CN106330251B - 基于零相关带序列的水声通信系统多普勒扩展估计方法 - Google Patents

基于零相关带序列的水声通信系统多普勒扩展估计方法 Download PDF

Info

Publication number
CN106330251B
CN106330251B CN201610751216.0A CN201610751216A CN106330251B CN 106330251 B CN106330251 B CN 106330251B CN 201610751216 A CN201610751216 A CN 201610751216A CN 106330251 B CN106330251 B CN 106330251B
Authority
CN
China
Prior art keywords
signal
doppler spread
sequence
time
zcz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610751216.0A
Other languages
English (en)
Other versions
CN106330251A (zh
Inventor
李春国
宋康
张行
曹冰昊
杨绿溪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201610751216.0A priority Critical patent/CN106330251B/zh
Publication of CN106330251A publication Critical patent/CN106330251A/zh
Application granted granted Critical
Publication of CN106330251B publication Critical patent/CN106330251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种使用零相关带(ZCZ,zero correlation zone)序列作为训练序列来估计MIMO‑OFDM水声通信系统多普勒扩展因子的方法。该方法在数据帧前插入两段重复的ZCZ序列,接收端采用多个并行相关器对接收信号进行延时自相关运算,根据最大输出结果的相关器的窗口长度估计多普勒扩展因子。与现有的多普勒扩展估计算法相比,该方法可显著提高多普勒扩展估计精度,信道适应性强,在信噪比大于‑5dB时,估计精度始终保持在10‑4以下,满足高数据率水声通信对多普勒扩展因子估计精度的要求。

Description

基于零相关带序列的水声通信系统多普勒扩展估计方法
技术领域
本发明涉及水声通信领域,尤其涉及一种基于零相关带序列的水声通信系统多普勒扩展估计方法。
背景技术
带宽和频谱利用率是影响通信系统信息传输速率的两个关键因素,MIMO技术能够通过多根天线同时发射和接收信号而显著提高频谱利用率,同时,OFDM技术将频率选择性衰落信道划分为多个正交子信道,每一个子信道频率平坦衰落,以避免符号间干扰。因此,对于多径干扰严重的水声通信系统,MIMO-OFDM技术具有良好的应用前景。
水声信道在物理上可以看成是具有不同时延、不同频移、不同起始角的许多传播路径的总和,其复杂性和多变性限制了水声通信的性能,特别是移动水声通信系统,由于声波在海水中的传播速度仅为1500m/s,远低于空气中电磁波的传播速度(3×108m/s),收发端的移动导致通信信号在时间上的扩展或压缩远大于无线电通信,从而在接收端将严重恶化接收机的载频跟踪和相位符号同步,导致误码率增大。因此,对于移动水声通信系统,对多普勒效应进行估计和补偿是必不可少的,而进行多普勒补偿的前提是精确的估计出多普勒扩展因子。
关于水声通信系统的多普勒估计与补偿,现已有比较丰富的研究成果。其中,使用线性调频(LFM,linearly frequencymodulated)信号作为前后同步信号,接收端利用已知的LFM序列与接收信号进行互相关运算,根据前后同步信号输出的峰值间隔与实际信号间隔的差值计算多普勒扩展因子的方法存在两个主要的缺点:接收机需要缓存所有的接收数据才能计算前后同步信号的峰值,不利于实时信号处理;由于接收信号与本地已知信号作互相关运算,无法消除由于收发端晶振频率差异等引起的信号频率偏移的影响。另一种使用具有较高多普勒容忍性的双曲线调频信号(HFM,hyperbolic frequency modulation)作为前后同步信号的方法,也不能进行实时的信号处理。使用双PN序列作为训练序列,接收端利用二维搜索算法估计多普勒扩展因子的方法,计算复杂度较高。使用带有循环前缀(CP,cyclic prefix)的正交频分复用(OFDM,orthogonal frequency division multiplexing)符号作为训练序列的方法,在低信噪比时估计精度不高。
本发明提出使用ZCZ序列作为训练序列,接收端使用多个并行相关器对接收信号进行延时自相关处理,根据最大输出结果的相关器的窗口长度进行多普勒扩展因子估计。ZCZ序列具有良好的自相关特性:主瓣尖锐,旁瓣为0,利于接收端峰值的检测;另外,ZCZ序列具有恒模特性,因而有平坦的频谱响应,适合OFDM系统。同时,该方法在信号实时处理和消除收发端固定频偏方面具有优势:重复的序列结构位于数据帧前端,不需缓存整帧数据即可进行同步和多普勒估计等;两段重复序列受到相同的收发端固定频偏影响,自相关运算时取共轭可消除固定频偏。
发明内容
技术问题:为了克服水声通信系统中现有的多普勒估计方案估计精度较低的问题,本发明提供一种基于零相关带序列的水声通信系统多普勒扩展估计方法,充分利用ZCZ序列良好的自相关特性,在接收端进行实时的信号处理,同时大大提高了多普勒扩展因子的估计精度。
技术方案:为实现上述目的,本发明采用的一种基于零相关带序列的水声通信系统多普勒扩展估计方法,使用具有恒模特性和良好的自相关特性的ZCZ序列作为MIMO-OFDM水声通信系统的训练序列,用以估计信号经过时变多径时延信道而引起的扩展或压缩。所述方案包括如下步骤:
1)在发送数据帧前插入两段相同的ZCZ序列,每根发射天线上使用ZCZ序列集合中的不同序列作为训练序列;
2)信号经过时变多径时延信道,造成时间上的扩展或压缩以及子载波的频率偏移;
3)接收端采用多个并行相关器对接收信号进行延时自相关运算;
4)根据最大输出结果的相关器的窗口长度进行多普勒扩展因子估计。
所述步骤1)中,数据帧前插入的ZCZ序列是利用交织因子化方法生成的,令ZCZ序列集合表示为则Ψ(L,M,Z)的周期相关函数满足:
其中,上标P表示周期,L为ZCZ序列长度,M为ZCZ序列条数,Z为零相关带的长度,ci,cj表示序列元素。
所述步骤2)中,时变多径时延信道是:冲激响应函数可以表示为:
其中,下标p表示多径数,Ap(t)是路径增益,τp(t)是路径时延,假定所有路径的多普勒扩展因子a相同,路径时延τp(t),路径增益Ap(t)在一帧符号持续时间内保持不变,即记为τp,Ap
所述步骤2)中,时间上的扩展或压缩以及子载波的频率偏移是:接收端第j根接收天线上的接收信号可以表示为:
其中,Nt为发射天线数,K为子载波个数,s为发送信号,T为一个OFDM符号的持续时间,fc为载波频率,a为多普勒扩展因子,是加性高斯白噪声,tm为第m帧信号起始时间,信道传输函数Hk的定义为:
信号在时间上的扩展或压缩,即持续时间从2T变为2T/(1+a),同时,造成每一个子载波发生了的频率偏移。
所述步骤3)中,接收端采用多个并行相关器对接收信号进行延时自相关运算的方法是:
其中下标j代表第j根接收天线,Kl表示相关器的窗口长度,y表示接收信号,n表示第n个采样点。能量函数P为:
所述步骤4)中,最大输出结果的判定方法是:
Nr为接收天线数,选取所有相关器输出结果Mn中的最大值,记为Mmax
所述步骤4)中,进行多普勒扩展因子估计的方法是:取输出最大判决变量的窗口长度值可以计算出多普勒扩展因子为:
其中,KF为发送训练序列的实际长度,为多普勒扩展因子的估计值。相应的,令海水中声速为c,可得收发机的相对运动速度为:
有益效果:本发明提供的基于ZCZ序列的水声通信系统多普勒扩展估计方法,在接收端使用延时自相关算法进行多普勒扩展因子估计,不需要缓存整帧数据即可进行多普勒扩展因子估计,便于实时的信号处理;并且由于两段重复序列受到相同的收发端固定频偏影响,自相关运算时取共轭可消除收发端固定频偏带来的影响。本发明所提出的方法在时变多径时延信道下仍能比较精确的进行多普勒扩展因子估计,信道适应性强,稳定度高,估计精度远高于传统的多普勒扩展因子估计方法。
附图说明
图1:ZCZ序列的自相关性质示意图;
图2:ZCZ序列的互相关性质示意图;
图3:ZCZ序列的恒模特性示意图;
图4为本发明中的发送信号的数据帧结构图;
图5为本发明中的接收端多个并行相关器示意图;
图6为多普勒扩展因子a=0.005,多径数path=3,估计误差随信噪比的变化而变化的仿真曲线,其中,估计误差是指多普勒扩展因子的估计值与实际值之间的偏差。
图7为多普勒扩展因子a=0.005,多径数path=7,估计误差随信噪比的变化而变化的仿真曲线,
图8为信噪比为0dB,多径数目为7的情况下,估计误差随运动速度的变化而变化的仿真曲线。
具体实施方式
下面结合附图对本发明作更进一步的说明。
设MIMO-OFDM系统发射天线数为Nt,接收天线数为Nr,信号采用基于循环前缀(CP,cyclic prefix)的OFDM调制方式,以防止码间干扰,令B为信道带宽,K为子载波个数,则子载波间隔为Δf=B/K,一个OFDM符号持续时间为T=1/Δf=K/B,每个OFDM符号的循环前缀时间长度为Tg
如图1、2,3所示,本发明所采用的训练序列为用交织因子化方法生成的ZCZ序列。令ZCZ序列集合表示为则Ψ(L,M,Z)的周期相关函数满足:
其中,上标P表示周期,L为ZCZ序列长度,M为ZCZ序列条数,Z为零相关带的长度,ci,cj表示序列元素。当τ∈[-Z,Z]时,ZCZ序列集合的同一序列具有良好的自相关性质,相关峰尖锐;而不同序列之间的相关结果接近于0,另外,ZCZ序列具有恒模特性,因而有平坦的频谱响应,作为OFDM系统的同步符号是非常合适的。
如图4所示,训练序列包含两段相同的ZCZ序列,令s=[s[0],s[1],…,s[K-1]]T表示一个OFDM符号的频域序列,则第i根发射天线上第m帧数据的基带发射信号可以写成:
其中,tm为第m帧信号起始时间。相应的,经频率为fc的载波上变频,得到的带通信号为:
时变多径时延水声信道的冲激响应函数可以表示为:
其中,Ap(t)是路径增益,τp(t)是路径时延,我们假定:
1)所有路径的多普勒扩展因子a相同,即:
τp(t)≈τp-at
2)路径时延τp(t),路径增益Ap(t)在一帧符号持续时间内保持不变,即记为τp,Ap。信号经过上述信道,接收端第j根接收天线上的接收信号可以表示为:
其中,Nt为发射天线数,K为子载波个数,s为发送信号,T为一个OFDM符号的持续时间,fc为载波频率,a为多普勒扩展因子,是加性高斯白噪声,信道传输函数Hk的定义为:
将接收信号下变频到基带信号为:
w(t)为基带高斯白噪声。Ω=2πafc是载波频偏(CFO,carrier frequencyoffset)。可以看出,多普勒效应对传输信号造成了两点影响:
1)引起了信号在时间上的扩展或压缩,即持续时间从2T变为2T/(1+a)。
2)多普勒效应造成每一个子载波发生了的频率偏移,而由于水声信道的带宽与载波频率相差不大,不同的子载波的频率偏移不同,所以不能将其作为窄带信号处理。因此在进行OFDM解调前必须要对信号进行多普勒频偏补偿,以防止子载波间干扰(ICI,inter-carrierinterference)。
在接收端进行采样,则可以得到基带数字信号为:
其中KF为发送训练序列的实际长度,是采样间隔,是过采样率。如图5所示,本发明采用在接收端使用多个并行相关器对信号进行处理的方法,实现多普勒扩展因子的估计。具体来说,每个相关器的相关窗口取不同的长度,对接收信号进行延时自相关运算,设相关器的窗口长度为Kl,利用接收信号中两段重复序列作自相关,得到:
其中j代表第j根接收天线,Kl表示相关器的窗口长度,y表示接收信号,n表示第n个采样点。能量函数P为:
判决变量为:
取输出最大判决变量的窗口长度值则认为此值与受多普勒影响的信号长度是最接近的,所以,可以计算出多普勒扩展因子为:
其中,KF为发送训练序列的实际长度,为多普勒扩展因子的估计值。相应的,可得收发机的相对运动速度为:
其中,c为声波在海水中的传播速度。
接收机利用估计出的对接收信号进行重采样,即可消除多普勒效应对传输信号的影响。
图6—图7给出了不同信道多径数目的情况下,估计误差随信噪比的变化而变化的仿真曲线。可见,在所有的实施例中本发明的性能都明显优于传统的LFM方法和OFDM方法,随着多径数目的增加,LFM方法和OFDM方法的估计误差都略有增加,而本发明所提出的ZCZ序列具有不同序列之间的相关结果接近于0的性质,可有效抑制多径干扰,估计误差几乎不受多径数目增加的影响,稳定性较强,估计精度高。
图8是在信噪比为0dB,多径数目为7的条件下,估计误差随收发端移动速度变化的仿真图,v取正值表示收发端相互靠近,取负值表示收发端相互远离。由图可知,LFM方法在移动速度增大时估计误差明显上升;OFDM方法的估计性能在移动速度较大时,也有一定的下降;而ZCZ方法的估计精度一直保持在10-4左右,且估计误差受移动速度增加的影响不大,具有很强的稳定性。

