CN106328780B - The method of light emitting diode substrate epitaxial growth based on AlN templates - Google Patents
The method of light emitting diode substrate epitaxial growth based on AlN templates Download PDFInfo
- Publication number
- CN106328780B CN106328780B CN201610940432.XA CN201610940432A CN106328780B CN 106328780 B CN106328780 B CN 106328780B CN 201610940432 A CN201610940432 A CN 201610940432A CN 106328780 B CN106328780 B CN 106328780B
- Authority
- CN
- China
- Prior art keywords
- layer
- light
- gan layer
- doped
- reaction chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 59
- 239000011777 magnesium Substances 0.000 claims abstract description 27
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims abstract description 12
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 152
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 38
- 239000013078 crystal Substances 0.000 description 16
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 12
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
Landscapes
- Led Devices (AREA)
Abstract
本发明公开基于AlN模板的发光二极管衬底外延生长的方法,包括:处理衬底、生长AlxGa(1‑x)N层、生长AlyGa(1‑y)N层、生长SivAlzGa(1‑z‑v)N层、生长掺杂Si的N型GaN层、生长Inx1Ga(1‑x1)N/GaN发光层,其中,x1=0.20‑0.25,生长P型AlGaN层、生长掺镁的P型GaN层、降温冷却。本发明使得外延生长简单化,提升了LED的生产效率。
The invention discloses a method for epitaxial growth of a light-emitting diode substrate based on an AlN template, comprising: processing a substrate, growing an Al x Ga (1-x) N layer, growing an Al y Ga (1-y) N layer, and growing a Si v Al z Ga (1‑z‑v) N layer, grow Si-doped N-type GaN layer, grow In x1 Ga (1‑x1) N/GaN light emitting layer, where x1=0.20‑0.25, grow P-type AlGaN layer 1. Growing a P-type GaN layer doped with magnesium, and cooling down. The invention simplifies the epitaxial growth and improves the production efficiency of the LED.
Description
技术领域technical field
本发明涉及发光二极管衬底外延生长的技术领域,更具体地,涉及一种基于AlN模板的发光二极管衬底外延生长的方法。The present invention relates to the technical field of epitaxial growth of a light emitting diode substrate, and more specifically relates to a method for epitaxial growth of a light emitting diode substrate based on an AlN template.
背景技术Background technique
发光二极管(Light Emitting Diode,简称LED),是半导体二极管的一种,是一种可以把电能转化成光能的设备。LED产品具有节能、环保、寿命长等优点而广受人们喜爱。目前LED市场追求的是高亮度的LED产品,传统的LED结构主要包括:基板衬底、低温缓冲层GaN、不掺杂Si的GaN 层、掺杂Si的GaN层、发光层、掺杂Mg、Al的GaN层、高温掺杂Mg 的GaN、锡氧化铟(IndiumTinOxide,简称ITO)层、SiO2保护层、P电极及N电极。Light Emitting Diode (LED for short) is a kind of semiconductor diode and a device that can convert electrical energy into light energy. LED products have the advantages of energy saving, environmental protection, long life and so on, and are widely loved by people. At present, the LED market is pursuing high-brightness LED products. The traditional LED structure mainly includes: substrate substrate, low-temperature buffer layer GaN, GaN layer not doped with Si, GaN layer doped with Si, light-emitting layer, doped Mg, GaN layer of Al, GaN doped with Mg at high temperature, Indium Tin Oxide (ITO for short) layer, SiO 2 protection layer, P electrode and N electrode.
现有的LED外延生成过程中,都采用蓝宝石PSS衬底生长外延层。但是PSS衬底生长外延层会造成在外延层中存在很大密度的缺陷,使得制备的外延片波长命中率低、外延片晶体质量轻、发光层的晶体质量差,P层的掺杂效率降低,空穴的迁移率降低;导致制备得到LED出现亮度下降、光效降低、反向电压降低、抗静电能力差等问题。In the existing LED epitaxial generation process, the sapphire PSS substrate is used to grow the epitaxial layer. However, the growth of the epitaxial layer on the PSS substrate will cause a large density of defects in the epitaxial layer, resulting in low wavelength hit rate of the prepared epitaxial wafer, light crystal quality of the epitaxial wafer, poor crystal quality of the light-emitting layer, and low doping efficiency of the P layer. , the mobility of the holes is reduced; leading to problems such as a decrease in brightness, a decrease in luminous efficacy, a decrease in reverse voltage, and poor antistatic ability in the prepared LED.
如图1及图2所示,图1为现有技术中传统LED衬底外延生长方法的流程示意图;图2为利用现有技术中发光二极管衬底外延生长方法的制备得到传统LED的结构示意图。其中,传统LED衬底外延生长方法包括如下步骤:As shown in Figure 1 and Figure 2, Figure 1 is a schematic flow chart of a traditional LED substrate epitaxial growth method in the prior art; Figure 2 is a structural schematic diagram of a traditional LED obtained by using the light-emitting diode substrate epitaxial growth method in the prior art . Among them, the traditional LED substrate epitaxial growth method includes the following steps:
步骤101、处理蓝宝石衬底:在1000-1100℃的氢气气氛下,通入 100L/min-130L/min的H2,保持反应腔压力为100-300mbar(mbar为气压单位),处理蓝宝石衬底5-10分钟。Step 101, processing the sapphire substrate: in a hydrogen atmosphere at 1000-1100°C, feed 100L/min-130L/min of H 2 , keep the reaction chamber pressure at 100-300mbar (mbar is the air pressure unit), and process the sapphire substrate 5-10 minutes.
步骤102、生长低温缓冲层GaN:降温至500-600℃,保持反应腔压力 300-600mbar,通入流量为10000-20000sccm(sccm备注标准毫升每分钟)的 NH3、50-100sccm的TMGa、100L/min-130L/min的H2、在蓝宝石衬底上生长厚度为20-40nm的低温缓冲层GaN。Step 102, grow low-temperature buffer layer GaN: lower the temperature to 500-600°C, keep the pressure in the reaction chamber at 300-600mbar, and feed NH 3 at a flow rate of 10000-20000sccm (sccm is standard ml per minute), TMGa at 50-100sccm, 100L /min-130L/min of H 2 , and grow a low-temperature buffer layer GaN with a thickness of 20-40nm on the sapphire substrate.
步骤103、将低温缓冲层GaN腐蚀成不规则岛状:升高温度至 1000-1100℃,保持反应腔压力为300-600mbar,通入流量为30000-40000sccm 的NH3、100L/min-130L/min的H2、保持温度稳定持续300-500s低温将GaN 腐蚀成不规则岛状。Step 103, corroding the low-temperature buffer layer GaN into an irregular island shape: raise the temperature to 1000-1100°C, keep the reaction chamber pressure at 300-600mbar, and feed NH 3 at a flow rate of 30000-40000sccm, 100L/min-130L/ Min of H 2 , keep the temperature stable and continue at low temperature for 300-500s to etch GaN into irregular islands.
步骤104、生长不掺杂的U型GaN层:升高温度到1000-1200℃,保持反应腔压力300-600mbar,通入流量为30000-40000sccm(sccm备注标准毫升每分钟)的NH3、200-400sccm的TMGa、100-130L/min的H2、持续生长2-4μm 的不掺杂GaN。Step 104, growing an undoped U-shaped GaN layer: raise the temperature to 1000-1200°C, keep the reaction chamber pressure at 300-600mbar, and feed in NH 3 , 200 -400sccm of TMGa, 100-130L/min of H 2 , continuous growth of 2-4μm undoped GaN.
步骤105、生长第一掺杂Si的N型GaN层:保持反应腔压力、温度不变,通入流量为30000-60000sccm(sccm备注标准毫升每分钟)的NH3、 200-400sccm的TMGa、100-130L/min的H2、20-50sccm的SiH4持续生长3-4μm 的第一掺杂Si的N型GaN层,Si掺杂浓度5E18-1E19atom/cm3(备注1E19 代表10的19次方也就是10∧19,以此类推)。Step 105, grow the first Si-doped N-type GaN layer: keep the pressure and temperature of the reaction chamber constant, and feed NH 3 with a flow rate of 30000-60000 sccm (sccm remark standard milliliters per minute), 200-400 sccm of TMGa, 100 -130L/min of H 2 , 20-50sccm of SiH 4 to continuously grow the first Si-doped N-type GaN layer of 3-4μm, Si doping concentration 5E18-1E19atom/cm 3 (Note 1E19 represents 10 to the 19th power That is 10 ∧ 19, and so on).
步骤106、生长第二掺杂Si的N型GaN层:保持反应腔压力、温度不变,通入流量为30000-60000sccm(sccm备注标准毫升每分钟)的NH3、 200-400sccm的TMGa、100-130L/min的H2、2-10sccm的SiH4持续生长 200-400nm的第二掺杂Si的N型GaN,Si掺杂浓度5E17-1E18atom/cm3。Step 106, grow the second Si-doped N-type GaN layer: keep the pressure and temperature of the reaction chamber constant, and feed NH 3 with a flow rate of 30000-60000 sccm (sccm remark standard ml per minute), TMGa of 200-400 sccm, 100 - 130 L/min of H 2 and 2-10 sccm of SiH 4 continuously grow the second Si-doped N-type GaN of 200-400 nm, and the Si doping concentration is 5E17-1E18 atom/cm 3 .
步骤107、生长发光层中掺杂Si的N型GaN层:保持反应腔压力 300-400mbar、温度750-850℃通入流量为30000-60000sccm(sccm备注标准毫升每分钟)的NH3、20-40sccm的TMGa、100-130L/min的N2、2-10sccm的 SiH4持续生长50-100nm掺杂Si的N型GaN层,Si掺杂浓度1E18-5E18 atom/cm3。Step 107, grow the N-type GaN layer doped with Si in the luminescent layer: keep the pressure of the reaction chamber at 300-400mbar, the temperature at 750-850°C, and feed in NH 3 , 20- 40sccm TMGa, 100-130L/min N 2 , 2-10sccm SiH 4 continuously grow 50-100nm Si-doped N-type GaN layer, Si doping concentration 1E18-5E18 atom/cm 3 .
步骤108、生长发光层中的InxGa(1-x)N/GaN层:保持反应腔压力 300-400mbar、温度700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm 的TMGa、1500-2000sccm的TMIn、100-130L/min的N2,生长掺杂In的 2.5-3.5nmInxGa(1-x)N(x=0.20-0.25),发光波长450-455nm;接着升高温度750-850℃,保持反应腔压力300-400mbar通入流量为50000-70000sccm的 NH3、20-100sccm的TMGa、100-130L/min的N2,生长8-15nmGaN层;然后重复InxGa(1-x)N的生长,然后重复GaN的生长,交替生长InxGa(1-x)N/GaN 发光层,控制周期数为7-15个。Step 108, growing the In x Ga (1-x) N/GaN layer in the light-emitting layer: keep the pressure of the reaction chamber at 300-400mbar, the temperature at 700-750°C, and feed in NH 3 at a flow rate of 50000-70000sccm, 20-40sccm TMGa, TMIn of 1500-2000sccm, N 2 of 100-130L/min, grow In-doped 2.5-3.5nmIn x Ga (1-x) N (x=0.20-0.25), luminescence wavelength 450-455nm; The high temperature is 750-850°C, and the reaction chamber pressure is kept at 300-400mbar. The flow rate is 50,000-70,000sccm of NH 3 , 20-100sccm of TMGa, and 100-130L/min of N 2 , and grow 8-15nm GaN layer; then repeat In x The growth of Ga (1-x) N, and then repeat the growth of GaN, and alternately grow In x Ga (1-x) N/GaN light-emitting layers, and control the number of cycles to 7-15.
步骤109、生长P型AlGaN层:保持反应腔压力200-400mbar、温度 900-950℃,通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、100 -130L/min的H2、100-130sccm的TMAl、1000-1300sccm的Cp2Mg,持续生长 50-100nm的P型AlGaN层,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度 1E19-1E20atom/cm3。Step 109, growing a P-type AlGaN layer: keep the reaction chamber pressure at 200-400mbar, temperature at 900-950°C, feed NH 3 at a flow rate of 50000-70000sccm, TMGa at 30-60sccm, H2 at 100-130L/min, 100 - 130sccm of TMAl, 1000-1300sccm of Cp 2 Mg, continuous growth of 50-100nm P-type AlGaN layer, Al doping concentration 1E20-3E20atom/cm 3 , Mg doping concentration 1E19-1E20atom/cm 3 .
步骤110、生长掺镁的P型GaN层:保持反应腔压力400-900mbar、温度 950-1000℃,通入流量为50000-70000sccm的NH3、20-100sccm的TMGa、100 -130L/min的H2、1000-3000sccm的Cp2Mg,持续生长50-200nm的掺镁的P 型GaN层,Mg掺杂浓度1E19-1E20atom/cm3。Step 110, growing a magnesium-doped P-type GaN layer: keep the pressure of the reaction chamber at 400-900 mbar, the temperature at 950-1000° C., and feed in NH 3 at a flow rate of 50,000-70,000 sccm, TMGa at 20-100 sccm, and H at 100-130 L/min 2. Cp 2 Mg of 1000-3000 sccm, continuously growing a P-type GaN layer doped with magnesium with a thickness of 50-200 nm, and Mg doping concentration of 1E19-1E20 atom/cm 3 .
步骤111、降温、冷却:最后降温至650-680℃,保温20-30min,接着关闭加热系统、关闭给气系统,随炉冷却。Step 111, lowering the temperature and cooling: finally lowering the temperature to 650-680°C, keeping it warm for 20-30 minutes, then turning off the heating system and the gas supply system, and cooling with the furnace.
如图2所示,传统利用现有技术中发光二极管衬底外延生长方法的制备得到传统LED,由下至上包括如下结构:基板201、为低温缓冲层GaN层 202、U型GaN层203、N型GaN层204、N电极205、发光层206(包括 GaN层261和InxGa(1-x)N层262)、掺杂Mg、Al的P型AlGaN层207、高温掺杂Mg的P型GaN层208、ITO层209、SiO2保护层210及P电极 211。As shown in FIG. 2 , conventional LEDs are prepared by using the epitaxial growth method of light-emitting diode substrates in the prior art, including the following structure from bottom to top: substrate 201, a low-temperature buffer layer GaN layer 202, a U-shaped GaN layer 203, N Type GaN layer 204, N electrode 205, light emitting layer 206 (including GaN layer 261 and In x Ga (1-x) N layer 262), P-type AlGaN layer 207 doped with Mg and Al, P-type AlGaN layer doped with Mg at high temperature GaN layer 208 , ITO layer 209 , SiO 2 protective layer 210 and P electrode 211 .
因此,提供一种外延片波长命中率高、光效好、亮度高、电压低,反向电压高、抗静电能力强的LED衬底外延生长方法是本领域亟待解决的问题。Therefore, it is an urgent problem to be solved in this field to provide an epitaxial growth method of LED substrates with high wavelength hit rate, good light efficiency, high brightness, low voltage, high reverse voltage and strong antistatic ability of epitaxial wafers.
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于AlN模板的发光二极管衬底外延生长的方法,解决了现有技术中LED的外延片波长命中率低、光效差、亮度低、电压高,反向电压低、抗静电能力差的技术问题。In view of this, the present invention provides a method for epitaxial growth of a light-emitting diode substrate based on an AlN template, which solves the problems of low wavelength hit rate, poor light efficiency, low brightness, high voltage, and reverse Technical problems of low voltage and poor antistatic ability.
为了解决上述技术问题,本发明提出一种基于AlN模板的发光二极管衬底外延生长的方法,包括:处理衬底、生长AlxGa(1-x)N层、生长AlyGa(1-y) N层、生长SivAlzGa(1-z-v)N层、生长掺杂Si的N型GaN层、生长Inx1Ga (1-x1)N/GaN发光层,其中,x1=0.20-0.25,生长P型AlGaN层、生长掺镁的P型GaN层、降温冷却;其中,In order to solve the above technical problems, the present invention proposes a method for epitaxial growth of a light-emitting diode substrate based on an AlN template, including: processing the substrate, growing an Al x Ga (1-x) N layer, growing an Al y Ga (1-y ) N layer, grow Si v Al z Ga (1-zv) N layer, grow Si-doped N-type GaN layer, grow In x1 Ga (1-x1) N/GaN light-emitting layer, where x1=0.20-0.25 , growing a P-type AlGaN layer, growing a P-type GaN layer doped with magnesium, and cooling down; wherein,
生长AlxGa(1-x)N层,进一步为:Growth Al x Ga (1-x) N layer, further:
保持反应腔压力为100-300mbar、温度为900-1000℃,同时通入流量为 30000-40000sccm的NH3、100-130L/min的N2、50-100sccm的TMGa及 100-200sccm的TMAl的条件下,生长500-800nm的AlxGa(1-x)N层(x取值范围:0.10-0.15);Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 900-1000°C, and at the same time feed the conditions of 30000-40000sccm of NH3 , 100-130L/min of N2 , 50-100sccm of TMGa and 100-200sccm of TMAl Next, grow a 500-800nm Al x Ga (1-x) N layer (x range: 0.10-0.15);
生长AlyGa(1-y)N层,进一步为:Growth Al y Ga (1-y) N layer, further:
保持反应腔压力为100-300mbar、温度为1000-1200℃,同时通入流量为30000-50000sccm的NH3、100-130L/min的N2、100-200sccm的TMGa 及50-100sccm的TMAl的条件下,生长500-800nm的AlyGa(1-y)N层(y 取值范围:0.05-0.10);Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 1000-1200°C, and at the same time feed the conditions of 30000-50000sccm of NH3 , 100-130L/min of N2 , 100-200sccm of TMGa and 50-100sccm of TMAl Next, grow a 500-800nm Al y Ga (1-y) N layer (y range: 0.05-0.10);
生长SivAlzGa(1-z-v)N层,进一步为:Growth Si v Al z Ga (1-zv) N layer, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,同时通入流量为30000-60000sccm的NH3、100-130L/min的H2、200-300sccm的TMGa、 50-100sccm的TMAl及5-10sccm的SiH4的条件下,生长500-800nm的 SivAlzGa(1-z-v)N层(z取值范围:0.03-0.05;v的取值范围为:0.005-0.01), Si的掺杂浓度5E17-5E18atom/cm3。Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and at the same time feed the flow rate of 30000-60000sccm NH3 , 100-130L/min of H2 , 200-300sccm of TMGa, 50-100sccm of TMAl and 5 Under the condition of -10sccm SiH 4 , grow 500-800nm Si v Al z Ga (1-zv) N layer (z range: 0.03-0.05; v range: 0.005-0.01), Si The doping concentration is 5E17-5E18 atom/cm 3 .
进一步地,其中,处理衬底,进一步为:Further, wherein the processing substrate is further:
向放置有衬底的金属有机化学气相沉积系统的反应腔内,同时通入流量为10000-20000sccm的NH3、100-130L/min的H2,升高温度至900-1000℃,在反应腔压力为100-200mbar的条件下,处理所述衬底。Into the reaction chamber of the metal-organic chemical vapor deposition system where the substrate is placed, simultaneously feed NH 3 with a flow rate of 10000-20000 sccm and H 2 at 100-130 L/min, raise the temperature to 900-1000 ° C, and in the reaction chamber The substrate is processed at a pressure of 100-200 mbar.
进一步地,其中,生长掺杂Si的N型GaN层,进一步为:通入NH3、 TMGa、H2及SiH4持续生长掺杂Si的N型GaN层。Further, wherein, growing the Si-doped N-type GaN layer is further: passing through NH3, TMGa, H2 and SiH4 to continuously grow the Si-doped N-type GaN layer.
进一步地,其中,生长掺杂Si的N型GaN层,进一步为:Further, wherein the N-type GaN layer doped with Si is grown, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为 30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2、 20-50sccm的SiH4持续生长3-4μm的掺杂Si的N型GaN层,其中,Si掺杂浓度5E18-1E19atom/cm3。Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and the flow rate of NH3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 20-50sccm for continuous growth3 - 4 μm Si-doped N-type GaN layer, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 .
进一步地,其中,生长掺杂Si的N型GaN层,进一步为:Further, wherein the N-type GaN layer doped with Si is grown, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为 30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2、 20-50sccm的SiH4持续生长3-4μm的第一掺杂Si的N型GaN层,其中, Si掺杂浓度5E18-1E19atom/cm3;Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and the flow rate of NH3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 20-50sccm for continuous growth3 - a first Si-doped N-type GaN layer of 4 μm, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 ;
保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为 30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2、 2-10sccm的SiH4持续生长200-400nm的第二掺杂Si的N型GaN层,其中, Si掺杂浓度5E17-1E18atom/cm3。Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and the flow rate of NH 3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 2-10sccm for continuous growth A second Si-doped N-type GaN layer of 200-400 nm, wherein the Si doping concentration is 5E17-1E18 atom/cm 3 .
进一步地,其中,生长掺杂Si的N型GaN层,进一步为:Further, wherein the N-type GaN layer doped with Si is grown, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为 30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2、 20-50sccm的SiH4持续生长3-4μm的第一掺杂Si的N型GaN层,其中, Si掺杂浓度5E18-1E19atom/cm3;Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and the flow rate of NH3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 20-50sccm for continuous growth3 - a first Si-doped N-type GaN layer of 4 μm, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 ;
保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为 30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min的H2、 2-10sccm的SiH4持续生长200-400nm的第二掺杂Si的N型GaN层,其中, Si掺杂浓度5E17-1E18atom/cm3;Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and the flow rate of NH 3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 2-10sccm for continuous growth A second Si-doped N-type GaN layer of 200-400 nm, wherein the Si doping concentration is 5E17-1E18 atom/cm 3 ;
保持反应腔压力为300-400mbar、温度为750-850℃,通入流量为 30000-60000sccm的NH3、20-40sccm的TMGa、100-130L/min的N2、2-10sccm 的SiH4持续生长50-100nm的第三掺杂Si的N型GaN层,Si掺杂浓度 1E18-5E18atom/cm3。Keep the pressure of the reaction chamber at 300-400mbar, the temperature at 750-850°C, and the flow rate of NH 3 at 30000-60000sccm, TMGa at 20-40sccm, N2 at 100-130L/min, and SiH4 at 2-10sccm for continuous growth A third Si-doped N-type GaN layer with a thickness of 50-100 nm, and a Si doping concentration of 1E18-5E18 atom/cm 3 .
进一步地,其中,生长Inx1Ga(1-x1)N/GaN发光层,进一步为:Further, wherein the In x1 Ga (1-x1) N/GaN light-emitting layer is grown, further:
保持反应腔压力为300-400mbar、温度为700-750℃,通入流量为 50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn 及100-130L/min的N2的条件下,生长2.5-3.5nm掺杂In的Inx1Ga(1-x1)N 层,其中,x1=0.20-0.25,发光波长为450-455nm;Keep the pressure of the reaction chamber at 300-400mbar, the temperature at 700-750°C, and the flow rate of NH 3 at 50000-70000sccm, TMGa at 20-40sccm, TMIn at 1500-2000sccm and N2 at 100-130L/min , growing an In x1 Ga (1-x1) N layer doped with In at 2.5-3.5nm, wherein, x1=0.20-0.25, and the emission wavelength is 450-455nm;
升高温度至750-850℃,保持反应腔压力为300-400mbar,通入流量为 50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2的条件下,生长8-15nm的发光GaN层;重复交替生长Inx1Ga(1-x1)N层和发光 GaN层,得到Inx1Ga(1-x1)N/GaN发光层,其中,Inx1Ga(1-x1)N层和发光 GaN层的交替生长周期数为7-15。Raise the temperature to 750-850°C, keep the pressure of the reaction chamber at 300-400mbar, and feed 50000-70000sccm of NH3 , 20-100sccm of TMGa and 100-130L/min of N2 to grow 8- 15nm light-emitting GaN layer; repeated alternate growth of In x1 Ga (1-x1) N layer and light-emitting GaN layer to obtain In x1 Ga (1-x1) N/GaN light-emitting layer, where In x1 Ga (1-x1) N The number of alternating growth cycles of the GaN layer and the light-emitting GaN layer is 7-15.
进一步地,其中,生长P型AlGaN层,进一步为:Further, wherein, growing the P-type AlGaN layer is further:
保持反应腔压力为200-400mbar、温度为900-950℃,通入流量为 50000-70000sccm的NH3、30-60sccm的TMGa、100-130L/min的H2、 100-130sccm的TMAl、1000-1300sccm的Cp2Mg,持续生长50-100nm的P 型AlGaN层,其中,Al掺杂浓度1E20-3E20atom/cm3,Mg掺杂浓度 1E19-1E20atom/cm3。Keep the pressure of the reaction chamber at 200-400mbar, the temperature at 900-950°C, and the flow rate of NH 3 at 50000-70000sccm, TMGa at 30-60sccm, H2 at 100-130L/min, TMAl at 100-130sccm, 1000- 1300sccm of Cp 2 Mg, continuously growing a 50-100nm P-type AlGaN layer, wherein the Al doping concentration is 1E20-3E20atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 .
进一步地,其中,生长掺镁的P型GaN层,进一步为:Further, wherein, growing a p-type GaN layer doped with magnesium is further:
保持反应腔压力为400-900mbar、温度为950-1000℃,通入流量为 50000-70000sccm的NH3、20-100sccm的TMGa、100-130L/min的H2、1000-3000sccm的Cp2Mg,持续生长50-200nm的掺镁的P型GaN层,其中,Mg掺杂浓度1E19-1E20atom/cm3。Keep the pressure of the reaction chamber at 400-900mbar, the temperature at 950-1000°C, and feed the flow of NH 3 at 50000-70000sccm, TMGa at 20-100sccm, H2 at 100-130L/min, and Cp2Mg at 1000-3000sccm, A magnesium-doped P-type GaN layer is continuously grown with a thickness of 50-200 nm, wherein the Mg doping concentration is 1E19-1E20 atom/cm 3 .
进一步地,其中,降温冷却,进一步为:Further, wherein, cooling down is further:
降温至650-680℃后,保温20-30min,关闭加热系统、关闭给气系统,随炉冷却得到基于AlN模板的发光二极管。After cooling down to 650-680°C, keep it warm for 20-30 minutes, turn off the heating system and the gas supply system, and cool down with the furnace to obtain a light-emitting diode based on an AlN template.
与现有技术相比,本发明的基于AlN模板的发光二极管衬底外延生长的方法,实现了如下的有益效果:Compared with the prior art, the AlN template-based method for the epitaxial growth of a light-emitting diode substrate of the present invention achieves the following beneficial effects:
(1)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,通过溅射原理在LED的衬底上溅射AlN模板,利用AlN模板取代传统LED 的低温GaN层,只需要直接在AlN模板上实现高温NGaN的生长,不需要像传统LED的低温GaN层以及将低温GaN层腐蚀成岛状,使得外延生长简单化,提升了LED的生产效率。(1) The method for epitaxial growth of light-emitting diode substrates based on AlN templates in the present invention uses sputtering principles to sputter AlN templates on the substrate of LEDs, and utilizes AlN templates to replace the low-temperature GaN layer of traditional LEDs. The growth of high-temperature NGaN on the AlN template does not require the low-temperature GaN layer of traditional LEDs and the low-temperature GaN layer is etched into an island shape, which simplifies epitaxial growth and improves the production efficiency of LEDs.
(2)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,在AlN模板上生长AlGaN层和nAlGaN层,很好地解决了从AlN模板到N 型GaN层的过渡,解决了在AlN模板上直接生长GaN生长工艺复杂,生长得到的U型GaN和N型GaN翘曲度极大的问题。(2) The method for the epitaxial growth of light-emitting diode substrates based on AlN templates of the present invention grows AlGaN layers and nAlGaN layers on AlN templates, which solves the transition from AlN templates to N-type GaN layers well, and solves the problem of The growth process of directly growing GaN on the AlN template is complicated, and the U-type GaN and N-type GaN obtained by the growth are extremely warped.
(3)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,使得LED中外延片波长命中率提高、外延片晶体质量提升、发光层的晶体质量变好、P型GaN层的掺杂效率提高、空穴的迁移率提升、波长命中率提高提升了LED的亮度和光效,P型GaN层的空穴迁移率提升,使得电压会下降;晶体质量的提升,使得反向电压增加、抗静电能力得到提升,整体提升了LED的发光效率。(3) The method for the epitaxial growth of light-emitting diode substrates based on the AlN template of the present invention improves the wavelength hit rate of the epitaxial wafers in the LED, improves the crystal quality of the epitaxial wafers, improves the crystal quality of the light-emitting layer, and improves the crystal quality of the P-type GaN layer. The improvement of doping efficiency, hole mobility, and wavelength hit rate increase the brightness and light efficiency of the LED, and the hole mobility of the P-type GaN layer increases, causing the voltage to drop; the improvement of crystal quality increases the reverse voltage , The antistatic ability is improved, and the luminous efficiency of the LED is improved as a whole.
当然,实施本发明的任一产品必不特定需要同时达到以上所述的所有技术效果。Of course, any product implementing the present invention does not necessarily need to achieve all the above-mentioned technical effects at the same time.
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features of the present invention and advantages thereof will become apparent from the following detailed description of exemplary embodiments of the present invention with reference to the accompanying drawings.
附图说明Description of drawings
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
图1为现有技术中传统LED衬底外延生长方法的流程示意图;FIG. 1 is a schematic flow chart of a traditional LED substrate epitaxial growth method in the prior art;
图2为利用现有技术中发光二极管衬底外延生长方法的制备得到传统 LED的结构示意图;Fig. 2 is the structural schematic view of traditional LED obtained by the preparation of light-emitting diode substrate epitaxial growth method in the prior art;
图3为本发明实施例1所述基于AlN模板的发光二极管衬底外延生长的方法的流程示意图;3 is a schematic flow diagram of the method for epitaxial growth of a light-emitting diode substrate based on an AlN template according to Embodiment 1 of the present invention;
图4为利用本发明实施例1中所述基于AlN模板的发光二极管衬底外延生长的方法制备得到LED的结构示意图;Fig. 4 is a schematic structural diagram of an LED prepared by using the method for epitaxial growth of a light-emitting diode substrate based on an AlN template described in Embodiment 1 of the present invention;
图5为本发明实施例2所述基于AlN模板的发光二极管衬底外延生长的方法的流程示意图。FIG. 5 is a schematic flowchart of the method for epitaxial growth of a light-emitting diode substrate based on an AlN template according to Embodiment 2 of the present invention.
具体实施方式Detailed ways
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangements of components and steps, numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present invention unless specifically stated otherwise.
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and in no way taken as limiting the invention, its application or uses.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered part of the description.
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values should be construed as exemplary only, and not as limitations. Therefore, other instances of the exemplary embodiment may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numbers and letters denote similar items in the following figures, therefore, once an item is defined in one figure, it does not require further discussion in subsequent figures.
实施例1Example 1
如图3所示,为本实施例所述基于AlN模板的发光二极管衬底外延生长的方法的流程示意图,本实施例所述的方法解决了现有技术中制备LED 的方法使得制备的外延片波长命中率低、外延片晶体质量轻、发光层的晶体质量差,P层的掺杂效率降低,空穴的迁移率降低;导致制备得到LED 出现亮度下降、光效降低、反向电压降低、抗静电能力差等问题。As shown in Figure 3, it is a schematic flow chart of the method for epitaxial growth of light-emitting diode substrates based on AlN templates described in this embodiment. The method described in this embodiment solves the problem of the method for preparing LEDs in the prior art. The wavelength hit rate is low, the crystal quality of the epitaxial wafer is light, the crystal quality of the light-emitting layer is poor, the doping efficiency of the P layer is reduced, and the mobility of the holes is reduced; resulting in a decrease in brightness, a decrease in luminous efficacy, and a decrease in reverse voltage. Poor antistatic ability and other problems.
在本实施例中,运用MOCVD(金属有机化合物化学气相沉淀)来生长高亮度GaN基的LED外延片,采用高纯H2或高纯N2或高纯H2和高纯 N2的混合气体作为载气,高纯NH3作为N源,金属有机源三甲基镓(TMGa)、三乙基镓(TEGa)作为镓源,三甲基铟(TMIn)作为铟源,N型掺杂剂为硅烷(SiH4),三甲基铝(TMAl)作为铝源,P型掺杂剂为二茂镁(CP2Mg),衬底蓝宝石衬底,反应压力在70mbar到900mbar之间,具体包括如下步骤:In this embodiment, MOCVD (metal organic compound chemical vapor deposition) is used to grow high-brightness GaN-based LED epitaxial wafers, using high-purity H2 or high-purity N2 or a mixed gas of high-purity H2 and high-purity N2 As carrier gas, high-purity NH3 as N source, metal-organic source trimethylgallium (TMGa), triethylgallium (TEGa) as gallium source, trimethylindium (TMIn) as indium source, N-type dopant Silane (SiH 4 ), trimethylaluminum (TMAl) as the aluminum source, P-type dopant is magnesocene (CP 2 Mg), the substrate is sapphire substrate, and the reaction pressure is between 70mbar and 900mbar, specifically including Follow the steps below:
步骤301、处理蓝宝石衬底。Step 301, processing the sapphire substrate.
步骤302、生长AlxGa(1-x)N层,进一步为:Step 302, growing an AlxGa (1-x) N layer, further:
保持反应腔压力为100-300mbar、温度为900-1000℃,同时通入流量为 30000-40000sccm的NH3、100-130L/min的N2、50-100sccm的TMGa及 100-200sccm的TMAl的条件下,生长500-800nm的AlxGa(1-x)N层(x取值范围:0.10-0.15)。Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 900-1000°C, and at the same time feed the conditions of 30000-40000sccm of NH3 , 100-130L/min of N2 , 50-100sccm of TMGa and 100-200sccm of TMAl Next, grow a 500-800nm AlxGa (1-x) N layer (x range: 0.10-0.15).
步骤303、生长AlyGa(1-y)N层,进一步为:Step 303, growing an Al y Ga (1-y) N layer, further:
保持反应腔压力为100-300mbar、温度为1000-1200℃,同时通入流量为30000-50000sccm的NH3、100-130L/min的N2、100-200sccm的TMGa 及50-100sccm的TMAl的条件下,生长500-800nm的AlyGa(1-y)N层(y 取值范围:0.05-0.10)。Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 1000-1200°C, and at the same time feed the conditions of 30000-50000sccm of NH3 , 100-130L/min of N2 , 100-200sccm of TMGa and 50-100sccm of TMAl Next, grow a 500-800nm AlyGa (1-y) N layer (y range: 0.05-0.10).
步骤304、生长SivAlzGa(1-z-v)N层,进一步为:Step 304, growing a Si v Al z Ga (1-zv) N layer, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,同时通入流量为30000-60000sccm的NH3、100-130L/min的H2、200-300sccm的TMGa、 50-100sccm的TMAl及5-10sccm的SiH4的条件下,生长500-800nm的 SivAlzGa(1-z-v)N层(z取值范围:0.03-0.05;v的取值范围为:0.005-0.01), Si的掺杂浓度5E17-5E18atom/cm3。Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and at the same time feed the flow rate of 30000-60000sccm NH3 , 100-130L/min of H2 , 200-300sccm of TMGa, 50-100sccm of TMAl and 5 Under the condition of -10sccm SiH 4 , grow a 500-800nm Si v Al z Ga (1-zv) N layer (z range: 0.03-0.05; v range: 0.005-0.01), Si The doping concentration is 5E17-5E18 atom/cm 3 .
步骤305、生长掺杂Si的N型GaN层。Step 305 , growing a Si-doped N-type GaN layer.
步骤306、生长Inx1Ga(1-x1)N/GaN发光层,其中,x1=0.20-0.25。Step 306, growing an In x1 Ga (1-x1) N/GaN light-emitting layer, where x1=0.20-0.25.
步骤307、生长P型AlGaN层。Step 307 , growing a P-type AlGaN layer.
步骤308、生长掺镁的P型GaN层。Step 308 , growing a p-type GaN layer doped with magnesium.
步骤309、降温冷却。Step 309 , cooling down.
在LED制造过程中,在AlN层上直接生长GaN层的生长工艺十分复杂,生长完的U型GaN层和N型GaN层之间的翘曲度也很大,需要通过非常严格的控制才能生长出质量比较好的GaN层,同时波长命中率偏低,无法实现大规模量产化,本实施例在AlN模板上生长AlGaN层和nAlGaN 层,就很好地避免这些问题,将生长工艺参数调节达到很宽的范围,提高了外延片波长命中率,提升了外延片晶体质量,从而提升了LED的制备工艺。In the LED manufacturing process, the growth process of directly growing the GaN layer on the AlN layer is very complicated, and the warpage between the grown U-type GaN layer and the N-type GaN layer is also very large, which requires very strict control to grow. The GaN layer with relatively good quality can be produced, and the wavelength hit rate is low, which makes it impossible to realize mass production. In this embodiment, AlGaN layer and nAlGaN layer are grown on the AlN template, which can avoid these problems well, and adjust the growth process parameters Reach a very wide range, improve the wavelength hit rate of the epitaxial wafer, improve the crystal quality of the epitaxial wafer, and thus improve the preparation process of the LED.
如图4所示,为利用本实施例所述基于AlN模板的发光二极管衬底外延生长的方法制备得到LED的结构示意图,该LED包括如下结构:衬底 401、AlxGa(1-x)N层402、AlyGa(1-y)N层403、SivAlzGa(1-z-v)N层404、掺杂Si的N型GaN层405、Inx1Ga(1-x1)N/GaN发光层406、P型AlGaN层407、掺镁的P型GaN层408、ITO层409、SiO2保护层410、N电极411 及P电极412。As shown in FIG. 4 , it is a schematic structural diagram of an LED prepared by using the method for epitaxial growth of a light-emitting diode substrate based on an AlN template described in this embodiment. The LED includes the following structure: a substrate 401, an Al x Ga (1-x) N layer 402, A ly Ga (1-y) N layer 403, Si v Al z Ga (1-zv) N layer 404, Si-doped N-type GaN layer 405, In x1 Ga (1-x1) N/ GaN light emitting layer 406 , P-type AlGaN layer 407 , Mg-doped P-type GaN layer 408 , ITO layer 409 , SiO 2 protection layer 410 , N electrode 411 and P electrode 412 .
实施例2Example 2
如图3-5所示,图5为本实施例所述基于AlN模板的发光二极管衬底外延生长的方法的流程示意图,在实施例1的基础上,描述了基于AlN模板整体生长发光二极管外延层的具体内容。本实施例所述基于AlN模板的发光二极管衬底外延生长的方法,包括如下步骤:As shown in Figures 3-5, Figure 5 is a schematic flow chart of the method for epitaxial growth of light-emitting diode substrates based on AlN templates described in this embodiment. The specific content of the layer. The method for the epitaxial growth of a light-emitting diode substrate based on an AlN template described in this embodiment includes the following steps:
步骤501、处理蓝宝石衬底:向放置有衬底的金属有机化学气相沉积系统的反应腔内,同时通入流量为10000-20000sccm的NH3、100-130L/min 的H2,升高温度至900-1000℃,在反应腔压力为100-200mbar的条件下,处理所述衬底300s-600s。Step 501, processing the sapphire substrate: Into the reaction chamber of the metal-organic chemical vapor deposition system with the substrate placed, NH 3 with a flow rate of 10000-20000 sccm and H 2 with a flow rate of 100-130 L/min are introduced at the same time, and the temperature is raised to The substrate is processed for 300s-600s at 900-1000° C. under the condition that the reaction chamber pressure is 100-200 mbar.
步骤502、生长AlxGa(1-x)N层,进一步为:Step 502, growing an AlxGa (1-x) N layer, further:
保持反应腔压力为100-300mbar、温度为900-1000℃,同时通入流量为 30000-40000sccm的NH3、100-130L/min的N2、50-100sccm的TMGa及 100-200sccm的TMAl的条件下,生长500-800nm的AlxGa(1-x)N层(x取值范围:0.10-0.15)。Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 900-1000°C, and at the same time feed the conditions of 30000-40000sccm of NH3 , 100-130L/min of N2 , 50-100sccm of TMGa and 100-200sccm of TMAl Next, grow a 500-800nm AlxGa (1-x) N layer (x range: 0.10-0.15).
步骤503、生长AlyGa(1-y)N层,进一步为:Step 503, growing an Al y Ga (1-y) N layer, further:
保持反应腔压力为100-300mbar、温度为1000-1200℃,同时通入流量为30000-50000sccm的NH3、100-130L/min的N2、100-200sccm的TMGa 及50-100sccm的TMAl的条件下,生长500-800nm的AlyGa(1-y)N层(y 取值范围:0.05-0.10)。Keep the pressure of the reaction chamber at 100-300mbar, the temperature at 1000-1200°C, and at the same time feed the conditions of 30000-50000sccm of NH3 , 100-130L/min of N2 , 100-200sccm of TMGa and 50-100sccm of TMAl Next, grow a 500-800nm AlyGa (1-y) N layer (y range: 0.05-0.10).
步骤504、生长SivAlzGa(1-z-v)N层,进一步为:Step 504, growing a Si v Al z Ga (1-zv) N layer, further:
保持反应腔压力为300-600mbar、温度为1000-1200℃,同时通入流量为30000-60000sccm的NH3、100-130L/min的H2、200-300sccm的TMGa、 50-100sccm的TMAl及5-10sccm的SiH4的条件下,生长500-800nm的 SivAlzGa(1-z-v)N层(z取值范围:0.03-0.05;v的取值范围为:0.005-0.01), Si的掺杂浓度5E17-5E18atom/cm3。Keep the pressure of the reaction chamber at 300-600mbar, the temperature at 1000-1200°C, and at the same time feed the flow rate of 30000-60000sccm NH3 , 100-130L/min of H2 , 200-300sccm of TMGa, 50-100sccm of TMAl and 5 Under the condition of -10sccm SiH 4 , grow 500-800nm Si v Al z Ga (1-zv) N layer (z range: 0.03-0.05; v range: 0.005-0.01), Si The doping concentration is 5E17-5E18 atom/cm 3 .
步骤505、保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min 的H2、20-50sccm的SiH4持续生长3-4μm的第一掺杂Si的N型GaN层,其中,Si掺杂浓度5E18-1E19atom/cm3。Step 505, keep the reaction chamber pressure at 300-600mbar, temperature at 1000-1200°C, and feed in NH3 at 30000-60000sccm, TMGa at 200-400sccm, H2 at 100-130L/min, and SiH4 at 20-50sccm A first Si-doped N-type GaN layer of 3-4 μm is continuously grown, wherein the Si doping concentration is 5E18-1E19 atom/cm 3 .
步骤506、保持反应腔压力为300-600mbar、温度为1000-1200℃,通入流量为30000-60000sccm的NH3、200-400sccm的TMGa、100-130L/min 的H2、2-10sccm的SiH4持续生长200-400nm的第二掺杂Si的N型GaN 层,其中,Si掺杂浓度5E17-1E18atom/cm3。Step 506, keep the reaction chamber pressure at 300-600mbar, temperature at 1000-1200°C, and feed in NH 3 at 30,000-60,000 sccm, TMGa at 200-400 sccm, H 2 at 100-130 L/min, and SiH at 2-10 sccm 4. Continuously grow a second Si-doped N-type GaN layer of 200-400 nm, wherein the Si doping concentration is 5E17-1E18 atom/cm 3 .
步骤507、保持反应腔压力为300-400mbar、温度为750-850℃,通入流量为30000-60000sccm的NH3、20-40sccm的TMGa、100-130L/min的 N2、2-10sccm的SiH4持续生长50-100nm的第三掺杂Si的N型GaN层, Si掺杂浓度1E18-5E18atom/cm3。Step 507, keep the pressure of the reaction chamber at 300-400mbar, the temperature at 750-850°C, and feed in NH 3 at 30,000-60,000 sccm, TMGa at 20-40 sccm, N 2 at 100-130 L/min, and SiH at 2-10 sccm 4. Continuously grow a third Si-doped N-type GaN layer with a thickness of 50-100 nm, and the Si doping concentration is 1E18-5E18 atom/cm 3 .
步骤508、生长Inx1Ga(1-x1)N/GaN发光层,其中,x1=0.20-0.25。具体步骤包括:保持反应腔压力为300-400mbar、温度为700-750℃,通入流量为50000-70000sccm的NH3、20-40sccm的TMGa、1500-2000sccm的TMIn 及100-130L/min的N2的条件下,生长2.5-3.5nm掺杂In的Inx1Ga(1-x1)N 层,其中,x1=0.20-0.25,发光波长为450-455nm;Step 508, growing an In x1 Ga (1-x1) N/GaN light-emitting layer, where x1=0.20-0.25. The specific steps include: keeping the pressure of the reaction chamber at 300-400mbar, the temperature at 700-750°C, feeding in NH 3 at a flow rate of 50000-70000sccm, TMGa at 20-40sccm, TMIn at 1500-2000sccm and N at 100-130L/min Under the condition of 2 , grow 2.5-3.5nm In x1 Ga (1-x1) N layer doped with In, where x1=0.20-0.25, and the emission wavelength is 450-455nm;
升高温度至750-850℃,保持反应腔压力为300-400mbar,通入流量为 50000-70000sccm的NH3、20-100sccm的TMGa及100-130L/min的N2的条件下,生长8-15nm的发光GaN层;重复交替生长Inx1Ga(1-x1)N/GaN层和发光GaN层,得到Inx1Ga(1-x1)N/GaN/GaN发光层,其中,Inx1Ga(1-x1)N/GaN 层和发光GaN层的交替生长周期数为7-15。Raise the temperature to 750-850°C, keep the pressure of the reaction chamber at 300-400mbar, and feed 50000-70000sccm of NH3 , 20-100sccm of TMGa and 100-130L/min of N2 to grow 8- 15nm light-emitting GaN layer; repeated alternate growth of In x1 Ga (1-x1) N/GaN layer and light-emitting GaN layer to obtain In x1 Ga (1-x1) N/GaN/GaN light-emitting layer, in which In x1 Ga (1 -x1) The number of alternating growth cycles of the N/GaN layer and the light-emitting GaN layer is 7-15.
步骤509、生长P型AlGaN层:保持反应腔压力为200-400mbar、温度为900-950℃,通入流量为50000-70000sccm的NH3、30-60sccm的TMGa、 100-130L/min的H2、100-130sccm的TMAl、1000-1300sccm的Cp2Mg,持续生长50-100nm的P型AlGaN层,其中,Al掺杂浓度1E20-3E20atom/cm3, Mg掺杂浓度1E19-1E20atom/cm3。Step 509, growing a P-type AlGaN layer: keep the pressure of the reaction chamber at 200-400 mbar, the temperature at 900-950° C., and feed in NH 3 at a flow rate of 50,000-70,000 sccm, TMGa at 30-60 sccm, and H 2 at 100-130 L/min , 100-130sccm of TMAl, 1000-1300sccm of Cp 2 Mg, and continuously grow a 50-100nm P-type AlGaN layer, wherein, the Al doping concentration is 1E20-3E20atom/cm 3 , and the Mg doping concentration is 1E19-1E20atom/cm 3 .
步骤510、生长掺镁的P型GaN层:保持反应腔压力为400-900mbar、温度为950-1000℃,通入流量为50000-70000sccm的NH3、20-100sccm的 TMGa、100-130L/min的H2、1000-3000sccm的Cp2Mg,持续生长50-200nm 的掺镁的P型GaN层,其中,Mg掺杂浓度1E19-1E20atom/cm3。Step 510, growing a P-type GaN layer doped with magnesium: keep the pressure of the reaction chamber at 400-900mbar, the temperature at 950-1000°C, and the flow rate of NH 3 at 50000-70000sccm, TMGa at 20-100sccm, and 100-130L/min 1000-3000 sccm of Cp 2 Mg to continuously grow a 50-200 nm magnesium-doped P-type GaN layer, wherein the Mg doping concentration is 1E19-1E20 atom/cm 3 .
步骤511、降温冷却:降温至650-680℃后,保温20-30min,关闭加热系统、关闭给气系统,随炉冷却得到基于AlN模板的发光二极管。Step 511 , cooling down: after cooling down to 650-680° C., keep warm for 20-30 minutes, turn off the heating system, turn off the gas supply system, and cool down with the furnace to obtain a light-emitting diode based on an AlN template.
本实施例所述的基于AlN模板的发光二极管衬底外延生长的方法,在 AlN模板上生长AlGaN层和nAlGaN层,很好地解决了从AlN模板到N型 GaN层的过渡,解决了在AlN模板上直接生长GaN生长工艺复杂,生长得到的U型GaN和N型GaN翘曲度极大的问题。The method for the epitaxial growth of a light-emitting diode substrate based on an AlN template described in this embodiment, grows an AlGaN layer and an nAlGaN layer on an AlN template, and solves the transition from an AlN template to an N-type GaN layer, and solves the problem in the AlN The growth process of directly growing GaN on the template is complicated, and the U-type GaN and N-type GaN obtained by the growth are extremely warped.
实施例3Example 3
在本实施例中,根据传统的LED的生长方法制备得到LED样品1,根据本发明的LED生长方法制备得到样品2;样品1和样品2外延生长方法参数如表1所示。将样品1和样品2同时放入XRD测量设备(X-ray Diffraction,也称X射线衍射仪)内测量GaN层面的数值、发光层面数值,具体参见表3。然后将样品1和样品2在相同的前工艺条件下镀上约150nm厚的ITO层;在相同的条件下镀上约1500nm的Cr/Pt/Au电极;在相同的条件下镀上约100nm 厚的保护层SiO2,然后在相同的条件下将样品研磨切割成 635μm*635μm(25mil*25mil)的芯片颗粒,之后在相同位置从样品1和样品2中各自挑选100颗晶粒,在相同的封装工艺下封装成白光LED。再采用积分球在驱动电流350mA条件下测试样品1和样品2的光电性能,结果参见表2。In this embodiment, LED sample 1 was prepared according to the traditional LED growth method, and sample 2 was prepared according to the LED growth method of the present invention; parameters of the epitaxial growth methods of sample 1 and sample 2 are shown in Table 1. Put sample 1 and sample 2 into XRD measuring equipment (X-ray Diffraction, also known as X-ray diffractometer) at the same time to measure the value of GaN layer and the value of luminescence layer, see Table 3 for details. Then sample 1 and sample 2 are plated with about 150nm thick ITO layer under the same pre-process conditions; about 1500nm of Cr/Pt/Au electrodes are plated under the same conditions; The protective layer of SiO 2 , and then the sample was ground and cut into chip particles of 635μm*635μm (25mil*25mil) under the same conditions, and then 100 crystal grains were selected from sample 1 and sample 2 at the same position. Packaged into a white LED under the packaging process. The photoelectric properties of sample 1 and sample 2 were tested with an integrating sphere under the condition of a driving current of 350mA, and the results are shown in Table 2.
表1、样品1和样品2的生长参数的对比表Table 1, comparison table of growth parameters of sample 1 and sample 2
表2样品1和样品2产品电性参数的比较结果表Table 2 Comparison results of electrical parameters of sample 1 and sample 2 products
表3样品1和样品2外延片XRD参数的测定结果表Table 3 Determination results of XRD parameters of sample 1 and sample 2 epitaxial wafers
根据上述测试结果列表数据分析可知:将积分球获得的数据进行分析对比,表3测试数据表明AlN模板生长方法的运用N型GaN的晶体质量得到提升,发光层晶体质量得到提升,对应表2中本发明的LED光效从125m/w提升至145Lm/w,电压下降约0.1V,其他参数变好;说明本发明设计的LED外延生长方法在AlN模板上生长的LED可以实行量产化,并取得很好的LED 产品。According to the data analysis of the above test results list, it can be seen that the data obtained by the integrating sphere are analyzed and compared, and the test data in Table 3 shows that the crystal quality of N-type GaN is improved by using the AlN template growth method, and the crystal quality of the light-emitting layer is improved, corresponding to Table 2. The LED luminous efficiency of the present invention is increased from 125m/w to 145Lm/w, the voltage drops by about 0.1V, and other parameters become better; it shows that the LED epitaxial growth method designed in the present invention can realize mass production of LEDs grown on AlN templates, and Get good LED products.
通过以上各个实施例可知,本发明的基于AlN模板的发光二极管衬底外延生长的方法,存在的有益效果是:It can be seen from the above embodiments that the method for epitaxial growth of light-emitting diode substrates based on AlN templates of the present invention has the following beneficial effects:
(1)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,通过溅射原理在LED的衬底上溅射AlN模板,利用AlN模板取代传统LED 的低温GaN层,只需要直接在AlN模板上实现高温NGaN的生长,不需要像传统LED的低温GaN层以及将低温GaN层腐蚀成岛状,使得外延生长简单化,提升了LED的生产效率。(1) The method for epitaxial growth of light-emitting diode substrates based on AlN templates in the present invention uses sputtering principles to sputter AlN templates on the substrate of LEDs, and utilizes AlN templates to replace the low-temperature GaN layer of traditional LEDs. The growth of high-temperature NGaN on the AlN template does not require the low-temperature GaN layer of traditional LEDs and the low-temperature GaN layer is etched into an island shape, which simplifies epitaxial growth and improves the production efficiency of LEDs.
(2)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,在AlN模板上生长AlGaN层和nAlGaN层,很好地解决了从AlN模板到N 型GaN层的过渡,解决了在AlN模板上直接生长GaN生长工艺复杂,生长得到的U型GaN和N型GaN翘曲度极大的问题。(2) The method for the epitaxial growth of light-emitting diode substrates based on AlN templates of the present invention grows AlGaN layers and nAlGaN layers on AlN templates, which solves the transition from AlN templates to N-type GaN layers well, and solves the problem of The growth process of directly growing GaN on the AlN template is complicated, and the U-type GaN and N-type GaN obtained by the growth are extremely warped.
(3)本发明所述的基于AlN模板的发光二极管衬底外延生长的方法,使得LED中外延片波长命中率提高、外延片晶体质量提升、发光层的晶体质量变好、P型GaN层的掺杂效率提高、空穴的迁移率提升、波长命中率提高提升了LED的亮度和光效,P型GaN层的空穴迁移率提升,使得电压会下降;晶体质量的提升,使得反向电压增加、抗静电能力得到提升,整体提升了LED的发光效率。(3) The method for the epitaxial growth of light-emitting diode substrates based on the AlN template of the present invention improves the wavelength hit rate of the epitaxial wafers in the LED, improves the crystal quality of the epitaxial wafers, improves the crystal quality of the light-emitting layer, and improves the crystal quality of the P-type GaN layer. The improvement of doping efficiency, hole mobility, and wavelength hit rate increase the brightness and light efficiency of the LED, and the hole mobility of the P-type GaN layer increases, causing the voltage to drop; the improvement of crystal quality increases the reverse voltage , The antistatic ability is improved, and the luminous efficiency of the LED is improved as a whole.
本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、 CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art should understand that the embodiments of the present invention may be provided as methods, apparatuses, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。Although some specific embodiments of the present invention have been described in detail through examples, those skilled in the art should understand that the above examples are for illustration only and not intended to limit the scope of the present invention. Those skilled in the art will appreciate that modifications can be made to the above embodiments without departing from the scope and spirit of the invention. The scope of the invention is defined by the appended claims.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610940432.XA CN106328780B (en) | 2016-11-01 | 2016-11-01 | The method of light emitting diode substrate epitaxial growth based on AlN templates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610940432.XA CN106328780B (en) | 2016-11-01 | 2016-11-01 | The method of light emitting diode substrate epitaxial growth based on AlN templates |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106328780A CN106328780A (en) | 2017-01-11 |
CN106328780B true CN106328780B (en) | 2018-09-18 |
Family
ID=57818545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610940432.XA Active CN106328780B (en) | 2016-11-01 | 2016-11-01 | The method of light emitting diode substrate epitaxial growth based on AlN templates |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106328780B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106684218B (en) * | 2017-03-01 | 2019-05-10 | 湘能华磊光电股份有限公司 | A LED epitaxial growth method for improving luminous efficiency |
CN109300854B (en) * | 2018-10-17 | 2020-06-19 | 湘能华磊光电股份有限公司 | LED epitaxial wafer growth method |
CN109378371B (en) * | 2018-10-17 | 2020-10-09 | 湘能华磊光电股份有限公司 | LED epitaxial wafer growth method |
CN109378377B (en) * | 2018-10-17 | 2020-06-23 | 湘能华磊光电股份有限公司 | LED epitaxial growth method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103811601B (en) * | 2014-03-12 | 2016-08-17 | 合肥彩虹蓝光科技有限公司 | A kind of GaN base LED multi-level buffer layer growth method with Sapphire Substrate as substrate |
CN105070653B (en) * | 2015-08-18 | 2017-11-07 | 湘能华磊光电股份有限公司 | It is a kind of to strengthen the LED epitaxial growth methods of device antistatic effect |
CN105869994B (en) * | 2016-04-14 | 2018-04-06 | 湘能华磊光电股份有限公司 | A kind of growing method of superlattice layer and the LED epitaxial structure containing this structure |
-
2016
- 2016-11-01 CN CN201610940432.XA patent/CN106328780B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106328780A (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111223764A (en) | A kind of LED epitaxial growth method to improve radiation recombination efficiency | |
CN106328777B (en) | A kind of epitaxial growth method of light emitting diode stress release layer | |
CN103811601B (en) | A kind of GaN base LED multi-level buffer layer growth method with Sapphire Substrate as substrate | |
CN105023976B (en) | A kind of LED epitaxial growth methods | |
CN105206723B (en) | A kind of epitaxial growth method for improving LED luminance | |
CN108550665A (en) | A kind of LED epitaxial structure growing method | |
CN108598233A (en) | A kind of LED outer layer growths method | |
CN114284406B (en) | A kind of preparation method of nitride light-emitting diode | |
CN110629197B (en) | A kind of LED epitaxial structure growth method | |
CN106328780B (en) | The method of light emitting diode substrate epitaxial growth based on AlN templates | |
CN109411573B (en) | LED epitaxial structure growth method | |
CN107946416B (en) | A LED epitaxial growth method for improving luminous efficiency | |
CN107394018A (en) | A kind of LED epitaxial growth methods | |
CN110957403B (en) | LED epitaxial structure growth method | |
CN110620168B (en) | LED epitaxial growth method | |
CN106374021A (en) | LED Epitaxial Growth Method Based on Sapphire Patterned Substrate | |
CN105932126A (en) | Epitaxial growth method for improving brightness of light-emitting diode based on active layer | |
CN105895753A (en) | Epitaxial growth method improving luminous efficiency of LED | |
CN108574026B (en) | A method for growing LED epitaxial electron blocking layer | |
CN106684218A (en) | LED epitaxial growth method capable of improving light-emitting efficiency | |
CN106711298B (en) | A kind of light-emitting diode epitaxial growth method and light-emitting diode | |
CN112687770A (en) | LED epitaxial growth method | |
CN105870282B (en) | A kind of growing method of current extending and the LED epitaxial structure containing this structure | |
CN111276579B (en) | LED epitaxial growth method | |
CN108447951A (en) | A LED epitaxial growth method for improving luminous efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Method of epitaxial growth of light-emitting diode substrate based on AlN template Granted publication date: 20180918 Pledgee: Huaxia Bank Co.,Ltd. Chenzhou Branch Pledgor: XIANGNENG HUALEI OPTOELECTRONIC Co.,Ltd. Registration number: Y2024980045783 |