗菌性能效果对照图;从图5a和可以看出石蜡/PTFE聚合物基复合涂层不具备抗菌性;图5b、5c可以看到明显的抑菌圈,石蜡/PTFE/AgCl聚合物基复合涂层针对大肠杆菌的抗菌性能效果显著,抑菌圈规则,抑菌效果明显。
利用本发明的技术方案,或本领域的技术人员在本发明技术方案的启发下,设计出类似的技术方案,而达到上述技术效果的,均是落入本发明的保护范围。

Claims (5)

1.超双疏/抗菌功能复合涂层的制备方法,其特征在于,将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在洁净的基底上沉积涂层。
2.如权利要求1所述的制备方法,其特征在于,所述的洁净的基底是将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,清洗结束后于60℃下干燥。
3.如权利要求1所述的制备方法,其特征在于,沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。
4.如权利要求3所述的制备方法,其特征在于,沉积镀膜时间为6min~12min。
5.如权利要求1-4任一所述的制备方法制备的超双疏/抗菌功能复合涂层。
CN201611021098.4A 2016-11-21 2016-11-21 超双疏/抗菌功能复合涂层及其制备方法 Active CN106350775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611021098.4A CN106350775B (zh) 2016-11-21 2016-11-21 超双疏/抗菌功能复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611021098.4A CN106350775B (zh) 2016-11-21 2016-11-21 超双疏/抗菌功能复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN106350775A CN106350775A (zh) 2017-01-25
CN106350775B true CN106350775B (zh) 2019-01-04

Family

ID=57861560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611021098.4A Active CN106350775B (zh) 2016-11-21 2016-11-21 超双疏/抗菌功能复合涂层及其制备方法

Country Status (1)

Country Link
CN (1) CN106350775B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423725A (zh) * 2007-10-31 2009-05-06 罗门哈斯公司 用于钢材的抗片落性粉末薄外涂层

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423725A (zh) * 2007-10-31 2009-05-06 罗门哈斯公司 用于钢材的抗片落性粉末薄外涂层

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"拒油型聚四氟乙烯微孔薄膜的制备与研究";马可腾;《中国优秀硕士学位论文全文数据库工程科技I辑》;20111231;第40-42页
"气相法沉积Ag/聚合物复合薄膜及其抗菌性能";周瑛洁等;《南京工业大学学报(自然科学版)》;20160531;第38卷(第3期);第31-37页

Also Published As

Publication number Publication date
CN106350775A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
Namratha et al. Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification
El-Nahhal et al. Nano-structured zinc oxide–cotton fibers: synthesis, characterization and applications
Zhang et al. Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination
CN107115559A (zh) 在医用金属表面制备纳米银抗菌涂层的方法
Wu et al. The preparation of cotton fabric with super‐hydrophobicity and antibacterial properties by the modification of the stearic acid
CN107759818A (zh) 一种超滑聚四氟乙烯多孔表面的制备方法
Belkhedkar et al. Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorption and reaction method
CN111304904A (zh) 一种具有拒水拒油抗菌功能的涤纶面料的制备方法
CN107347912A (zh) 一种大孔二氧化钛载纳米银抗菌助剂的制备方法
Fauzi Fabrication of superhydrophobic CuO/polystyrene nanocomposite coating with variation concentration
Zhan et al. A cost effective strategy to fabricate STA@ PF@ Cu 2 O hierarchical structure on wood surface: Aimed at superhydrophobic modification
Li et al. ZnO superhydrophobic coating via convenient spraying and its biofouling resistance
Zhang et al. Mildew-resistant wood building materials with titanium oxide nanosheet
CN106350775B (zh) 超双疏/抗菌功能复合涂层及其制备方法
Jiang et al. Superhydrophobic Poplar Scrimber Via In Situ Synthesis of Cu7Cl4 (OH) 10· H2O Heterostructure Inspired by Pine Cone with Superultraviolet Resistance
Manikanta et al. CdO decorated with polypyrrole nanotube heterostructure: potent electrocatalyst for the detection of antihistamine drug promethazine hydrochloride in environmental samples
CN107858683A (zh) 一种多功能抗菌性薄膜及其制备方法
Seth et al. Green synthesis of hierarchically structured metal and metal oxide nanomaterials
Al-Kalifawi et al. Biosynthesis of silver nanoparticles by using onion (Allium cepa) extract and study antibacterial activity
Song et al. Antifouling properties of PEVE coating modified by BiVO 4/BiOIO 3 composite photocatalyst
KR102009198B1 (ko) 강황을 이용한 범용 유기박막의 형성방법
Alrobei et al. Aluminum–α-hematite thin films for photoelectrochemical applications
CN105755420B (zh) 一种臭氧气敏涂层及其制备方法
Wang et al. Mildew resistance and antibacterial activity of plywood decorated with ZnO/TiO2 nanoparticle
Merupo et al. Cu, Mo-doped and pristine-BiVO 4 thin films prepared by rf sputtering process for photocatalytic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant