CN106324711B - 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜 - Google Patents

硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜 Download PDF

Info

Publication number
CN106324711B
CN106324711B CN201610822539.4A CN201610822539A CN106324711B CN 106324711 B CN106324711 B CN 106324711B CN 201610822539 A CN201610822539 A CN 201610822539A CN 106324711 B CN106324711 B CN 106324711B
Authority
CN
China
Prior art keywords
multilayer film
wsi
lens
mrow
laue lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610822539.4A
Other languages
English (en)
Other versions
CN106324711A (zh
Inventor
朱京涛
张嘉怡
朱圣明
冀斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU WENDAO ELECTRONIC TECHNOLOGY Co.,Ltd.
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201610822539.4A priority Critical patent/CN106324711B/zh
Publication of CN106324711A publication Critical patent/CN106324711A/zh
Application granted granted Critical
Publication of CN106324711B publication Critical patent/CN106324711B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

本发明涉及硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,该多层膜Laue透镜由WSi2层和掺杂2wt%Si的金属Al层交替镀制形成,厚度比为0.5。与现有技术相比,本发明提出新型材料Laue透镜的设计,在保证衍射效率的前提下,减小上千层膜层镀制过程中膜系的应力,降低多层膜的界面粗糙度,改善成膜质量,有效增大Laue透镜的口径和光通量,优化聚焦性能。