Claims (2)

1.一种基于零相关带序列的水声通信系统多普勒扩展估计方法,其特征在于:使用具有恒模特性和良好的自相关特性的ZCZ序列作为MIMO-OFDM水声通信系统的训练序列,用以估计信号经过时变多径时延信道而引起的扩展或压缩,所述方法包括如下步骤:
1)在发送数据帧前插入两段相同的ZCZ序列,每根发射天线上使用ZCZ序列集合中的不同序列作为训练序列;
2)信号经过时变多径时延信道,造成时间上的扩展或压缩以及子载波的频率偏移;
3)接收端采用多个并行相关器对接收信号进行延时自相关运算;
4)根据最大输出结果的相关器的窗口长度进行多普勒扩展因子估计。
2.根据权利要求1基于零相关带序列的水声通信系统多普勒扩展估计方法,其特征在于:所述步骤1)中,数据帧前插入利用交织因子化方法生成ZCZ序列,新的数据帧结构如下图所示:
ZCZ序列 数据
时变多径时延信道的冲激响应函数表示为:
其中,下标p表示多径数,Ap(t)是路径增益,τp(t)是路径时延,假定所有路径的多普勒扩展因子a相同,路径时延τp(t),路径增益Ap(t)在一帧符号持续时间内保持不变,即记为τp,Ap
接收端第j根接收天线上的接收信号表示为:
其中,Nt为发射天线数,K为子载波个数,s为发送信号,T为一个OFDM符号的持续时间,fc为载波频率,a为多普勒扩展因子,是加性高斯白噪声,tm为第m帧信号起始时间,信道传输函数Hk的定义为:
τp,Ap分别为路径时延,路径增益;
信号在时间上的扩展或压缩,即持续时间从2T变为2T/(1+a),同时,造成每一个子载波发生了的频率偏移;
接收端采用多个并行相关器对接收信号进行延时自相关运算的方法是:
其中j代表第j根接收天线,Kl表示相关器的窗口长度,y表示接收信号,n表示第n个采样点;能量函数P为:
最大输出结果的判定方法是:
Nr为接收天线数,Mn为相关器输出结果,选取其中的最大值,记为Mmax,Pj(n)为能量函数;
取输出最大判决变量的窗口长度值可以计算出多普勒扩展因子为:
其中,KF为发送训练序列的实际长度,为多普勒扩展因子的估计值。
CN201610751216.0A 2016-08-29 2016-08-29 基于零相关带序列的水声通信系统多普勒扩展估计方法 Active CN106330251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610751216.0A CN106330251B (zh) 2016-08-29 2016-08-29 基于零相关带序列的水声通信系统多普勒扩展估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610751216.0A CN106330251B (zh) 2016-08-29 2016-08-29 基于零相关带序列的水声通信系统多普勒扩展估计方法

Publications (2)

Publication Number Publication Date
CN106330251A CN106330251A (zh) 2017-01-11
CN106330251B true CN106330251B (zh) 2019-08-13

Family

ID=57788721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610751216.0A Active CN106330251B (zh) 2016-08-29 2016-08-29 基于零相关带序列的水声通信系统多普勒扩展估计方法

Country Status (1)

Country Link
CN (1) CN106330251B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505596B (zh) * 2017-07-24 2020-10-16 浙江大学 基于双扩展水声信道环境下的mimo主动探测信号设计与检测系统和方法
JP6926775B2 (ja) 2017-07-24 2021-08-25 日本電気株式会社 移動目標探知システム及び移動目標探知方法
CN109728847A (zh) * 2018-12-17 2019-05-07 中国空间技术研究院 一种多维并行处理的信号自相关检测方法
CN110247867B (zh) * 2019-05-16 2021-03-12 中国科学院声学研究所 水声多普勒估计方法及装置、水声通信方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916922A (zh) * 2012-10-15 2013-02-06 哈尔滨工程大学 水声ofdm自适应搜索多普勒补偿方法
CN103491046A (zh) * 2013-09-12 2014-01-01 江苏科技大学 水声高速ofdm通信的多普勒扩展处理方法
CN103701728A (zh) * 2013-12-03 2014-04-02 浙江大学 一种基于间接信道函数跟踪的被动时反水声通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916922A (zh) * 2012-10-15 2013-02-06 哈尔滨工程大学 水声ofdm自适应搜索多普勒补偿方法
CN103491046A (zh) * 2013-09-12 2014-01-01 江苏科技大学 水声高速ofdm通信的多普勒扩展处理方法
CN103701728A (zh) * 2013-12-03 2014-04-02 浙江大学 一种基于间接信道函数跟踪的被动时反水声通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"声学释放器通信模块的研究与设计";戚富强;《中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑)》;20150315;C028-87,正文第25-48页
"水声MIM0-OFDM系统中多普勒频偏估计与补偿的研究应用";张续辰;《中国优秀硕士学位论文全文数据库(信息科技辑)》;20160115;I136-270,正文第11-52页

Also Published As

Publication number Publication date
CN106330251A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN109802912B (zh) 宽带无线通信系统的同步方法、装置、设备及存储介质
CN110224968B (zh) 一种ofdm通信系统中的帧定时同步方法和装置
CN102812679B (zh) 用于无线通讯系统中准确时间同步的方法及装置
CN106330251B (zh) 基于零相关带序列的水声通信系统多普勒扩展估计方法
CN101163124B (zh) 一种实现多输入多输出正交频分复用系统时间同步的方法
CN104717174B (zh) 一种复杂多径信道下的ofdm抗干扰同步方法
CN102882670A (zh) 一种基于cmmb信号的同步处理方法
CN102291351B (zh) 一种ofdm无线通信系统中接收机的定时同步方法
CN109547372B (zh) 正交频分复用水声通信中时变宽带多普勒因子估计方法及装置
CN103825859A (zh) 一种正交频分复用信号的同步捕获方法及接收端设备
CN113259295B (zh) 一种用于水声fbmc系统的信号检测方法
CN113259291B (zh) 利用水声连续信号动态多普勒跟踪实现的相位补偿方法
CN1674467A (zh) 短程无线网络中的数据传输方法
Meng et al. A novel OFDM synchronization algorithm based on CAZAC sequence
CN102170314A (zh) 一种双曲调频扩频水声通信方法
CN104022995A (zh) 一种基于Zadoff-Chu序列的OFDM精确定时同步方法
CN109981513A (zh) 室内高速大容量mimo-ofdm系统的时间与频率同步方法
CN101207596B (zh) 一种同步方法及接收端设备
CN102377726B (zh) Ofdm系统的定时同步方法
CN109302208A (zh) 一种交织Gold映射序列的并行组合扩频水声通信方法
CN106100692A (zh) Mimo‑ofdm水声通信系统多普勒扩展估计方法
CN101242390B (zh) 基于已知序列相干自相关的载波频偏估计算法及其实现装置
WO2012139849A1 (en) Determining frequency errors in a multi-carrier receiver
CN103414678A (zh) 基于Vector OFDM的双选择性信道的变换域均衡方法
CN104184688B (zh) 一种基于模糊函数的ofdm信号参数估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant