CN106349821A - 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法 - Google Patents

一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法 Download PDF

Info

Publication number
CN106349821A
CN106349821A CN201610748811.9A CN201610748811A CN106349821A CN 106349821 A CN106349821 A CN 106349821A CN 201610748811 A CN201610748811 A CN 201610748811A CN 106349821 A CN106349821 A CN 106349821A
Authority
CN
China
Prior art keywords
ink
powder
gqds
aqueous solution
antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610748811.9A
Other languages
English (en)
Inventor
于庆九
邱杰华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSHAN CITY GAOMING DISTRICT HAIDI CERAMIC MATERIALS Co Ltd
Original Assignee
FOSHAN CITY GAOMING DISTRICT HAIDI CERAMIC MATERIALS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOSHAN CITY GAOMING DISTRICT HAIDI CERAMIC MATERIALS Co Ltd filed Critical FOSHAN CITY GAOMING DISTRICT HAIDI CERAMIC MATERIALS Co Ltd
Priority to CN201610748811.9A priority Critical patent/CN106349821A/zh
Publication of CN106349821A publication Critical patent/CN106349821A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Abstract

本发明公开了一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法,该制备方法包括以下步骤:步骤A、将溶剂、超分散剂、调节剂、消泡剂和防扩散剂混合搅拌配成混合溶液,然后加入抗菌复合物搅拌均匀;步骤B、加入渗透粉体及负离子复合物,研磨然后加入溶剂和防辐射复合物,研磨得墨水半成品;步骤C、过滤得墨水成品。和现有陶瓷墨水相比,本发明制造的陶瓷墨水配料科学,性能稳定,具有天然大理石纹路、色彩和质感,进一步提高瓷砖的装饰效果,还可在瓷片和仿古砖等领域广泛应用;经过合理的搭配防辐射复合物、负离子复合物和抗菌复合材料,使得陶瓷墨水具有优异抗菌、净化空气和防辐射特性,进一步拓宽了其应用范围。

Description

一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法
技术领域
本发明涉及了陶瓷技术领域,特别是涉及了一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法。
背景技术
细菌,霉菌作为病原菌对人类和动植物有很大危害,影响人们的健康甚至危及生命,带来了重大的经济损失。因此抗菌材料及其制品的研究日益引起人们的关注,抗菌制品的需求将构成巨大的市场。
随着科学技术的进步和信息产业的高速发展,计算机、手机、传真机、电话机和网络等设备或系统已广泛应用于信息的产生、传输、接收、存储等处理过程。这类设备在工作时离不开电磁波的作用。电磁波的广泛应用带来了日益严重的电磁干扰和污染。减少电磁干扰的有效方法之一就是采用微波吸波(收)材料。当电磁波通过吸波材料时,会产生电磁波损耗,使电磁波能量转化为其他形式的能量,也即在吸波材料介质中被最大程度地吸收。铁氧体是一种良好的吸波材料,在电磁波吸收剂领域一直占有重要地位。
对于环境保护方面,空气负离子可以消除室内异味和各种有害气体。在室内装修过程中使用的装潢材料挥发出来的苯、甲醛、酮、氨等刺激性气体以及日常生活中剩菜剩饭酸臭味,香烟等对人体有害的异味,用富含负离子的材料,其释放的空气负离子都能有效地加以消除,达到净化空气的目的,并对金葡萄球菌、大肠杆菌、念珠菌及霉菌等有很好的抑制作用。
陶瓷喷墨技术作为一种新的无接触、无压力、无印版的印刷技术,无疑将当今瓷砖时装化、个性化、艺术化、小批量、多花色、低碳环保的发展趋势推向了一个新的高度。自2009 年我国引进第一台陶瓷喷墨机以来,陶瓷喷墨印刷技术的发展突飞猛进,并得到大量应用。经过几年的发展,陶瓷喷墨产品的市场占有率越来越高,也将陶瓷喷墨技术的优势发挥的淋漓尽致。
大理石瓷砖是具有天然大理石纹路、色彩和质感的一类瓷砖产品,部分大理石瓷砖产品通过复杂的丝网漏印方式来达到具有下凹效果的纹路。但是目前鲜有报道关于功能型的大理石纹路效果的陶瓷墨水,因此技术有待改进和提高,亟需研发功能型及具有大理石裂纹效果的陶瓷墨水,如抗菌、防静电、除臭剂、光致变色、负离子等功能,进一步扩宽其应用范围。
发明内容
为了解决上述现有技术的不足,本发明提供了一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法
本发明所要解决的技术问题通过以下技术方案予以实现:
一种大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其包括以下步骤:
步骤A、将一半溶剂、2~8%超分散剂、1~4%调节剂、0.01~0.3%消泡剂和0.1~2%防扩散剂混合搅拌配成混合溶液,然后加入0~5%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3000~4000转/min;
步骤B、向卧式砂磨机中缓慢加入40~50%渗透粉体及2~7%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入另一半溶剂和1~6%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 80~100℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品。
一种大理石裂纹效果的防辐射陶瓷喷墨墨水,按质量百分比计由以下成分组成:40~50%渗透粉体、2~8%超分散剂、1~4%调节剂、0.01~0.3%消泡剂、0.1~2%防扩散剂、0.1~5%抗菌复合物、1~5%负离子复合物及3~8%防辐射复合物,余量为溶剂。
在本发明中,所述防辐射复合物制备方法如下:取按重量比将30~40%环氧树脂、30~45%酚醛树脂、1~5%电气石、3~8%稀土及20~30%铁氧体充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,得防辐射多孔网状碳膜。所述的稀土由硝酸镧、硝酸钕、硝酸铒和硝酸亚铈按重量比1:2:2:1组合而成。电气石由铁电气石、锂电气石和镁电气石按3:2:1组合而成。铁氧体为锶氧铁、钡氧铁和钴氧铁中的一种。
在本发明中,所述负离子复合物制备方法如下:取5~10g负离子粉分散于100~200ml超纯水中,水浴超声1~2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,得负离子复合物。
在本发明中,所述渗透粉体为V2O5、NH4VO3、BiVO4、CaV2O6、WO3、CaWO4、Bi2W3O12中的一种或多种。所述超分散剂包括Solsperse5000、Solsperse32600、Solsperse54000、Silok®7010、SUP1400。所述调节剂为醚类、醇类、酮类中的一种或几种,具体为乙二醇二丁醚、二乙二醇丁醚、二乙二醇二甲醚、二乙二醇二乙醚、二丙二醇二丁醚、月桂醇、肉豆蔻醇、佛尔酮、5- 壬酮中的一种或几种。所述消泡剂为 BYK-065、BYK-066N 或BYK-088。所述防扩散剂为聚丙二醇2000、异构十醇聚氧乙烯醚E-05 或甘油聚氧丙烯醚HSH-330。所述溶剂为十六烷、十五烷、松香醇、三甲基壬醇、十一醇、二乙二醇二丁醚、三乙二醇二甲醚、四乙二醇二甲醚、十四酸甲酯、油酸丁酯、硬脂酸丁酯、硬脂酸戊酯、马来酸二辛酯、己二酸二乙酯和月桂酸异丙酯中的一种或几种。
在本发明中,所述抗菌复合物可通过以下方法制得:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:1~3),调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
较佳地,在步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
在本发明中,所述抗菌复合物还可以通过以下方法制得:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得石墨烯量子点(GQDs)悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2~3:1),超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
较佳地,在步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
本发明具有如下有益效果:本方法在碳纳米管上负载并固定抗菌剂,不仅防止其团聚,显著提高金属纳米粒子等抗菌剂的稳定性,使其能更好分散在低温熔块内,且具有更长效的抗菌活性以及银离子不会溢出氧化变色;同时复合了多种抗菌剂的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;在原料组成中加入稀土组分,并合理设计了稀土、电气石和铁氧体的组分比例,利用电气石具有自发电极性功能,稀土具有变价性能,激活铁氧体材料,协同铁氧体的磁性波作用,使其制备结构型吸波材料具有较高的介电常数和磁导率,提高了材料的吸波性能;负离子复合物可高效不间断的释放负离子,在有光或无光条件下均能不间断释放负离子,有效净化空气,分解甲醛等有机气体,提高室内空气质量,还具有抗菌的作用,有益于人体健康。
和现有陶瓷墨水相比,本发明制造的陶瓷墨水配料科学,制备合理,性能稳定,可长时间保存,具有良好的喷墨打印性能,具有天然大理石纹路、色彩和质感,进一步提高瓷砖的装饰效果,还可在瓷片和仿古砖等领域广泛应用;经过合理的搭配防辐射复合物、负离子复合物和抗菌复合材料,使得陶瓷墨水具有优异抗菌、净化空气和防辐射特性,进一步拓宽了其应用范围。
具体实施方式
下面通过具体的优选实施方式来进一步说明本发明的技术方案。
实施例1
一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法,该制备方法包括以下步骤:
步骤A、将18%松香醇、5% Solsperse54000、3%月桂醇、0.2% BYK-088和1.7%异构十醇聚氧乙烯醚E-05混合搅拌配成混合溶液,然后加入0.1%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3500转/min;
步骤B、向卧式砂磨机中缓慢加入46%渗透粉体(V2O5、BiVO4、WO3、Bi2W3O12按重量比2:1:3:1混合而成)及7%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入18%十一醇和1%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品。
其中,所述防辐射复合物制备方法如下:取按重量比将40%环氧树脂、31%酚醛树脂、1%电气石、8%稀土及20%铁氧体充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,得防辐射多孔网状碳膜;所述的稀土是指由硝酸镧、硝酸钕、硝酸铒和硝酸亚铈按重量比1:2:2:1组合而成;电气石是指铁电气石、锂电气石和镁电气石按3:2:1组合而成;铁氧体为锶氧铁。
其中,所述负离子复合物制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。
所述抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.05mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.005mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应30min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声10min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例2
一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法,该制备方法包括以下步骤:
步骤A、将18%松香醇、5% Solsperse54000、3%月桂醇、0.2% BYK-088和1.3%异构十醇聚氧乙烯醚E-05混合搅拌配成混合溶液,然后加入2.5%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3500转/min;
步骤B、向卧式砂磨机中缓慢加入44%渗透粉体(V2O5、BiVO4、WO3、Bi2W3O12按重量比2:1:3:1混合而成)及5%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入18%十一醇和3%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品。
其中,所述防辐射复合物的制备方法如下:取按重量比将32%环氧树脂、36%酚醛树脂、3%电气石、5%稀土及24%铁氧体充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,得防辐射多孔网状碳膜;所述的稀土是指由硝酸镧、硝酸钕、硝酸铒和硝酸亚铈按重量比1:2:2:1组合而成;电气石是指铁电气石、锂电气石和镁电气石按3:2:1组合而成;铁氧体为锶氧铁。
其中,所述负离子复合物的制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。
所述抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取2gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.03mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.03mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.3;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.3gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应45min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声12min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例3
一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法,该制备方法包括以下步骤:
步骤A、将16%松香醇、5% Solsperse54000、3%月桂醇、0.2% BYK-088和1.8%异构十醇聚氧乙烯醚E-05混合搅拌配成混合溶液,然后加入5%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3500转/min;
步骤B、向卧式砂磨机中缓慢加入45%渗透粉体(V2O5、BiVO4、WO3、Bi2W3O12按重量比2:1:3:1混合而成)及2%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入16%十一醇和6%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 90℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品。
其中,所述防辐射复合物的制备方法如下:取按重量比将30%环氧树脂、32%酚醛树脂、5%电气石、3%稀土及30%铁氧体充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,得防辐射多孔网状碳膜;所述的稀土是指由硝酸镧、硝酸钕、硝酸铒和硝酸亚铈按重量比1:2:2:1组合而成;电气石是指铁电气石、锂电气石和镁电气石按3:2:1组合而成;铁氧体为锶氧铁。
其中,所述负离子复合物的制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可制得所述负离子粉;取8g负离子粉分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,即得负离子复合物。
其中,所述抗菌复合物按以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取3gGQDs/Ag2O超声搅拌分散于100ml水溶液中;逐滴加入浓度为0.005mol/L硝酸铈水溶液,30min后逐滴加入浓度为0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.2:0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入6mL质量分数为50%的水合肼,在30℃下还原反应0.5h;之后,再加入45mL质量分数为50%的水合肼,在85℃下还原反应36h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与GQDs/Ag2O/Ag-Zn-Ce的质量比为3:2),调节pH值为9~10,反应温度为20~25℃,反应60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90℃下干燥3h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行600℃热处理1h,冷却至室温后,浸没在氢氟酸中以超声功率100W进行超声15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例4
基于实施例2的制备方法,不同之处在于:步骤(4)和(5)之间增加如下步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。
实施例5
基于实施例1的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.001mol/L硝酸银水溶液;逐滴加入浓度为0.1mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:18持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)取1g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例6
基于实施例2的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.005mol/L硝酸银水溶液;逐滴加入浓度为0.2mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取2gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.2g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;80min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:15持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.5wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)取2g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例7
基于实施例3的制备方法,不同之处在于:所述抗菌复合物通过以下方法制得:
(1)称取0.6gC60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以600rpm的速度搅拌,得混合液;称取1g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应4h;快速加入120ml纯水,过滤,然后用截留分子量为1000的透析袋透析4天,得石墨烯量子点(GQDs)悬浮液;100rpm速度搅拌GQDs悬浮液,同时激光辐照40min,激光辐照功率为1W;备用;
(2)超声搅拌60mlGQDs悬浮液,滴加浓度为0.01mol/L硝酸银水溶液;逐滴加入浓度为0.5mol/L磷酸二氢铵溶液(磷酸二氢铵溶液与硝酸银水溶液体积比为2:1),超声搅拌20min;逐滴加入1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.2mol/L的质子酸溶液和浓度为0.1mol/L的十二烷基苯磺酸以体积比3:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌100min后加入苯胺,抗菌粉与苯胺质量比为2:12持续搅拌90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应20h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化4d后置烘箱90℃烘干;碾磨后将所得复合物500℃下煅烧1h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)取3g多孔二氧化钛/抗菌粉复合物分散于150ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
实施例8
基于实施例6的制备方法,不同之处在于:步骤(3)和(4)之间增加如下一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:3;50W超声90min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
三维海绵状石墨烯制备方法如下:将3g 石墨粉,1g NaNO3在冰水浴中与250ml98%浓硫酸混合均匀,缓慢加入6g KMnO4。然后升温至在35℃,搅拌40min 后,加入95ml 去离子水,升温至98℃反应20min;再加入270ml 水稀释,并用5ml 30% H2O2中和多余KMnO4,混合溶液的颜色为棕黄色,趁热过滤,用去离子水反复洗涤至中性,超声分散得到GO;取200ml 质量分数为5mg/ml的氧化石墨烯溶液倒入直径25cm,高2cm的圆盘状反应皿中,加入抗坏血酸(VC)0.5g搅拌使其充分混合;然后密闭反应皿并置于80℃水热反应15h,反应皿中的氧化石墨烯自发收缩交联成三维海绵结构,冷冻干燥,得到柔性的三维海绵状石墨烯。
对比例1
基于实施例1的制备方法,不同之处在于:所述抗菌复合物为载金属抗菌剂的二氧化钛;不添加防辐射复合物;所述负离子复合物的制备方法如下:将8%珊瑚化石、12%电气石、25%蛋白石、4%蛇纹石、7%麦饭石、4%奇冰石、4%北投石、3%医王石、8%贝壳、12%硅藻土、2%三氧化二铁、3%三氧化二铝、5%氧化锆和3%磷酸锆混合均匀,加入碾磨设备中进行超细粉碎,直至颗粒直径分布在50~80nm,过筛,干燥,即可。
对比例2
基于实施例5的制备方法,不同之处在于:所述抗菌复合物为氧化锌和二氧化钛的混合物;所述防辐射复合物为锶氧铁;未添加负离子复合物。
对实施例1~8及对比例1、2制备的陶瓷墨水进行性能测试,测试结果显示墨水粘度为15~30mPa·s,表面张力在25~40mN/m,粒径分布均匀,平均粒径在200~400nm之间,具有良好的稳定性和喷墨打印性能,所制得瓷砖大理石纹路与打印图案对位准确,纹路效果逼真。
将实施例1~8及对比例1、2进行抗菌等性能测试,测试结果如下表:
灭菌率:取 105个/ml 的大肠杆菌0.1ml,均匀涂布于喷涂并烧成有陶瓷墨水的瓷砖面上,在室内放置 2h,然后将菌液用无菌水洗脱至培养基中,37℃下培养24h,然后检测菌数,计算灭菌率。
热稳定性实验:将喷涂并烧成有陶瓷墨水的瓷砖置于电炉中,自室温升到200℃,保温20min,迅速投入25℃水中,10min后取出擦干,釉层无温度冲击裂纹并测试其灭菌率。
磨损测试:选用莫氏硬度为3~4的磨料,在喷涂并烧成有陶瓷墨水的瓷砖上摩擦1000次来模仿铺贴使用2年后的效果。
防污测试:选用铬绿为污染剂。
灭菌均匀性评价:在同一块喷涂并烧成有陶瓷墨水的瓷砖上选取100个区域进行灭菌测试,对测得的数据进行均匀度分析,通过均匀度=100*(1-标准偏差/平均值)。当均匀度大于97%,则标记为▲;当均匀度大于90%且小于97%,则标记为☆;当均匀度低于90%,则标记为╳。
负离子释放量:采用日本产COM-3010PRO型离子探测器测试负离子释放量,将该样品放置于1m3的测试箱(长、宽、高均为1m)中,测得空气中空气负离子浓度(初始及24h);采用汉王M1型霾表测试,测试箱内PM2.5浓度(1h及24h);在测试箱内滴加0.1mg甲醛(甲醛浓度0.1mg/m3),24h后测得甲醛浓度。
利用电磁波辐射测试仪QX-5测试各样品的吸波效果。某手机的电磁波辐射强度为800~900μW/cm2,使用了本陶瓷墨水制成的陶瓷片后,测试其辐射强度。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

Claims (8)

1.一种大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其包括以下步骤:
步骤A、将一半溶剂、2~8%超分散剂、1~4%调节剂、0.01~0.3%消泡剂和0.1~2%防扩散剂混合搅拌配成混合溶液,然后加入0~5%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3000~4000转/min;
步骤B、向卧式砂磨机中缓慢加入40~50%渗透粉体及2~7%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入另一半溶剂和1~6%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 80~100℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品。
2.根据权利要求1所述的大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其特征在于,所述抗菌复合物的制备方法如下:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得GQDs悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液,超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于80~120ml水溶液中;逐滴加入浓度为0.005~0.05mol/L硝酸铈水溶液,30~60min后逐滴加入浓度为0.005~0.05mol/L硝酸锌水溶液,GQDs/Ag2O水溶液、硝酸铈水溶液与硝酸锌水溶液体积比为1:0.1~0.2:0.2~0.4;继续超声搅拌,调节混合溶液PH值至7.0;边超声搅拌,边加入4~8mL质量分数为50%的水合肼,在30~40℃下还原反应0.5~1h;之后,再加入40~50mL质量分数为50%的水合肼,在85℃下还原反应30~48h后;过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/Ag-Zn-Ce;
(4)将0.1~0.5gGQDs/Ag2O/Ag-Zn-Ce超声搅拌分散于水溶液中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入,调节pH值为9~10,反应温度为20~25℃,反应30~60min;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在80~90℃下干燥2~4h,以得到GQDs/Ag2O/Ag-Zn-Ce/SiO2;将GQDs/Ag2O/Ag-Zn-Ce/SiO2置于氩气气氛下进行500~800℃热处理1~2h,冷却至室温后,浸没在氢氟酸中以超声功率100~150W进行超声10~15min,去除表面局部二氧化硅,离心并干燥,获得抗菌粉;
(5)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(6)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(7)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
3.根据权利要求2所述的大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其特征在于,步骤(4)和(5)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/Ag-Zn-Ce/SiO2水溶液中,三维海绵状石墨烯与GQDs/Ag2O/Ag-Zn-Ce/SiO2的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/Ag-Zn-Ce/SiO2/石墨烯抗菌粉。
4.一种大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其包括以下步骤:
步骤A、将一半溶剂、2~8%超分散剂、1~4%调节剂、0.01~0.3%消泡剂和0.1~2%防扩散剂混合搅拌配成混合溶液,然后加入0~5%抗菌复合物搅拌均匀,移至卧式砂磨机中继续搅拌,3000~4000转/min;
步骤B、向卧式砂磨机中缓慢加入40~50%渗透粉体及2~7%防辐射复合物,并在加完后继续研磨直到墨水平均粒径低于600nm,然后加入另一半溶剂和1~6%负离子复合物,继续研磨至墨水平均粒径控制在200~400nm,得墨水半成品;
步骤C、将步骤B得到的墨水半成品在 80~100℃的恒温搅拌缸中,然后进行抽真空、高速振动、过滤,得到墨水成品;
其中,所述抗菌复合物的制备方法如下:
(1)称取0.3~1gC60粉末,量取80~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500~600rpm的速度搅拌,得混合液;称取1~3g高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应3~5h;快速加入100~150ml纯水,过滤,然后用截留分子量为1000的透析袋透析3~5天,得GQDs悬浮液;100~150rpm速度搅拌GQDs悬浮液,同时激光辐照30~60min,激光辐照功率为0.5~2W;备用;
(2)超声搅拌50~60mlGQDs悬浮液,滴加浓度为0.001~0.01mol/L硝酸银水溶液;逐滴加入浓度为0.1~0.5mol/L磷酸二氢铵溶液,超声搅拌10~20min;逐滴加入0.5~1mol/L氢氧化钠溶液,调节PH值至11,而后静置、离心,用去离子水和乙醇交替洗涤三次,真空干燥,得GQDs/Ag2O;
(3)取1~3gGQDs/Ag2O超声搅拌分散于水溶液中;逐滴加入浓度为0.05~0.5g/100mlZnO量子点水溶液,超声功率搅拌速度各减半;60~90min后,静置,过滤,用去离子水洗涤数次,真空干燥,得GQDs/Ag2O/ZnO抗菌粉;
(4)氮气环境下,将浓度为0.05~0.5mol/L的质子酸溶液和浓度为0.05~0.5mol/L的十二烷基苯磺酸以体积比2~4:2混合,同时加入步骤(4)制得的抗菌粉,磁力搅拌60~120min后加入苯胺,抗菌粉与苯胺质量比为2:12~18;持续搅拌60~90min后,逐滴滴加过硫酸铵,苯胺与过硫酸铵摩尔比为1:1;20℃~30℃下反应15~30h;丙酮、去离子水洗涤数次后真空干燥,碾磨得纳米聚苯胺/抗菌粉复合物;
(5)用溶胶-凝胶法制备二氧化钛溶胶,向溶胶中加入占溶胶0.01~1.0wt%的纳米聚苯胺/抗菌粉复合物,混合均匀;静置陈化3~5d后置烘箱60℃~120℃烘干;碾磨后将所得复合物400~550℃下煅烧1~2h,去除聚苯胺,得多孔二氧化钛/抗菌粉复合物;
(6)取1~3g多孔二氧化钛/抗菌粉复合物分散于100~200ml超纯水中,水浴超声2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下多孔二氧化钛/抗菌粉复合物吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有多孔二氧化钛/抗菌粉复合物的碳纳米管网状膜刮离该基板,获得抗菌复合物。
5.据权利要求5所述的大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其特征在于,步骤(3)和(4)之间增加一步骤:取三维海绵状石墨烯超声搅拌分散于水溶液中,逐滴加入GQDs/Ag2O/ZnO水溶液中,三维海绵状石墨烯与GQDs/Ag2O/ZnO的重量比为1:1~5;10~100W超声60~120min,静置,去离子水洗涤数次,干燥得GQDs/Ag2O/ZnO/石墨烯抗菌粉。
6.根据权利要求1或4所述的大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其特征在于,所述防辐射复合物制备方法如下:取按重量比将30~40%环氧树脂、30~45%酚醛树脂、1~5%电气石、3~8%稀土及20~30%铁氧体充分混合,加入适量的乙酸丁酯放入球磨机中分散解胶,排料后,检测、调整配制成可以涂敷的浆料;将此浆料涂敷于基板上,干燥成膜;然后放在充氮保护气氛炉中,升温到900~1000℃,保温1~2h;将膜刮离该基板,得防辐射多孔网状碳膜。
7.根据权利要求1或4所述的大理石裂纹效果的防辐射陶瓷喷墨墨水的制备方法,其特征在于,所述负离子复合物制备方法如下:取5~10g负离子粉分散于100~200ml超纯水中,水浴超声1~2h获得均匀和稳定的分散液;将具有碳纳米管网状膜的基板置于约8℃时,将分散液加入内凹形状的基板中,同时,来回滚动滚轮,使该分散液均匀分散于该碳纳米管网状膜中,由于碳纳米管在8℃附近时具有亲水性,该分散液被吸附在碳纳米管网状膜的多个网洞;升温至约25℃,碳纳米管具有疏水性并将水分子赶走只留下负离子粉吸附在碳纳米管网状膜的多个网洞中;干燥后,将吸附有负离子粉的碳纳米管网状膜刮离该基板,得负离子复合物。
8.一种大理石裂纹效果的防辐射陶瓷喷墨墨水,其特征在于,其按质量百分比计由以下成分组成:40~50%渗透粉体、2~8%超分散剂、1~4%调节剂、0.01~0.3%消泡剂、0.1~2%防扩散剂、0.1~5%抗菌复合物、1~5%负离子复合物及3~8%防辐射复合物,余量为溶剂。
CN201610748811.9A 2016-08-29 2016-08-29 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法 Pending CN106349821A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610748811.9A CN106349821A (zh) 2016-08-29 2016-08-29 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610748811.9A CN106349821A (zh) 2016-08-29 2016-08-29 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法

Publications (1)

Publication Number Publication Date
CN106349821A true CN106349821A (zh) 2017-01-25

Family

ID=57855777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610748811.9A Pending CN106349821A (zh) 2016-08-29 2016-08-29 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法

Country Status (1)

Country Link
CN (1) CN106349821A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237153A (zh) * 2010-05-06 2011-11-09 鸿富锦精密工业(深圳)有限公司 导电膜及其制造方法
CN102631939A (zh) * 2012-03-28 2012-08-15 江苏大学 一种石墨烯/磷酸银复合可见光光催化剂及其制备方法
CN102807209A (zh) * 2012-08-02 2012-12-05 清华大学 一种石墨烯量子点的制备方法
CN103081946A (zh) * 2013-01-18 2013-05-08 湖南元素密码石墨烯研究院(有限合伙) 一种多孔石墨烯负载铈纳米复合抗菌剂及其制备方法
CN103361044A (zh) * 2013-07-16 2013-10-23 东南大学 一种氧化石墨烯片包裹氧化锌量子点核壳结构的制备方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN105176196A (zh) * 2015-09-21 2015-12-23 佛山市三水区康立泰无机合成材料有限公司 一种大理石裂纹路效果的陶瓷喷墨墨水及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237153A (zh) * 2010-05-06 2011-11-09 鸿富锦精密工业(深圳)有限公司 导电膜及其制造方法
CN102631939A (zh) * 2012-03-28 2012-08-15 江苏大学 一种石墨烯/磷酸银复合可见光光催化剂及其制备方法
CN102807209A (zh) * 2012-08-02 2012-12-05 清华大学 一种石墨烯量子点的制备方法
CN103081946A (zh) * 2013-01-18 2013-05-08 湖南元素密码石墨烯研究院(有限合伙) 一种多孔石墨烯负载铈纳米复合抗菌剂及其制备方法
CN103361044A (zh) * 2013-07-16 2013-10-23 东南大学 一种氧化石墨烯片包裹氧化锌量子点核壳结构的制备方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN105176196A (zh) * 2015-09-21 2015-12-23 佛山市三水区康立泰无机合成材料有限公司 一种大理石裂纹路效果的陶瓷喷墨墨水及其制备方法

Similar Documents

Publication Publication Date Title
CN107983329A (zh) 一种以金属有机骨架为模板的铈基复合氧化物VOCs燃烧催化剂及其制备方法
CN106348603A (zh) 一种具有净化空气效果的低温仿古釉及其制备方法
CN106336249A (zh) 一种抗菌防静电陶瓷砖及其制备方法
CN104789067A (zh) 一种碳量子点可见光光触媒涂料及其制备方法
CN106242297A (zh) 一种抗菌除臭陶瓷砖及其制备方法
CN106336119A (zh) 一种光致变色陶瓷釉及其制备方法
CN106396400A (zh) 一种抗菌负离子保健陶瓷及其制备方法
CN106396401A (zh) 一种防静电保健陶瓷及其制备方法
CN106396394A (zh) 一种生态陶瓷砖及其制备方法
CN106396405A (zh) 一种光致变色陶瓷砖及其制备方法
CN106380076A (zh) 一种低温仿古釉及其制备方法
CN106365453A (zh) 一种防辐射陶瓷砖及其制备方法
CN106746652A (zh) 一种抗菌陶瓷釉及其制备方法
CN106189518A (zh) 一种大理石裂纹效果的抗菌陶瓷喷墨墨水及其制备方法
CN106348597A (zh) 一种可光致变色低温仿古釉及其制备方法
CN106746653A (zh) 一种抗菌防辐射陶瓷釉及其制备方法
CN106396386B (zh) 一种光致变色保健陶瓷及其制备方法
CN106349821A (zh) 一种大理石裂纹效果的防辐射陶瓷喷墨墨水及其制备方法
CN106189504A (zh) 一种环保型水性uv光固化陶瓷喷墨油墨及其制备方法
CN106634204A (zh) 一种陶瓷喷墨用可下陷抗菌陶瓷墨水及其制备方法
CN106189509A (zh) 一种喷墨用抗菌除臭低温陶瓷墨水及其制备方法
CN106380077A (zh) 一种除臭抗菌低温仿古釉及其制备方法
CN106318039A (zh) 一种具有皮纹效果的净化空气陶瓷墨水及其制备方法
CN106396395A (zh) 一种抗菌低温仿古釉及其制备方法
CN106349814A (zh) 一种抗菌防静电水性uv光固化陶瓷喷墨油墨及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125