Description

硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜
技术领域
本发明属于精密光学元件研究领域,应用于发展纳米级硬X射线显微聚焦技术,尤其是涉及一种硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜。
背景技术
X射线显微技术因其穿透性强、工作波长短、无损伤测量、元素灵敏度高等特点,被广泛应用于等离子体诊断、生物医学显微等研究领域。X射线显微成像系统的分辨率由它聚焦元件可获得的焦斑大小所决定。由于X射线的折射率n值接近1,衍射式聚焦元件相较于反射和折射式元件,实现X射线聚焦更为便捷。传统的衍射式聚焦元件为菲涅耳波带片。根据瑞利判据,菲涅耳波带片的分辨率取决于最外层带宽,且衍射效率随入射X射线能量增加而减小。因此为获得高效率和高分辨率的聚焦,需要尽可能增加波带片的高宽比。使用电子束刻蚀制备的波带片,分辨率可达12nm,但高宽比在30以内,适用于软X射线波段。使用溅射切片的方法可获得1000以上的高宽比,但分辨率在100nm量级。
为实现硬X射线波段的纳米聚焦,2004年美国Argonne国家实验室提出了多层膜Laue透镜(MLL),在平面基底上,从最外层倒序镀制梯度结构的多层膜,再对其进行切片抛光装配,获得一维聚焦。将两片MLL正交放置,可获得二维聚焦。2011年,Argonne实验室使用两个正交放置的MLL在12keV波段获得了 25×27nm2的二维聚焦;2013年,Brookhaven实验室在相同波段获得了11nm的一维聚焦。
MLL是基于多层膜技术制备的一维波带片结构。多层膜沉积过程中应力的累加会大大降低可获得的口径大小,减小衍射效率;界面粗糙度、位置误差等成膜质量因素导致多层膜结构的不完美性,影响聚焦性能。限制了硬X射线显微成像系统的性能。
中国专利CN103151089A公开了硬X射线微聚焦多厚度比复合多层膜Laue透镜,针对透镜结构中,从中心到外层不同区域的局部光栅选择不同的膜层厚度比γ(以WSi2/Si材料组合为例,γ=dsi/(dWSi2+dsi):对中心区域周期较大的光栅选择较小的γ,减小应力;对外层区域周期较小的光栅选择相对较大的γ,保证衍射效率。并通过计算获得了γ为0.5的WSi2/Si多层膜Laue透镜93%的衍射效率。而本发明选用的的WSi2/Al0.98Si0.02材料在应力上优于WSi2/Si材料,且可获得的衍射效率大于专利CN103151089A所设计的WSi2/Si多厚度比复合多层膜Laue透镜,达到了γ为0.5的WSi2/Si多层膜Laue透镜的99%。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种进一步提高Laue透镜的口径和聚焦性能的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜。
本发明的目的可以通过以下技术方案来实现:
硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,该多层膜Laue透镜由 WSi2层和掺杂2wt%Si的金属Al层交替镀制形成。
所述的多层膜Laue透镜的厚度比(一个膜层周期内,WSi2层膜厚与总膜层厚度的比值)在0.1~0.9范围内。
所述的多层膜Laue透镜为倾斜式结构或楔形式结构。
倾斜式结构的多层膜Laue透镜为整体倾斜固定角度的透镜。
楔形式结构的多层膜Laue透镜为从透镜中心到外层的不同局部光栅分别倾斜对应的Bragg角,以完全满足Bragg条件的透镜。
所述的多层膜Laue透镜的结构采用以下方法确定:
(1)根据高通量显微实验应用时要求的能段、工作距离、聚焦成像分辨率和口径,选择WSi2/Al0.98Si0.02多层膜Laue透镜的工作波长λ、焦距f和最外层带宽的厚度drout
(2)多层膜Laue透镜在入射面处,膜层位置由公式(1)确定:
其中n为膜层数,rn为第n层膜层的位置半径,不同半径位置的环带厚度由公式(2)确定:
(3)采用衍射动力学中的一维耦合波理论,计算负1级衍射效率随深度z变化的曲线η-1(z);
(4)根据步骤(3)计算得到的效率曲线η-1(z),选取效率最大的最佳截面深度zopt
(5)根绝最佳截面深度zopt,计算出射面的电场分布,利用基尔霍夫-菲涅尔衍射积分,得到像面上的光强分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜的聚焦分辨率;
(6)根据步骤(5)计算得到的出射面电场分布,绘制等高图,得到XZ平面上焦深的分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜焦深长度。
所述的多层膜Laue透镜的截面深度为垂直于多层膜制样表面的元件长度。
现有的WSi2/Si多层膜Laue透镜具有良好的聚焦性能,但Si层应力较大,限制了通光口径尺寸影响了聚焦性能。本发明研究开发得到的WSi2/Al0.98Si0.02多层膜 Laue透镜,金属Al的光学性能与Si相似,且同等条件下应力性能优于Si,而纯金属Al易结晶,本发明在Al层中掺入2%Si,使用掺入2%Si的金属Al代替原来的Si层,同时兼顾衍射效率,减小应力并平滑界面粗糙度,减小结晶对成膜质量的影响,增大可获得的多层膜Laue透镜口径,进一步提高聚焦性能,为实现高通量高分辨率的硬X射线显微聚焦提供了新方法。
附图说明
图1为本发明的结构示意图;
图2为WSi2/Al0.98Si0.02多层膜Laue透镜衍射效率的曲线。
具体实施方式
硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其结构采用以下方法确定:
(1)根据高通量显微实验应用时要求的能段、工作距离、聚焦成像分辨率和口径,选择WSi2/Al0.98Si0.02多层膜Laue透镜的工作波长λ、焦距f和最外层带宽的厚度drout
(2)多层膜Laue透镜在入射面处,膜层位置由公式(1)确定:
其中n为膜层数,rn为第n层膜层的位置半径,不同半径位置的环带厚度由公式(2)确定:
(3)采用衍射动力学中的一维耦合波理论,计算负1级衍射效率随深度z变化的曲线η-1(z);
(4)根据步骤(3)计算得到的效率曲线η-1(z),选取效率最大的最佳截面深度zopt
(5)根绝最佳截面深度zopt,计算出射面的电场分布,利用基尔霍夫-菲涅尔衍射积分,得到像面上的光强分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜的聚焦分辨率;
(6)根据步骤(5)计算得到的出射面电场分布,绘制等高图,得到XZ平面上焦深的分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜焦深长度。
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
采用本发明的方法,针对高通量硬X射线聚焦显微实验应用,设计了 WSi2/Al0.98Si0.02多多层膜Laue透镜,工作在E=14keV(λ=0.0867nm),f=17.51mm, drout=15nm,本实施例中使用倾斜式的结构:
(1)根据透镜结构公式(1,2)算得多层膜Laue透镜的初始结构,并选择透镜倾角=1.44mrad,兼顾衍射效率与应力,本次设计的多层膜厚度比为0.5;
(2)利用一维耦合波理论,计算负1级衍射效率随深度z变化的曲线η-1(z)。
(3)根据衍射曲线η-1(z)选取效率最大的最佳深度zopt=8.20μm。
(4)根绝最佳深度zopt,计算出射面的电场分布,利用基尔霍夫-菲涅尔衍射积分,得到像面上的光强分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜的聚焦分辨率为26.80nm。
(5)根据计算所得结果,衍射效率28%,证实这种材料具有极高的可行性和潜能。
制备得到的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜的结构如图1 所示,由WSi2层1和掺杂2wt%Si的金属Al层2交替镀制形成。其厚度比为0.5。多层膜Laue透镜是梯度变化的多层膜,最外层膜厚确定分辨率的大小。图2为 WSi2/Al0.98Si0.02多层膜Laue透镜衍射效率随深度的变化曲线,在深度为8.2μm处获得了28.75%的衍射效率。
实施例2
硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,该多层膜Laue透镜由 WSi2层和掺杂2wt%Si的金属Al层交替镀制形成。多层膜Laue透镜在一个膜层周期内,WSi2层膜厚与总膜层厚度的比值为0.1。本实施例中,多层膜Laue透镜为倾斜式结构,倾斜式结构的多层膜Laue透镜为整体倾斜固定角度的透镜。
实施例3
硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,该多层膜Laue透镜由 WSi2层和掺杂2wt%Si的金属Al层交替镀制形成。多层膜Laue透镜在一个膜层周期内,WSi2层膜厚与总膜层厚度的比值为0.9。本实施例中,多层膜Laue透镜为楔形式结构。楔形式结构的多层膜Laue透镜为从透镜中心到外层的不同局部光栅分别倾斜对应的Bragg角,以完全满足Bragg条件的透镜。

Claims (7)

1.硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,该多层膜Laue透镜由WSi2层和掺杂2wt%Si的金属Al层交替镀制形成。
2.根据权利要求1所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,所述的多层膜Laue透镜在一个膜层周期内,WSi2层膜厚与总膜层厚度的比值为0.1~0.9。
3.根据权利要求1所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,所述的多层膜Laue透镜为倾斜式结构或楔形式结构。
4.根据权利要求3所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,倾斜式结构的多层膜Laue透镜为整体倾斜固定角度的透镜。
5.根据权利要求3所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,楔形式结构的多层膜Laue透镜为从透镜中心到外层的不同局部光栅分别倾斜对应的Bragg角,以完全满足Bragg条件的透镜。
6.根据权利要求1-5中任一项所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,所述的多层膜Laue透镜的结构采用以下方法确定:
(1)根据高通量显微实验应用时要求的能段、工作距离、聚焦成像分辨率和口径,选择WSi2/Al0.98Si0.02多层膜Laue透镜的工作波长λ、焦距f和最外层带宽的厚度drout
(2)多层膜Laue透镜在入射面处,膜层位置由公式(1)确定:
<mrow> <msubsup> <mi>r</mi> <mi>n</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mi>n</mi> <mi>f</mi> <mi>&amp;lambda;</mi> <mo>+</mo> <mfrac> <mrow> <msup> <mi>n</mi> <mn>2</mn> </msup> <msup> <mi>&amp;lambda;</mi> <mn>2</mn> </msup> </mrow> <mn>4</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中n为膜层数,rn为第n层膜层的位置半径,不同半径位置的环带厚度由公式(2)确定:
<mrow> <msub> <mi>d</mi> <msub> <mi>r</mi> <mi>n</mi> </msub> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&amp;lambda;</mi> <mi>f</mi> <mo>+</mo> <mfrac> <mrow> <msup> <mi>n&amp;lambda;</mi> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mn>2</mn> <msub> <mi>r</mi> <mi>n</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
(3)采用衍射动力学中的一维耦合波理论,计算负1级衍射效率随深度z变化的曲线η-1(z);
(4)根据步骤(3)计算得到的效率曲线η-1(z),选取效率最大的最佳截面深度zopt
(5)根据最佳截面深度zopt,计算出射面的电场分布,利用基尔霍夫-菲涅尔衍射积分,得到像面上的光强分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜的聚焦分辨率;
(6)根据步骤(5)计算得到的出射面电场分布,绘制等高图,得到XZ平面上焦深的分布,获得WSi2/Al0.98Si0.02多层膜Laue透镜焦深长度。
7.根据权利要求6所述的硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜,其特征在于,所述的多层膜Laue透镜的截面深度为垂直于多层膜制样表面的元件长度。
CN201610822539.4A 2016-09-13 2016-09-13 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜 Active CN106324711B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610822539.4A CN106324711B (zh) 2016-09-13 2016-09-13 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610822539.4A CN106324711B (zh) 2016-09-13 2016-09-13 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜

Publications (2)

Publication Number Publication Date
CN106324711A CN106324711A (zh) 2017-01-11
CN106324711B true CN106324711B (zh) 2018-04-17

Family

ID=57787697

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610822539.4A Active CN106324711B (zh) 2016-09-13 2016-09-13 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜

Country Status (1)

Country Link
CN (1) CN106324711B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389642B (zh) * 2018-06-29 2018-09-25 上海米蜂激光科技有限公司 一维x射线多层膜波导结构及其制备方法
CN109166644B (zh) * 2018-09-16 2019-12-17 萧县众科电磁检测有限公司 一种对x射线纳米级聚焦的可调式波导系统的制备方法
CN109243663B (zh) * 2018-09-16 2020-10-02 马鞍山金瓦格机械科技有限公司 一种对x射线纳米级聚焦的可调式波导系统
CN117079856A (zh) * 2019-04-22 2023-11-17 苏州宏策光电科技有限公司 一种硬X射线微聚焦的Nb/Al多层膜Laue透镜
CN113640330B (zh) * 2021-07-28 2022-08-23 中国科学院高能物理研究所 一种多层膜劳埃透镜的离线表征方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100345003C (zh) * 2005-12-07 2007-10-24 乐孜纯 铝材料一维x射线折衍射微结构器件的制作方法
US7864426B2 (en) * 2007-02-13 2011-01-04 Xradia, Inc. High aspect-ratio X-ray diffractive structure stabilization methods and systems
CN103021496B (zh) * 2011-09-24 2015-10-21 同济大学 硬X射线微聚焦高级次多层膜Laue透镜
CN103151089B (zh) * 2011-12-06 2016-04-20 同济大学 硬X射线微聚焦多厚度比复合多层膜Laue透镜
DE102015203604B4 (de) * 2015-02-27 2022-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schichtaufbau für mehrschichtige Laue-Linsen bzw. zirkulare Multischicht-Zonenplatten

Also Published As

Publication number Publication date
CN106324711A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
CN106324711B (zh) 硬X射线微聚焦用WSi2/Al0.98Si0.02多层膜Laue透镜
EP1234310B1 (en) Doubly curved optical device with graded atomic planes
EP3385219B1 (en) Method for manufacturing a device for forming at least one focused beam in a near zone
US8369674B2 (en) Optimizing total internal reflection multilayer optics through material selection
CN107833649A (zh) 一种x射线波带片的制备方法
WO1988001428A1 (en) Instrumentation for conditioning x-ray or neutron beams
CN103151089B (zh) 硬X射线微聚焦多厚度比复合多层膜Laue透镜
CN102338894B (zh) 一种等离子体平板透镜及其近场聚焦方法
CN105137513B (zh) 一种位相编码的宽带光子筛
CN103021496B (zh) 硬X射线微聚焦高级次多层膜Laue透镜
Sutter et al. 1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays
KR20160030125A (ko) 회전체 미러를 사용한 x선 집광시스템의 광학설계방법 및 x선 집광시스템
CN108535865A (zh) 一种焦距可控的负折射光栅平凹镜设计方法
Willis et al. A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments
CN103559927B (zh) 一种消球差硬x射线聚焦光学元件及其设计方法
CN109887636A (zh) 一种应用于硬X射线微聚焦的Nb/Al多层膜Laue透镜
CN106531281B (zh) 一种消像差x射线复合折射透镜及其设计方法
Suzuki et al. High-energy x-ray microbeam with total-reflection mirror optics
JP2011257663A (ja) 回折光学素子、光学系、及び、光学機器
JPH0372298A (ja) 多層膜反射鏡の製造方法
Tiwari et al. Application of kinoform lens for X-ray reflectivity analysis
Kamijo et al. Fabrication and testing of hard x‐ray sputtered‐sliced zone plate
Coffy et al. Anisotropic propagation imaging of elastic waves in oriented columnar thin films
FR2504308A1 (fr) Instrument et procede pour focaliser des rayons x, des rayons gamma et des neutrons
CN103559926B (zh) 一种相位片型纳米聚焦单元及其设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210823

Address after: 215400 building B, 88 Beijing East Road, Loudong street, Taicang City, Suzhou City, Jiangsu Province

Patentee after: SUZHOU WENDAO ELECTRONIC TECHNOLOGY Co.,Ltd.

Address before: 200092 Siping Road 1239, Shanghai, Yangpu District

Patentee before: TONGJI University

TR01 Transfer of patent right