CN106350775B - 超双疏/抗菌功能复合涂层及其制备方法 - Google Patents
超双疏/抗菌功能复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN106350775B CN106350775B CN201611021098.4A CN201611021098A CN106350775B CN 106350775 B CN106350775 B CN 106350775B CN 201611021098 A CN201611021098 A CN 201611021098A CN 106350775 B CN106350775 B CN 106350775B
- Authority
- CN
- China
- Prior art keywords
- ptfe
- preparation
- paraffin
- composite coating
- nanoparticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/28—Vacuum evaporation by wave energy or particle radiation
- C23C14/30—Vacuum evaporation by wave energy or particle radiation by electron bombardment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0694—Halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Paints Or Removers (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
本发明公开了一种超双疏/抗菌功能复合涂层及其制备方法。将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在洁净的基底上沉积涂层,其中,沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。本发明选择抗菌效果好的无机抗菌剂Ag纳米粒子作为抗菌剂,在聚合物基复合涂层中引入Ag纳米粒子可在极大程度上增强其抗菌性,得到的石蜡/PTFE/AgCl聚合物基复合涂层将Ag纳米粒子稳定于膜表面及其内部,使其中的Ag纳米粒子充分发挥抗菌效果。
Description
技术领域
本发明属于涂层技术领域,尤其涉及一种高效超双疏/抗菌功能复合涂层及其制备方法。
背景技术
石蜡中存在多种烷烃和大量疏水的碳原子长链基团。石蜡具有极低的表面能,用石蜡对材料表面进行修饰可以大大地降低材料表面能,使用一定技术在基底表面构建出微纳米粗糙结构,再利用石蜡极低的表面能,可以制备出双疏性能极强的材料。
聚四氟乙烯(PTFE)表面自由能极低,表面张力小。其F原子在碳链外围形成致密的保护层,因此,PTFE具有极强的热稳定性和化学稳定性,抗强酸强碱,耐腐蚀,几乎不溶于所有溶剂。同时,PTFE还拥有优良的力学性能、电学性能、疏水性能等等,是一种在日常生活中和工业生产上都起着重要作用的树脂。
Ag纳米粒子是通过纳米技术制备的新型银系抗菌剂,拥有小尺寸效应和量子效应。它具有体积小、比表面大的优点,这使得Ag纳米粒子活性更强,更容易与细菌接触,从而轻松地破坏细菌的细胞膜,进入细胞内转换为银离子杀死细菌。因此,与传统银抗菌剂相比,Ag纳米粒子有更强的抗菌性,已广泛应用于生物材料、医用材料和纺织品整理等领域。抗菌材料中引入Ag纳米粒子,一方面,利用纳米颗粒的比表面积大的优势,另一方面,必须考虑Ag纳米粒子在生产过程的团聚现象,因此,抗菌涂层的设计是以聚合物为基膜,Ag纳米粒子均匀分散在其中,稳定在基膜中,避免Ag纳米粒子与空气作用而被氧化,降低抗菌效果。
发明内容
为解决上述背景技术中存在的问题,本发明提供一种简单实用、便于投入工业生产的、节能环保的具有高效超双疏/抗菌功能复合薄膜材料的制备方法。
本发明所解决的技术问题采用以下技术方案来实现:一种超双疏/抗菌功能复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗、干燥;
第二步:将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在基底上沉积涂层。
在本发明的实施例中,第一步中,所述的化学清洗、干燥是将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,清洗结束后将基底置于60℃下干燥。
在本发明的实施例中,第二步中,所述的沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。
在本发明的更优选的实施例中,沉积镀膜时间为6min~12min。
本发明相对于现有技术相比,具有显著优点为:
1、本发明利用低功率真空电子束蒸发法独特的物理气相沉积技术,得到石蜡/PTFE/AgCl聚合物基复合涂层,工艺简单易行,避免使用液相法、化学法等致使薄膜材料不能实际广泛应用等问题,对电子束能量进行调控,得到的石蜡/PTFE/AgCl聚合物基复合涂层结构紧密、结合力强、超双疏性能好,涂层中Ag纳米粒子分散均匀,并具有显著的抗菌效果。
2、本发明用PTFE和石蜡混合作为双疏材料,一方面,PTFE本身具有优异的热稳定性和化学稳定性,同时PTFE还拥有优良的疏水性能的生物相容性;另一方面,石蜡具有极低的表面能,可以制备出双疏性能极强的材料,同时石蜡材料来源广泛、简单易得。综合利用两者的优良性能,能得到稳定的超双疏涂层。
3、本发明创新性的采用PTFE聚合物作为保护抗菌剂,不仅可以避免抗菌产品中纳米颗粒的团聚问题,对纳米粒子抗菌性充分利用,而且还可以保护抗菌涂层中银纳米颗粒与空气作用,防止其被空气氧化,降低抗菌效果。
4、本发明的Ag纳米粒子稳定的分散抗菌涂层内部与表面,使得银颗粒能发挥杀菌抗菌结果,大大提高了抗菌效率,也使得资源的充分利用,解决单纯的银颗粒容易团聚使得银大颗粒内部的粒子浪费的问题。
附图说明
图1是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的AFM图。
图2是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的SEM图;其中:a、b为平面图,放大倍率分别为500、14K;c、d为断面图,放大倍率分别为6K、12K。
图3是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的UV-Vis光谱图。
图4是本发明的石蜡/PTFE/AgCl聚合物基复合涂层的XPS光谱图。
图5是本发明的石蜡/PTFE聚合物基复合涂层和对石蜡/PTFE/AgCl聚合物基复合涂层针对大肠杆菌的抗菌性能效果对照图;其中:a为石蜡/PTFE参照涂层针对大肠杆菌的抗菌性能效果图,b为本发明涂层针对大肠杆菌的24h抗菌性能效果图,c为本发明涂层针对大肠杆菌的48h抗菌性能效果图。
具体实施方式
以下结合附图对本发明做进一步描述:
实施例1
本实施例为一种石蜡/PTFE聚合物基复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗,除去表面的油脂及其他污染物,本实验采用的基底材料为石英玻璃和单晶硅片。清洗步骤为:将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,以提高基底表面活性,从而增强薄膜与基底材料的结合力;清洗结束后将基底置于60℃烘箱内干燥,随后密封保存以待用。
第二步:将石蜡和PTFE粉末机械研磨,按照质量比为4:1的比例混合均匀后,放入靶材容器中;
第三步:将上述靶材放于电子束蒸发仪真空室的靶材位置,将上述的基底放于真空室的基底位置;
第四步:启动低功率电子束蒸发仪,将电子束高压电源调制1.5kV,电子束流密度调0.01A/cm2,电子束流能量调制500eV,沉积镀膜时间为6min。
第五步:将上述样品放于特定保护器皿中,用相应的基底上沉积的样品做相应的测试研究(石英基底测UV-Vis,硅基底测试AFM、接触角、SEM、XPS和抗菌性能);
第六步:对上述样品进行抗菌实验测试,抗菌对象为革兰氏阴性菌大肠杆菌。
实施例2
本实施例为一种石蜡/PTFE/AgCl聚合物基复合涂层的制备方法,包括如下步骤:
第一步:对基底表面进行化学清洗,除去表面的油脂及其他污染物,本实验采用的基底材料为石英玻璃和单晶硅片。清洗步骤为:将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,以提高基底表面活性,从而增强薄膜与基底材料的结合力;清洗结束后将基底置于60℃烘箱内干燥,随后密封保存以待用。
第二步:将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,放入靶材容器中;
第三步:将上述靶材放于电子束蒸发仪真空室的靶材位置,将上述的基底放于真空室的基底位置;
第四步:启动低功率电子束蒸发仪,将电子束高压电源调制2.5kV,电子束流密度调0.05A/cm2,电子束流能量调制2000eV,沉积镀膜时间为12min。
第五步:将上述沉积的基底样品放于特定保护器皿中,将相应的基底做相应的测试研究(石英基底测UV-Vis,硅基底测试接触角数据、AFM、SEM和XPS谱图);
第六步:对表征好的的样品进行抗菌实验测试,抗菌对象为革兰氏阴性菌大肠杆菌。
表1为本发明的石蜡/PTFE/AgCl聚合物基复合涂层的粗糙度、表面能和接触角数据
表1复合涂层的粗糙度、表面能和接触角
从表1得出,靶材中石蜡、PTFE和AgCl粉末质量比为4:1:1时,单晶硅片基底上沉积的石蜡/PTFE/AgCl聚合物基复合涂层疏水和疏油效果显著,针对去离子水的接触角为146.24°,对甘油的接触角为143.19°,对乙二醇的接触角为127.37°,涂层达到了超双疏的效果。
图1是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的AFM图。可以看出涂层表面结构致密,无裂痕和孔洞等缺陷的存在;涂层表面存在疏水性的空腔结构,涂层粗糙度为216.1nm的,都符合超疏性涂层的特征。
图2是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的SEM图。图2a、2b为平面图,2c、2d为断面图。通过SEM图可以看出涂层表面平整、结构紧密,结合力强,纳米颗粒均匀存在于表面和镶嵌在聚合物涂层内部。
图3是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的UV-Vis光谱图。430nm处为Ag纳米粒子的紫外可见特征吸收峰。
图4是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层的XPS光谱图。能谱图中出现了Ag元素的3d3/2和3d5/2两个主峰,分别为373eV和367.2eV。373eV处的特征峰可以通过软件拟合成373.3eV和372.4eV两个峰;367.2eV处的特征峰可以通过软件拟合成367.3eV和366.4eV两个峰。其中373.3eV和367.3eV处的峰是Ag纳米粒子的特征峰,而372.4eV和366.4eV处的峰则是Ag﹢(AgCl)的特征峰。
图5是制备得到的石蜡/PTFE/AgCl聚合物基复合涂层和石蜡/PTFE聚合物基复合涂层对大肠杆菌的抗菌性能效果对照图;从图5a和可以看出石蜡/PTFE聚合物基复合涂层不具备抗菌性;图5b、5c可以看到明显的抑菌圈,石蜡/PTFE/AgCl聚合物基复合涂层针对大肠杆菌的抗菌性能效果显著,抑菌圈规则,抑菌效果明显。
利用本发明的技术方案,或本领域的技术人员在本发明技术方案的启发下,设计出类似的技术方案,而达到上述技术效果的,均是落入本发明的保护范围。
Claims (5)
1.超双疏/抗菌功能复合涂层的制备方法,其特征在于,将石蜡、PTFE和AgCl粉末机械研磨,按照质量比为4:1:1的比例混合均匀后,作为原始靶材,采用真空电子束蒸发法蒸发靶材在洁净的基底上沉积涂层。
2.如权利要求1所述的制备方法,其特征在于,所述的洁净的基底是将基底依次放入丙酮溶液、乙醇溶液和去离子水中超声清洗3次以上,每次20min以上,清洗结束后于60℃下干燥。
3.如权利要求1所述的制备方法,其特征在于,沉积参数为:电子束高压电源调制0.5~2.5kV,电子束流密度调至0.005~0.05A/cm2,电子束流能量调制500~2000eV,沉积镀膜时间为5~25min。
4.如权利要求3所述的制备方法,其特征在于,沉积镀膜时间为6min~12min。
5.如权利要求1-4任一所述的制备方法制备的超双疏/抗菌功能复合涂层。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611021098.4A CN106350775B (zh) | 2016-11-21 | 2016-11-21 | 超双疏/抗菌功能复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611021098.4A CN106350775B (zh) | 2016-11-21 | 2016-11-21 | 超双疏/抗菌功能复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106350775A CN106350775A (zh) | 2017-01-25 |
CN106350775B true CN106350775B (zh) | 2019-01-04 |
Family
ID=57861560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611021098.4A Active CN106350775B (zh) | 2016-11-21 | 2016-11-21 | 超双疏/抗菌功能复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106350775B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423725A (zh) * | 2007-10-31 | 2009-05-06 | 罗门哈斯公司 | 用于钢材的抗片落性粉末薄外涂层 |
-
2016
- 2016-11-21 CN CN201611021098.4A patent/CN106350775B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423725A (zh) * | 2007-10-31 | 2009-05-06 | 罗门哈斯公司 | 用于钢材的抗片落性粉末薄外涂层 |
Non-Patent Citations (2)
Title |
---|
"拒油型聚四氟乙烯微孔薄膜的制备与研究";马可腾;《中国优秀硕士学位论文全文数据库工程科技I辑》;20111231;第40-42页 |
"气相法沉积Ag/聚合物复合薄膜及其抗菌性能";周瑛洁等;《南京工业大学学报(自然科学版)》;20160531;第38卷(第3期);第31-37页 |
Also Published As
Publication number | Publication date |
---|---|
CN106350775A (zh) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sutradhar et al. | Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity | |
Koli et al. | Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs | |
El-Nahhal et al. | Nano-structured zinc oxide–cotton fibers: synthesis, characterization and applications | |
Zhang et al. | Gas phase photocatalytic activity of ultrathin Pt layer coated on α-Fe2O3 films under visible light illumination | |
CN107115559A (zh) | 在医用金属表面制备纳米银抗菌涂层的方法 | |
CN105079878A (zh) | 一种基于壳聚糖复合胶束的纳米抗菌涂层制备方法 | |
Belkhedkar et al. | Characterization and antibacterial activity of nanocrystalline Mn doped Fe2O3 thin films grown by successive ionic layer adsorption and reaction method | |
CN107759818A (zh) | 一种超滑聚四氟乙烯多孔表面的制备方法 | |
CN111304904A (zh) | 一种具有拒水拒油抗菌功能的涤纶面料的制备方法 | |
CN107347912A (zh) | 一种大孔二氧化钛载纳米银抗菌助剂的制备方法 | |
Zhan et al. | A cost effective strategy to fabricate STA@ PF@ Cu 2 O hierarchical structure on wood surface: Aimed at superhydrophobic modification | |
Zhang et al. | Mildew-resistant wood building materials with titanium oxide nanosheet | |
Cai et al. | Triboelectric pulsed direct current for self-powered sterilization of cellulose fiber | |
Li et al. | ZnO superhydrophobic coating via convenient spraying and its biofouling resistance | |
Agrawal et al. | Surface modification of polymer nanocomposites by glow-discharge plasma treatment | |
CN106350775B (zh) | 超双疏/抗菌功能复合涂层及其制备方法 | |
Jiang et al. | Superhydrophobic Poplar Scrimber Via In Situ Synthesis of Cu7Cl4 (OH) 10· H2O Heterostructure Inspired by Pine Cone with Superultraviolet Resistance | |
Manikanta et al. | CdO decorated with polypyrrole nanotube heterostructure: potent electrocatalyst for the detection of antihistamine drug promethazine hydrochloride in environmental samples | |
Wang et al. | Mildew resistance and antibacterial activity of plywood decorated with ZnO/TiO2 nanoparticle | |
CN109127329A (zh) | 一种利用聚电解质/纳米粒子自组装制备仿生超滑表面的方法 | |
CN107858683A (zh) | 一种多功能抗菌性薄膜及其制备方法 | |
Seth et al. | Green synthesis of hierarchically structured metal and metal oxide nanomaterials | |
Al-Kalifawi et al. | Biosynthesis of silver nanoparticles by using onion (Allium cepa) extract and study antibacterial activity | |
Song et al. | Antifouling properties of PEVE coating modified by BiVO 4/BiOIO 3 composite photocatalyst | |
KR102009198B1 (ko) | 강황을 이용한 범용 유기박막의 형성방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |