CN106349622A - 一种除甲醛树脂复合材料及其制备方法 - Google Patents

一种除甲醛树脂复合材料及其制备方法 Download PDF

Info

Publication number
CN106349622A
CN106349622A CN201610737959.2A CN201610737959A CN106349622A CN 106349622 A CN106349622 A CN 106349622A CN 201610737959 A CN201610737959 A CN 201610737959A CN 106349622 A CN106349622 A CN 106349622A
Authority
CN
China
Prior art keywords
quantum dot
graphene quantum
graphene
silver
ultrasonic agitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610737959.2A
Other languages
English (en)
Inventor
陆庚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaoming District Of Foshan City Is Runying Technology Co Ltd
Original Assignee
Gaoming District Of Foshan City Is Runying Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaoming District Of Foshan City Is Runying Technology Co Ltd filed Critical Gaoming District Of Foshan City Is Runying Technology Co Ltd
Priority to CN201610737959.2A priority Critical patent/CN106349622A/zh
Publication of CN106349622A publication Critical patent/CN106349622A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/14Diatomaceous earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/12Adsorbed ingredients, e.g. ingredients on carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种除甲醛树脂复合材料及其制备方法,该方法包括:(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液中,超声搅拌,静置60min,在60~80℃下干燥,备用;(3)再加入抗菌复合材料分散溶液,超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料;所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5~1%,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.5~1%。本发明经过合理的搭配硅藻土和抗菌复合材料,使得树脂材料具有优异抗菌和除甲醛性能,满足多功能树脂材料的需求,进一步拓宽树脂材料的应用。

Description

一种除甲醛树脂复合材料及其制备方法
技术领域
本发明涉及了树脂材料技术领域,特别是涉及了一种除甲醛树脂复合材料及其制备方法。
背景技术
目前各种不同金属离子制备的抗菌材料成为研究热点,如采用有机聚丙烯睛纤维化学改性的方法制备新型广谱抗菌功能纤维,又如金属络合型广谱抗菌功能纤维等等。但现有方法金属离子如纳米银与基体树脂无法紧密结合(特别是当纳米银颗粒含量增加时,容易发生团聚现象),在使用过程中容易脱落,从而影响使用寿命及抗菌效果。同时,现有的树脂材料功能较单一,一种树脂材料无法满足多种需求,往往是通过混合多种功能的树脂材料,但较难达到所预期的效果。
发明内容
本发明所要解决的技术问题是提供了一种除甲醛树脂复合材料及其制备方法。
本发明所要解决的技术问题通过以下技术方案予以实现:
一种除甲醛树脂复合材料的制备方法
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液(溶剂为水和乙醇按体积比3:2组成)中,超声搅拌,静置60min,在60~80℃下干燥,备用;
(3)再加入抗菌复合材料分散溶液(溶剂为水和乙醇按体积比3:2组成),超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料。所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5~1%,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.5~1%。
所述胺化预处理使用的胺化处理剂为聚氮杂环丙烷、多乙撑多胺、二乙烯三胺、三乙烯四胺中的任意一种或多种,预处理时胺化剂占聚丙烯腈大孔吸附树脂总质量的1%~30%。所述胺化预处理具体为:将聚丙烯腈大孔吸附树脂与胺化处理剂,混合、搅拌,静置30min后,干燥,备用。
所述硅藻土/多孔碳制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,研磨得到纳米级多孔碳;将纳米硅藻土分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,多次抽滤清洗,干燥得硅藻土/多孔碳,硅藻土与多孔碳的重量比为5:1。
在本发明中,一种抗菌复合材料的制备方法包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5~0.8g C60粉末,量取50~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以300~500rpm的速度搅拌,得混合液;称取0.5~3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5~8h;快速加入100~200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.5~1mg/ml的分散液,溶剂为水;超声搅拌(500~1000W超声功率,600~800rpm搅拌速度)80~100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌30~60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.005~0.01g氧化石墨加入到5~10mL的分散剂(DMSO)中,超声搅拌(300~500W超声功率,200~300rpm搅拌速度)并加入0.1~0.3g负载氧化锌的石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(300~500W超声功率,200~300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.001~0.005mol/L硝酸银溶液,控制反应温度为45~60℃,滴加浓度为0.01~0.08mol/L二水合柠檬酸三钠,继续超声搅拌60~120min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3~4:2~3:1~2。
(5)将0.1~0.5g负载银的石墨烯量子点超声搅拌(500~1000W超声功率,300~500rpm搅拌速度)分散于乙醇中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯(与负载银的石墨烯量子点的质量比为 1~2:1,调节pH值为9~10,反应温度为20~25℃,反应1~3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.1~0.3mol/L钛源(钛源为氟钛酸钾、氟钛酸铵、钛酸异丙酯或四氯化钛)加入到1 M硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100~110℃,反应2~4h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.005~0.01g氧化石墨加入到5~10mL的分散剂(DMSO)中,超声搅拌(300~500W超声功率,200~300rpm搅拌速度)并加入0.1~0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2~0.8mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(500~1000W超声功率,600~800rpm搅拌速度)80~100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:1~3)超声搅拌10~30min,然后移至聚四氟乙烯的反应釜中,在80~120℃下保温15~30min;冷却,离心,清洗,烘干得抗菌复合材料。
本发明具有如下有益效果:
本发明将纳米硅藻土预分散在多孔碳内再附着在树脂孔洞内,既提高了硅藻土的分散性也使得树脂材料具有抗甲醛的特性;分别先制备负载氧化锌的石墨烯量子点和负载银/二氧化钛的石墨烯量子点,然后表面处理,最后附着在多孔石墨烯上,可以更好地负载并固定银纳米粒子和氧化锌,防止其团聚,显著提高银纳米粒子和氧化锌的稳定性,使银纳米粒子和氧化锌具有更长效的抗菌活性;同时复合了银粒子、二氧化钛以及氧化锌的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久;同时复合了银粒子和二氧化钛的抗菌性能,相比于单一的银纳米抗菌剂有着更好的抗菌效果,抗菌持久。经过合理的搭配硅藻土和抗菌复合材料,两者协同作用,使得树脂材料具有优异抗菌和除甲醛性能,满足多功能树脂材料的需求,进一步拓宽树脂材料的应用。
具体实施方式
下面结合实施例对本发明进行详细的说明,实施例仅是本发明的优选实施方式,不是对本发明的限定。
实施例1
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5g C60粉末,量取50ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应8h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30min,激光辐照功率为2W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.5mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.005g氧化石墨加入到8mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.2g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200W,240℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.005mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.08mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为4:2:1。
(5)将0.1g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比5:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应2小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.3mol/L钛源(钛源为氟钛酸钾)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100℃,反应2h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.005g氧化石墨加入到10mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为200W, 240℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.8mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为1:1)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
实施例2
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.7g C60粉末,量取80ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取2g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应6h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照45min,激光辐照功率为1.5W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为0.8mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.008g氧化石墨加入到10mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.1g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为300W,220℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.003mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.05mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:3:2。
(5)将0.3g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比4:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 2:1,调节pH值为9~10,反应温度为20~25℃,反应1小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.2mol/L钛源(钛源为氟钛酸铵)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100℃,反应3h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.008g氧化石墨加入到8mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.2g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为300W,220℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.5mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:3)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
实施例3
一种抗菌复合材料的制备方法,其包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.8g C60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取1g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5h;快速加入100ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照60min,激光辐照功率为1W。
(2)称取氧化锌量子点(粒径约2~5nm)配制成浓度为1mg/ml的分散液,溶剂为水;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点。
(3)负载氧化锌的石墨烯量子点的表面处理:将0.01g氧化石墨加入到5mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.3g负载氧化锌的石墨烯量子点,继续超声搅拌20min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为400W,200℃下反应60min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
(4)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)另一半石墨烯量子点悬浮液,滴加浓度为0.001mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.01mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:2:1。
(5)将0.5g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比3:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(6)将0.1mol/L钛源(钛源为氟钛酸钾、氟钛酸铵、钛酸异丙酯或四氯化钛)加入到1 mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至110℃,反应4h后,用浓氨水溶液调pH值至7,陈化6小时后,清洗,干燥,得到载银/二氧化钛石墨烯量子点。
(7)载银/二氧化钛石墨烯量子点的表面处理:将0.01g氧化石墨加入到5mL的分散剂(DMSO)中,超声搅拌(500W超声功率,300rpm搅拌速度)并加入0.1g载银/二氧化钛石墨烯量子点,继续超声搅拌30min,移至内衬为聚四氟乙烯的微波水热反应釜(50 mL)中,密封后置于微波辅助水热合成仪中,微波功率为400W,200℃下反应60min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
(8)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)80ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点(两者质量比为2:1)超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
对比例1
一种抗菌复合材料的制备方法,包括以下步骤:
(1)制备石墨烯量子点悬浮液:称取0.5g C60粉末,量取100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以500rpm的速度搅拌,得混合液;称取3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应8h;快速加入200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液。
(2)制备负载银的石墨烯量子点:超声搅拌(500W超声功率,300rpm搅拌速度)50ml石墨烯量子点悬浮液,滴加浓度为0.001mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.01mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯量子点;石墨烯量子点悬浮液、硝酸银溶液与二水合柠檬酸三钠的体积比为3:2:1。
(3)将0.5g负载银的石墨烯量子点超声搅拌(1000W超声功率, 500rpm搅拌速度)分散于乙醇中;之后加入体积比3:1的水和氨水,搅拌均匀后加入正硅酸乙酯,与负载银的石墨烯量子点的质量比为 1:1,调节pH值为9~10,反应温度为20~25℃,反应3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;将该沉淀在90oC下干燥3h,以得到SiO2包覆的负载银的石墨烯量子点。
(4)称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.2mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,加入步骤(3)制得的SiO2包覆载银石墨烯量子点,超声搅拌30min,然后移至聚四氟乙烯的反应釜中,在100℃下保温30min;冷却,离心,清洗,烘干得抗菌复合材料。
对比例2
一种抗菌复合材料的制备方法,包括以下步骤:称取多孔石墨烯(2~5层,孔大小约3~6nm,层大小100~500nm)配制成浓度为0.5mg/ml的石墨烯分散溶液,溶剂为水、丙酮或二甲基亚砜;超声搅拌(1000W超声功率,800rpm搅拌速度)100ml石墨烯分散溶液,滴加浓度为0.003mol/L硝酸银溶液,控制反应温度为50℃,滴加浓度为0.04mol/L二水合柠檬酸三钠,继续超声搅拌90min;陈化,清洗,烘干得负载银的石墨烯抗菌材料。
本发明所制备出的抗菌复合材料的抗菌活性评价的具体过程和步骤如下:
测试的细菌分别为金黄色葡萄球菌和大肠杆菌;参照最小抑菌浓度(minimalinhibitory concentration, MIC)的测试方法(Xiang Cai, Shaozao Tan,Aili Yu,Jinglin Zhang, Jiahao Liu, Wenjie Mai, Zhenyou Jiang. Sodium1-naphthalenesulfonate- functioned reduced graphene oxide stabilize the silvernanoparticles with lower cytotoxicity and long-term antibacterialactivity.Chemistry-An Asian Journal. 2012, 7(7):1664-1670.),先用电子天平称取一定量的各实施例和对比例所制备的抗菌复合材料,将抗菌复合材料用MH肉汤对倍系列稀释到不同浓度,分别加入到含有一定菌量的MH培养液中,使最终菌液的浓度约为106个/mL,然后在37℃下振荡培养24h,观察其结果,如表1所示。不加抗菌样品的试管作为对照管,无菌生长的实验管液体透明,以不长菌管的抗菌剂计量为该抗菌剂的最低抑菌浓度(MIC)。
表1:实施例1~3和对比例1、2抗菌复合材料的抗菌性能
长效性试验:在40℃恒温水槽中放一锥形瓶,瓶内加入1g 各实施例和对比例所制备的抗菌复合材料样品和200mL盐水(0.9mass%),并分别在水中浸泡6、24、72h后取样,测定其最低抑菌浓度,如表2所示。
表2:实施例1~3和对比例1、2抗菌复合材料的长效抗菌活性
实施例4
一种除甲醛树脂复合材料的制备方法,其包括以下步骤:
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;具体为:将聚丙烯腈大孔吸附树脂与胺化处理剂(聚氮杂环丙烷和多乙撑多胺按体积比2:1组成),混合、搅拌,静置30min后,干燥,备用;预处理时胺化剂占聚丙烯腈大孔吸附树脂总质量的12%。
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液(溶剂为水和乙醇按体积比3:2组成)中,超声搅拌,静置60min,在60~80℃下干燥,备用,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.5%。;所述硅藻土/多孔碳制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,研磨得到纳米级多孔碳;将纳米硅藻土分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,多次抽滤清洗,干燥得硅藻土/多孔碳,硅藻土与多孔碳的重量比为5:1。
(3)再加入实施例2的抗菌复合材料分散溶液(溶剂为水和乙醇按体积比3:2组成),超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料。所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的1%。
实施例5
一种除甲醛树脂复合材料的制备方法,其包括以下步骤:
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;具体为:将聚丙烯腈大孔吸附树脂与胺化处理剂(聚氮杂环丙烷和多乙撑多胺按体积比2:1组成),混合、搅拌,静置30min后,干燥,备用;预处理时胺化剂占聚丙烯腈大孔吸附树脂总质量的12%。
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液(溶剂为水和乙醇按体积比3:2组成)中,超声搅拌,静置60min,在60~80℃下干燥,备用,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.65%。;所述硅藻土/多孔碳制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,研磨得到纳米级多孔碳;将纳米硅藻土分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,多次抽滤清洗,干燥得硅藻土/多孔碳,硅藻土与多孔碳的重量比为5:1。
(3)再加入实施例2的抗菌复合材料分散溶液(溶剂为水和乙醇按体积比3:2组成),超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料。所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.82%。
实施例6
一种除甲醛树脂复合材料的制备方法,其包括以下步骤:
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;具体为:将聚丙烯腈大孔吸附树脂与胺化处理剂(聚氮杂环丙烷和多乙撑多胺按体积比2:1组成),混合、搅拌,静置30min后,干燥,备用;预处理时胺化剂占聚丙烯腈大孔吸附树脂总质量的12%。
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液(溶剂为水和乙醇按体积比3:2组成)中,超声搅拌,静置60min,在60~80℃下干燥,备用,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的1%。;所述硅藻土/多孔碳制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,研磨得到纳米级多孔碳;将纳米硅藻土分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,多次抽滤清洗,干燥得硅藻土/多孔碳,硅藻土与多孔碳的重量比为5:1。
(3)再加入实施例2的抗菌复合材料分散溶液(溶剂为水和乙醇按体积比3:2组成),超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料。所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5%。
对比例3
基于实施例6的制备方法,不同之处在于:所述抗菌复合材料为纳米银抗菌剂。
对比例4
一种除甲醛树脂复合材料的制备方法,其包括以下步骤:
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;具体为:将聚丙烯腈大孔吸附树脂与胺化处理剂(聚氮杂环丙烷和多乙撑多胺按体积比2:1组成),混合、搅拌,静置30min后,干燥,备用;预处理时胺化剂占聚丙烯腈大孔吸附树脂总质量的12%。
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土分散溶液(溶剂为水和乙醇按体积比3:2组成)中,超声搅拌,静置60min,在60~80℃下干燥,备用,所述硅藻土占聚丙烯腈大孔吸附树脂总重量的0.5%。
(3)再加入纳米银抗菌剂分散溶液(溶剂为水和乙醇按体积比3:2组成),超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料。所述纳米银抗菌剂占聚丙烯腈大孔吸附树脂总重量的1%。
对比例5
基于实施例6的制备方法,不同之处在于:未添加硅藻土/多孔碳材料。
对比例6
基于实施例6的制备方法,不同之处在于:未添加抗菌复合物。
本发明的主要技术性能如下表所示:
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制,但凡采用等同替换或等效变换的形式所获得的技术方案,均应落在本发明的保护范围之内。

Claims (8)

1.一种除甲醛树脂复合材料的制备方法,其包括以下步骤:
(1)将聚丙烯腈大孔吸附树脂进行胺化预处理;
(2)将步骤(1)的聚丙烯腈大孔吸附树脂加入硅藻土/多孔碳分散溶液中,超声搅拌,静置60min,在60~80℃下干燥,备用;
(3)再加入抗菌复合材料分散溶液,超声搅拌,静置60min,在60~80℃下干燥,即可得到除甲醛树脂复合材料;所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5~1%,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.5~1%。
2.根据权利要求1所述的除甲醛树脂复合材料的制备方法,其特征在于,所述硅藻土/多孔碳制备方法如下:将5g纤维素,12mg聚苯乙烯磺酸钾和30ml水加入到100ml水热釜中,在180℃烘箱中密封反应10h,经清洗干燥后,在900℃的空气气氛下煅烧1h,研磨得到纳米级多孔碳;将纳米硅藻土分散在120ml的水溶液中,浸入多孔碳2h,让纳米材料充分进入孔道中,多次抽滤清洗,干燥得硅藻土/多孔碳,硅藻土与多孔碳的重量比为5:1。
3.根据权利要求1或2所述的除甲醛树脂复合材料的制备方法,其特征在于,所述抗菌复合材料的制备方法如下:
(1)制备石墨烯量子点悬浮液:100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W;
(2)称取氧化锌量子点配制成浓度为0.5~1mg/ml的分散液,溶剂为水;超声搅拌80~100ml氧化锌分散液,滴加步骤(1)制得的一半石墨烯量子点悬浮液,继续超声搅拌30~60min;离心,清洗,烘干,得到负载氧化锌的石墨烯量子点;
(3)负载氧化锌的石墨烯量子点的表面处理;
(4)制备负载银的石墨烯量子点:超声搅拌另一半石墨烯量子点悬浮液,滴加硝酸银溶液,控制反应温度为45~60℃,滴加二水合柠檬酸三钠,继续超声搅拌60~120min;陈化,清洗,烘干得负载银的石墨烯量子点;
(5)将0.1~0.5g负载银的石墨烯量子点超声搅拌分散于乙醇中;之后加入体积比3~5:1的水和氨水,搅拌均匀后加入正硅酸乙酯,调节pH值为9~10,反应温度为20~25℃,反应1~3小时;进行离心并依次用丙酮和去离子水清洗获得沉淀;干燥得到SiO2包覆的负载银的石墨烯量子点;
(6)将0.1~0.3mol/L钛源加入到1mol/L硫酸溶液中,混合均匀;加入步骤(5)制得的SiO2包覆载银石墨烯量子点,升温至100~110℃,反应2~4h后,用浓氨水溶液调pH值至7,陈化,清洗,干燥,得到载银/二氧化钛石墨烯量子点;
(7)载银/二氧化钛石墨烯量子点的表面处理;
(8)称取多孔石墨烯配制成浓度为0.2~0.8mg/ml的石墨烯分散溶液;超声搅拌80~100ml石墨烯分散溶液,加入步骤(3)制得的负载氧化锌的石墨烯量子点和步骤(7)制得的载银/二氧化钛石墨烯量子点,超声搅拌10~30min,然后移至聚四氟乙烯的反应釜中,在80~120℃下保温15~30min;冷却,离心,清洗,烘干得抗菌复合材料。
4.根据权利要求3所述的除甲醛树脂复合材料的制备方法,其特征在于,所述石墨烯量子点悬浮液的制备方法如下:称取0.5~0.8g C60粉末,量取50~100ml质量分数为98%的浓硫酸,将C60粉末和浓硫酸在烧杯中混合,烧杯放在冰水浴中,同时以300~500rpm的速度搅拌,得混合液;称取0.5~3g 高锰酸钾粉末,缓慢的加入上述混合液中;移去冰水浴,换成水浴,保持水浴温度30~40℃,反应5~8h;快速加入100~200ml纯水,过滤,然后用截留分子量为1000的透析袋透析3天,得石墨烯量子点悬浮液;100rpm速度搅拌石墨烯量子点悬浮液,同时激光辐照30~60min,激光辐照功率为1~2W。
5.根据权利要求3所述的除甲醛树脂复合材料的制备方法,所述多孔石墨烯为2~5层,孔大小约3~6nm,层大小100~500nm的多孔石墨烯。
6.根据权利要求3所述的除甲醛树脂复合材料的制备方法,所述载银/二氧化钛石墨烯量子点的表面处理具体为:将0.005~0.01g氧化石墨加入到5~10mL的分散剂中,超声搅拌并加入0.1~0.3g载银/二氧化钛石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的载银/二氧化钛石墨烯量子点。
7.根据权利要求3所述的除甲醛树脂复合材料的制备方法,所述负载氧化锌的石墨烯量子点的表面处理具体为:将0.005~0.01g氧化石墨加入到5~10mL的分散剂中,超声搅拌并加入0.1~0.3g负载氧化锌的石墨烯量子点,继续超声搅拌10~30min,移至内衬为聚四氟乙烯的微波水热反应釜中,密封后置于微波辅助水热合成仪中,微波功率为200~400W,200~240℃下反应60~90min;冷却,过滤,烘干得表面处理的负载氧化锌的石墨烯量子点。
8.一种除甲醛树脂复合材料,其特征在于,所述抗菌复合材料占聚丙烯腈大孔吸附树脂总重量的0.5~1%,所述硅藻土/多孔碳占聚丙烯腈大孔吸附树脂总重量的0.5~1%;所述聚丙烯腈大孔吸附树脂进行胺化预处理。
CN201610737959.2A 2016-08-29 2016-08-29 一种除甲醛树脂复合材料及其制备方法 Pending CN106349622A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610737959.2A CN106349622A (zh) 2016-08-29 2016-08-29 一种除甲醛树脂复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610737959.2A CN106349622A (zh) 2016-08-29 2016-08-29 一种除甲醛树脂复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106349622A true CN106349622A (zh) 2017-01-25

Family

ID=57854307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610737959.2A Pending CN106349622A (zh) 2016-08-29 2016-08-29 一种除甲醛树脂复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106349622A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940227A (zh) * 2017-05-19 2018-12-07 宁波大学 一种能清除空气中甲醛的高分子吸附材料及其制备方法
CN114573331A (zh) * 2022-03-16 2022-06-03 佛山市芯耀环保科技有限公司 一种抗菌阻垢陶瓷材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350318A (zh) * 2011-07-11 2012-02-15 邯郸派瑞电器有限公司 一种甲醛吸附树脂及其制备方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN104291321A (zh) * 2014-07-28 2015-01-21 长春工业大学 一种石墨烯量子点薄膜的制备方法
CN104472542A (zh) * 2014-12-18 2015-04-01 中山大学 一种石墨烯/银/二氧化钛复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350318A (zh) * 2011-07-11 2012-02-15 邯郸派瑞电器有限公司 一种甲醛吸附树脂及其制备方法
CN104211050A (zh) * 2014-07-15 2014-12-17 中国科学技术大学 一种石墨烯量子点悬浮液和粉末的制备方法
CN104291321A (zh) * 2014-07-28 2015-01-21 长春工业大学 一种石墨烯量子点薄膜的制备方法
CN104472542A (zh) * 2014-12-18 2015-04-01 中山大学 一种石墨烯/银/二氧化钛复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张新生: "核壳结构纳米Ag@SiO2的制备及其杀菌、防腐和应用性能研究", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940227A (zh) * 2017-05-19 2018-12-07 宁波大学 一种能清除空气中甲醛的高分子吸附材料及其制备方法
CN108940227B (zh) * 2017-05-19 2020-12-29 宁波大学 一种能清除空气中甲醛的高分子吸附材料及其制备方法
CN114573331A (zh) * 2022-03-16 2022-06-03 佛山市芯耀环保科技有限公司 一种抗菌阻垢陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106376557A (zh) 一种抗菌复合材料及其制备方法
CN106349874A (zh) 一种防腐涂料的制备方法
CN106085139A (zh) 一种防腐涂料的制备方法
CN106221316A (zh) 一种水性抗菌除臭无机涂料的制备方法
CN106172494A (zh) 一种多孔石墨烯载银抗菌复合材料及其制备方法
CN106221543A (zh) 一种耐磨光致变色涂料及其制备方法
CN106349622A (zh) 一种除甲醛树脂复合材料及其制备方法
CN106221150A (zh) 一种可净化空气的pet/ptt合金的制备方法
CN106364124A (zh) 一种抗菌除醛复合纤维膜的制备方法
CN106221542A (zh) 一种耐磨防静电抗菌涂料及其制备方法
CN106220831A (zh) 一种聚乳酸材料的制备方法
CN106221556A (zh) 一种除臭紫外光固化涂料及其制备方法
CN106120151B (zh) 一种除甲醛复合纤维膜的制备方法
CN105289192A (zh) 一种适用于空气净化机的室温甲醛分解剂及其制备方法
CN106366757A (zh) 一种水溶性光致变色油墨的制备方法
CN106189717A (zh) 一种光致变色防腐涂料的制备方法
CN106366532A (zh) 一种树脂复合材料及其制备方法
CN106189400A (zh) 一种水性光致变色无机涂料的制备方法
CN106366849A (zh) 一种抗菌防辐射防腐涂料的制备方法
CN106349627A (zh) 一种抗菌树脂复合材料及其制备方法
CN106417276A (zh) 一种载银抗菌复合材料及其制备方法
CN106366591A (zh) 一种抗菌防辐射聚乳酸材料的制备方法
CN106084982A (zh) 一种水溶性油墨的制备方法
CN106336605A (zh) 一种光致变色树脂复合材料及其制备方法
CN106279645A (zh) 一种光致变色聚乳酸材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170125

RJ01 Rejection of invention patent application after publication